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Preface

Stochastic analysis is important and powerful tool to study uncertainty in numerous problems
of statistics and modern finance theory. This book presents a selected collection of some of
the research of GAU Business Research Center during the last 10 years in this important area.
All these researches were published in international impact-factor journals.

First chapter by Lazrieva and Toronjadze presents the optimal B-robust estimate for multi-
dimensional parameter in drift coefficient of diffusion type process with small noise. Chap-
ter 2 by Mania et al. presents the mean-variance hedging problem under partial information.
Chapter 3 by Tevzadze is devoted to the proof of the existence of unique solution of gen-
eral backward stochastic differential equation with quadratic grows driven by martingales. In
chapter 4, Mania et al. discuss the mean-variance hedging problem in case where flow of ob-
servable events do not contain the full information on the underlying asset price process. In
chapter 5, Lazrieva and Toronjadze present general results concerning the asymptotic behav-
ior of the Polyak average of the solution of the Robbins-Monro type stochastic differential
equation. In chapter 6, Lazrieva and Toronjadze present the recourse estimation problem
of a one-dimensional parameter in the trend coefficient of diffusion process. In chapter 7,
Tevzadze et al. study the robust maximization of terminal wealth utility in diffusion finan-
cial market models. In chapter 8, Chikvinidze and Mania give new proofs of some well
known results of BMO martingales and improves some estimate of BMO norms. In chap-
ter 9, Lazrieva and Toronjadze study the recursive estimation problem of one-dimensional
parameter of statistical models associated with semimartingales. Chapter 10 by Mania and
Tevzadze studies regularity properties of the dynamic value function of the primal and dual
problems of optimal investing for utility functions defined only whole real line. Chapter 11
by Mania and Tevzadze establishes connections between system of Forward and Backward
SDEs and backward stochastic PDEs related to the utility maximization problem.

Editor T. Toronjadze

GAU Business School

v





OPTIMAL ROBUST MEAN-VARIANCE HEDGING IN INCOMPLETE
FINANCIAL MARKETS

N. LAZRIEVA AND T. TORONJADZE

Abstract. Optimal B-robust estimate is constructed for multidimensional parameter in drift
coefficient of diffusion type process with small noise. Optimal mean-variance robust (opti-
mal V -robust) trading strategy is find to hedge in mean-variance sense the contingent claim
in incomplete financial market with arbitrary information structure and misspecified volatility
of asset price, which is modelled by multidimensional continuous semimartingale. Obtained
results are applied to stochastic volatility model, where the model of latent volatility pro-
cess contains unknown multidimensional parameter in drift coefficient and small parameter in
diffusion term.

Key words and phrases: Stochastic volatility, small diffusion, robust parameter estimate,
optimal mean-variance robust hedging

MSC 2010: 60G22, 62F35, 91B28, 62F35, 62M05, 62M09

1. INTRODUCTION, MOTIVATION AND RESULTS

The hedging and pricing of contingent claims in incomplete financial markets, and dy-
namic portfolio selection problems are important issues in modern theory of finance. These
problems are associated due to the so-called mean-variance approach.

For determining a “good” hedging strategy in incomplete market with arbitrary informa-
tion structure F = (F)0≤t≤T , one riskless asset and d, d ≥ 1, risky assets, whose price
process is a semimartingale X , the mean-variance approach suggests to use the quadratic
criterion to measure the hedging error, i.e. to solve the mean-variance hedging problem in-
troduced by Föllmer and Sondermann [10]:

minimize E

(
H − x−

∫ T

0

θtdXt

)2

over all θ ∈ Θ, (1.1)

where contingent claim H is a FT -measurable square-integrable random variable (r.v.), x is
an initial investment, Θ is a class of admissible trading strategies, T is an investment horizon.

The mean-variance formulation by Markowitz [26], provides a foundation for a single
period portfolio selection (see, also Merton [27]). In recent paper of Li and Ng [22] the
concept of Markowitz’s mean-variance formulation for finding the optimal portfolio policy
and determining the efficient frontier in analytical form has been extended to multiperiod
portfolio selection.

Published in J. Math. Sci. (N.Y.) 153 (2008), no. 3, 262–290.
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2 Optimal Robust Mean-Variance Hedging in Incomplete Financial Markets

As it pointed out in Li and Ng [22] the results on multiperiod mean-variance formula-
tion with one riskless asset can be derived using the results of the mean-variance hedging
formulation.

Therefore, the mean-variance hedging is s powerful approach for both above mentioned
major problems.

The problem (1.1) was intensively investigated in last decade (see, e.g., Dufiie and Richard-
son [9], Schwezer [36], [37], [38], Delbaen et al. [8], Monat and Striker [28], Rheinländer and
Schweizer [33], (RSch hereafter), Pham et al. [31], Gourieroux et al. [11] (GLP hereafter),
Laurent and Pham [18]).

A stochastic volatility model, proposed by Hull and White [13] and Scott [39], where the
stock price volatility is an random process, is a popular model of incomplete market, where
the mean-variance hedging approach can be used (see, e.g., Laurent and Pham [18], Biagini
et al. [13], Mania and Tevzadze [24], Pham et al. [31]).

Consider the stochastic volatility model described by the following system of SDE

dXt = Xt dRt, X0 > 0,

dRt = µt(Rt, Yt) dt+ σ.dw
R
t , R0 = 0,

σ2
t = f(Yt),

dYt = a(t, Yt;α) dt+ ε dwσ
t , Y0 = 0,

(1.2)

where w = (wR, wσ) is a standard two-dimensional Wiener process, defined on complete
probability space (Ω,F , P ), Fw = (Fw

t )0≤t≤T is the P -augmentation of the natural filtra-
tion Fw

t = σ(ws, 0 ≤ s ≤ t), 0 ≤ t ≤ T , generated by w, f(·) is a continuous one-to-one
positive locally bounded function (e.g., f(x) = ex), α = (α1, . . . , αm), m ≥ 1, is a vector
of unknown parameters, and ε, 0 < ε � 1, is a small number. Assume that the system (1.2)
has an unique strong solution.

This model is analogous to the model proposed by Renault and Touzi [32] (RT hereafter).
The principal difference is the presence of small parameter ε in our model, which due to
the assumption that the volatility of randomly fluctuated volatility process is small (see, also
Sircar and Papanicolau [40]). Thus assumption enables us to use the prices of trading options
with short, nearest to the current time value maturities for volatility process filtration and
parameter estimation purposes (see below). In contrast, RT [32] needs to assume that there
exist trading derivatives with any (up to the infinity) maturities.

Important feature of the stochastic volatility models is that volatility process Y is unob-
servable (latent) process. To obtain explicit form of optimal trading strategy full knowledge
of the model of the process Y is necessary and hence one needs to estimate the unknown
parameter α = (α1, . . . , αm), m ≥ 1.

A variety of estimation procedures are used, which involve either direct statistical analysis
of the historical data or the use of implied volatilities extracted from prices of existing traded
derivatives.

For example, one can use the following method based on historical data.
Fix the time variable t. From observations X

t
(n)
0

, . . . , X
t
(n)
n

, 0 = t
(n)
0 < · · · < t

(n)
n = t,

max
j

[t
(n)
j+1 − t

(n)
j ] → 0, as n → 0, calculate the realization of yield process Rt =

t∫
0

dXs

Xs
, and
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then calculate the sum

Sn(t) =

n−1∑
j=0

|R
t
(n)
j+1

−R
t
(n)
j

|2.

It is well-known (see, e.g., Lipster and Shiryaev [23]) that

Sn(t)
P→

∫ t

0

σ2
s ds as n → ∞.

Since σ2
t (ω) = f(Yt) is a continuous process we get

σ2
t (ω) = lim

∆↓0

F (t+∆, ω)− F (t, ω)

∆
,

where F (t, ω) =
t∫
0

σ2
s(ω)ds.

Hence, the realization (yt)0≤t≤T of the process Y can be found by the formula yt =
f−1(σ2

t ), 0 ≤ t ≤ T .
More sofisticated methods using the same idea can be found, e.g., in Chesney et al. [5],

Pastorello [30].
We can use the reconstructed sample path (yt), 0 ≤ t ≤ T . to estimate the unknown

parameter α in the drift coefficient of diffusion process Y .
The second, market price adjusted procedure of reconstruction the sample path of volatil-

ity process Y and parameter estimate was suggested by RT [32], where they used implied
volatility data.

We present a quick review of this method, adapted to our model (1.2).
Suppose that the volatility risk premium λσ ≡ 0, meaning that the risk from the volatility

process is non-compensated (or can be diversified away). Then the price Ct(σ) of European
call option can be calculated by the Hull and White formula (see, e.g., RT [32]), and Black-
Scholes (BS) implied volatility σi(σ) can be found as an unique solution of the equation

Ct(σ) = CBS
t (σi(σ)),

where CBS(σ) denotes the standard BS formula written as a function of the volatility param-
eter σ.

Here (for further estimational purposes) only at-the-money options are used.
Under some technical assumptions (see Proposition 5.1 of RT [32], and Bujeux and Rochet

[23] for general diffusion of volatility process)

∂σi
t(σ, α)

∂σt
> 0 (1.3)

(remember that the drift coefficient of process Y depends on unknown parameter α).
Fix current value of time parameter t, 0 ≤ t ≤ T , and let 0 < T1 < T2 < · · · < Tk−1 <

t < Tk be the maturity times of some traded at-the-money options.
Let σi∗

tεj
be the observations of an implied volatility at the time moments 0 = tε0 < tε1 <

· · · < t[ tε ] = t, max
j

[tεj+1 − tεj ] → 0, as ε → 0.

Then, using (1.3), and solving the equation

σi
tεj
(σtεj

, α) = σi∗

tεj
,
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one can obtained the realization {σ̃tεj
} of the volatility (σt), and thus, using the formula

ytεj = f−1(σ̃2
tεj
), the realization {ytεj} of volatility process (Yt), which can be viewed as the

realization of nonlinear AR(1) process:

Ytεj+1
− Ytεj

= a(tεj , Ytεj
;α)(tεj+1 − tεj) + ε(wσ

tεj+1
− wσ

tεj
).

Using the data {ytεj} one can construct the MLE α̂ε
t of parameter α, see, e.g., Chitashvili

et al. [25], [26], Lazrieva and Toronjadze [19].
Remember the scheme of construction of MLE. Rewrite the previous AR(1) process, using

obvious simple notation, in form

Yj+1 − Yj = a(tj , Yj ;α)∆ + ε∆wσ
j .

Then
∂

∂y
P{Yj+1 ≤ y | Yj} =

1√
2π∆ε

exp

(
− (y − Yj − a(tj , Yj ;α)∆)2

2ε2∆

)
=: ϕj+1(y, Yj ;α),

and the log-derivative of the likelihood process �t = (�
(1)
t , . . . , �

(m)
t ) is given by the relation

�
(i)
t =

∑
j

�
(i)
j+1, i = 1,m,

where

�
(i)
j+1(y;α) =

∂

∂αi
lnϕj+1(y, Yj ;α) =

1

ε2∆
(y − Yj − a(tj , Yj ;α)∆)ȧ(i)(tj , Yj ;α)∆.

Hence MLE is a solution (under some conditions) of the system of equations
1

ε2∆

∑
j

(yj+1 − yj − a(tj , yj ;α)∆)ȧ(i)(tj , yj ;α)∆ = 0, i = 1,m,

where the reconstructed data {yj} = {ytεj} are substituted).
Following RT [32] let us introduce the functionals

HW−1
ε : α̂ε

t (p) →
(
y
(p+1)
tεj

, 0 ≤ j ≤
[
t

ε

])
,

MLEε :

(
y
(p+1)
tεj

, 0 ≤ j ≤
[
t

ε

])
→ α̂ε

t (p+ 1)

and
φε = MLEε ◦HW−1

ε .

Starting with some constant initial value (or preliminary estimate obtained, e.g., from
historical data) one can compute a sequence of estimates

α̂ε
t (p+ 1) = φε(α̃

ε
t (p)), p ≥ 1.

If the operator φε is a strong contraction in the neighborhood of the true value of the pa-
rameter α0, for a small enough ε, then one can define the estimate α̂ε

t as the limits of the
sequence {α̂ε

t (p)}p≥1. It was proved in RT [32] that α̂ε
t is a strong consistent estimate of the

parameter α.
Return to our consideration.
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Interpolating on some way the corresponding (to the estimate α̂ε
t ) realization {ytεj} we get

the reconstructed continuous sample path (ys)0≤s≤t of the latent process Y , which can be
used for further analysis.

Unfortunately, both described statistical procedures are highly sensitive w.r.t errors in all
steps of parameter identification process.

Hence, this is a natural place for introducing the robust procedure of parameter estimates.
Suppose that the sample path (ys)0≤s≤t comes from the observation of process (Ỹs)0≤s≤t

with distribution P̃ ε
α from the shrinking contamination neighborhood of the distribution P ε

α

of the basic process Y = (Ys)0≤s≤t. That is

dP̃ ε
α

dP ε
α

∣∣∣Fw
t = Et(εNε), (1.4)

where Nε = (Nε
s )0≤s≤t is a P ε

α-square integrable martingale, Et(M) is the Dolean expo-
nential of martingale M .

In the diffusion-type framework (1.4) represents the Huber gross error model (as it explain
in Remark 2.2). The model of type (1.4) of contamination of measures for statistical models
with filtration was suggested by Lazrieva and Toronjadze [20], [21].

In Section 2 we study the problem of construction of robust estimates for contamination
model (1.4).

In subsection 2.1 we give a description of the basic model and definition of consistent
uniformly linear asymptotically normal (CULAN) estimates, connected with the basic model
(Definition 2.1).

In subsection 2.2 we introduce a notion of shrinking contamination neighborhood, de-
scribed in terms of contamination of nominal distribution, which naturally leads to the class
of alternative measures (see (2.18) and (2.19)).

In subsection 2.3 we study the asymptotic behaviour of CULAN estimates under alterna-
tive measures (Proposition 2.2), which is the basis for the formulation of the optimization
problem.

In subsection 2.4 the optimization problem is solved which leads to construction of optimal
B-robust estimate (Theorem 2.1).

Based on the limit theorem (subsection 2.1), one can construct the asymptotic confidence
region of level γ for unknown parameter α

lim
ε→∞

P ε
α

(
ε−2(α− α∗,ε

t )′V −1(ψ∗;α∗,ε
t )(α− α∗,ε

t ) ≤ χ2
γ

)
= 1− γ,

where χ2
γ is a quantile of order 1 − γ of χ2-distribution with m degree of freedom, and

V (ψ∗;α) is given by (2.17).
This region shrinks to the estimate α∗,0

t , as ε → 0.
Now if the coefficient a(t, y;α) in (1.2) is such that the solution Y ε

t (α) of SDE (1.2) is
continuous w.r.t parameter α (see, e.g., Krylov [16]), then the confidence region of parameter
α is mapped to the confidence interval for Y ε

t (α), which shrinks to Y ∗
t = Y 0

t (α
∗,0
t ), Further,

by the function f , the latter interval is mapped to the confidence interval for σt, which shrinks
to σ∗

t = f1/2(Y 0
t (α

∗,0
t )). Denote σ0

t the center of this interval. Then the interval can be
written in the form

σt = σ0
t + δ(ε)ht,
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where δ(ε) → 0, as ε → 0, and h ∈ H (see (3.18)).
Thus, we arrive at the asset price model (1.2) with misspecified volatility, and it is natural

to consider the problem of construction of the robust trading strategy to hedge a contingent
claim H .

We investigate this problem in the mean-variance setting in Section 3. We consider the
general situation, when the asset price is modelled by d-dimensional continuous semimartin-
gale and the information structure is given by some general filtration.

In subsection 3.1 we give a description of the financial market model.
In subsection 3.2 we collect the facts concerning the variance-optimal equivalent local

martingale measure, which plays a key role in the mean-variance hedging approach.
In last subsection 3.3 we construct “optimal robust hedging strategy” (Theorem 3.1) by

approximating the optimization problem (3.25) by the problem (3.27). As it is mentioned
in Remark 3.2, such approach and term are common in robust statistic theory. In contact
to optimal B-robustness (see Section 2), here we develop the approach, known in robust
statistics as optimal V -robustness, see Hampel et al. [12].

Note that our approach allows incorporating current information on the underlying model,
and hence is adaptive. Namely, passing from time value t to t+τ , τ > 0, when more informa-
tion about market prices are available, the asymptotic variance-covariance of the constructed
estimate α∗,ε

t becomes smaller, and hence the estimation procedure becomes more precise.
In the paper of Runggaldier and Zaccaria [35] the adaptive approach to risk management

under general uncertainty (restricted information) was developed. As it is mentioned in this
paper there exist a series of investigations dealt with various type of adaptive approaches (see
list of references in [35]). But in all these papers (except Runggaldier and Zaccaria [35]) the
uncertainty is only in the stock appreciation rate in contrast to our consideration, where the
model misspecification is due to the volatility parameter.

The consideration of misspecified asset price models was initiated by Avellaneda et al.
[1], Avellaneda and Paras [2].

Various authors in different settings attacked the robustness problem. The method used
in Section 3 was suggested by Toronjadze [41] for asset price process modelled by the one-
dimensional process. As it will be shown in Remark 3.2 below, in simplest case when asset
price process is a martingale w.r.t initial measure P , and it is possible to find the solution of
“exact” optimization problem (3.25), this solution coincides with the solution of an approx-
imating optimization problem (3.27). In more general situation (when asset price process
is not more the P -martingale) investigation of the problem (3.25) by, e.g., control theory
methods seems sufficiently difficult. Anyway, we do not know the solution of the problem
(3.25).

Return to the stochastic volatility model (1.2) and describe successive steps of our ap-
proach:

1) For each current time value t, 0 < t < T , reconstruct the sample path (ys)0≤s≤t, using
the historical data or the tradable derivatives prices;

2) Using the approach developed in Section 2, calculate the value α∗,ε
t of the robust esti-

mate of parameter α (i.e. construct the deterministic function t → α∗,ε
t ∈ Rm) and then find

the confidence region for parameter α;
3) Based on the volatility process model find the confidence interval for Yt(α);
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4) Denoting a∗(t, y) = a(t, y;α∗,ε
t ), where a(t, y;α) is a drift coefficient of volatility

process, consider the stochastic volatility model with misspecified asset price model and fully
specified volatility process model

dXt = Xt dRt, X0 > 0,

dRt = (σ0
t + δ(ε)ht)dM

0
t , R0 = 0,

dYt = a∗(t, Yt) dt+ ε dwσ
t , Y0 = 0, 0 ≤ t ≤ T,

where
dM0

t = kt dt+ dwR
t ,

h ∈ H and σ0
t is the center of the confidence interval of volatility.

Using Theorem 3.1 construct the optimal robust hedging strategy by the formula (3.44),

θ∗t =
1

σ0
t

[
ψ1,H
t + ζt(V

∗
t − (ψH

t )′Ut

]
,

where all objects are defined in Theorem 3.1. �
It should be mentioned that if one constructs a hedging strategy θ̃∗t by the above-given

formula with σ∗,ε
t = f1/2(Y ε

t (α
∗,ε
t )) instead of σ0

t , then the strategies θ̃∗t and θ∗t would be
different, since σ∗,ε

t �= σ0
t , in general. Hence the value ∆t = |σ∗,ε

t −σ0
t | defines the correction

term between the robust, θ∗t and non-robust, θ̃∗ strategies.
In nontrivial case, when kt = k(Yt) the variance-optimal martingale measure P̃ is given

by (3.17), ζt = −ktEt(−k ·M0) (see subsection 3.2), and the process (Xt, Yt)0≤t≤T is the
Markov process. If H = h(XT , YT ) (h(x, y) is some function), then Ṽ H

t = EP̃ (H|Fw
t ) =

EP̃ (h(XT , YT )|Fw
t ) = v(t,XT , YT ) and if, e.g., v(t, x, y) ∈ C1,2,2, then v is an unique

solution of the following partial differential equation

∂v

∂t
+ a∗

∂v

∂y
+

1

2

(
ε2

∂2v

∂y2
+ x2v2

∂2v

∂x2

)
= 0,

with the boundary condition v(T, x, t) = h(x, y). More general situation with nonsmooth v
is considered in Laurent and Pham [18], Mania and Tevzadze [24].

Further, one can find the Galtchouck–Kunita–Watanabe decomposition of r.v. H (see, e.g.,
Pham et al. [31]) putting

ξHt =
∂v(t,Xt, Yt)

∂x
, LH

T = ε

∫ T

0

∂v

∂y
(t,Xt, Yt) dw

σ
t ,

and calculate ψH
t , LT and V ∗

t using (4.13) and (4.14) of RSch [33].
Thus one get the explicit solution of the mean-variance hedging problem.
Finally, here is the short summary of approach:
a) Incorporate the robust procedure in statistical analysis of volatility process. That is

construct and use in the model optimal B-robust estimate of unknown parameter in drift
coefficient of volatility process.

Parameter estimation naturally leads to the asset price model misspecification.
b) Incorporate the second robust procedure in financial analysis of contingent claim hedg-

ing. That is construct and use for hedging purposes optimal V -robust trading strategy.
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In our opinion this “double robust” strategy should be more attractive to protect the hedger
against the possible errors.

The general asymptotic theory of estimation can be found in Ibragimov and Khas’miskii
[14]; the theory of robust statistics is developed in Hampel et al. [12] and in Rieder [34]; the
theory of the trend parameter estimates for diffusion process with small noise is developed
in Kutoyants [17]; the book of Musiela and Rutkowsky [29] is devoted to the mathematical
theory of finance and finally, the general theory of martingales can be found in Jacod and
Shiryaev [15].

2. OPTIMAL B-ROBUST ESTIMATES

2.1. Basic model. CULAN estimates. The basic model of observations is described by the
SDE

dYs = a(s, Y ;α) ds+ ε dws, Y0 = 0, 0 ≤ s ≤ t, (2.1)

where t is a fixed number, w = (ws)0≤s≤t is a standard Wiener process defined on the
filtered probability space (Ω,F , F = (Fs)0≤s≤t, P ) satisfying the usual conditions, α =
(α1, . . . , αm), m ≥ 1, is an unknown parameter to be estimated, α ∈ A ⊂ Rm, A is an
open subset of Rm, ε, 0 < ε � 1, is a small parameter (index of series). In our further
considerations all limits correspond to ε → 0.

Denote (Ct,Bt) a measurable space of continuous on [0, t] functions
x = (xs)0≤s≤t with σ-algebra Bt = σ(x : xs, s ≤ t). Put Bs = σ(x : xu, u ≤ s).

Assume that for each α ∈ A the drift coefficients a(s, x;α), 0 ≤ s ≤ t, x ∈ Ct is a
known nonanticipative (i.e. Bs-measurable for each s, 0 ≤ s ≤ t) functional satisfying the
functional Lipshitz and linear growth conditions L:

|a(s, x1;α)− a(s, x2;α)| ≤ L1

∫ s

0

|x1
u − x2

u| dku + L2|x1
s − x2

s|,

|a(s, x;α)| ≤ L1

∫ s

0

(1 + |xu|) dku + L2(1 + |xs|),

where L1 and L2 are constants, which do not depend on α, k = (k(s))0≤s≤t is a non-
decreasing right-continuous function, 0 ≤ k(s) ≤ k0, 0 : k0 < ∞, x1, x2 ∈ Ct.

Then, as it is well-known (see, e.g., Liptser and Shiryaev [23]), for each α ∈ A the
equation (2.1) has an unique strong solution Y ε(α) = (Y ε

s (α))0≤s≤t, and in addition (see
Kutoyants [17])

sup
0≤s≤t

|Y ε
s (α)− Y 0

s (α)| ≤ Cε sup
0≤s≤t

|ws| P -a.s.,

with some constant C = C(L1, L2, k0, t), where Y 0(α) = (Y 0
s (α))0≤s≤t is the solution of

the following nonperturbated differential equation

dYs = a(s, Y ;α) ds, Y0 = 0. (2.2)

Change the initial problem of estimation of parameter α by the equivalent one, when the
observations are modelled according to the following SDE

dXs = aε(s,X;α) ds+ dws, X0 = 0, (2.3)

where aε(s, x;α) =
1
ε a(s, εx;α), 0 ≤ s ≤ t, x ∈ Ct, α ∈ A.
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It is clear that if Xε(α) = (Xε
s (α))0≤s≤t is the solution of SDE (2.3), then for each

s ∈ [0, t] εXε
s (α) = Y ε

s (α).
Denote by P ε

α the distribution of process Xε(α) on the space (Ct,Bt), i.e. P ε
α is the

probability measure on (Ct,Bt) induced by the process Xε(α). Let Pw be a Wiener measure
on (Ct,Bt). Denote X = (Xs)0≤s≤t a coordinate process on (Ct,Bt), that is Xs(x) = xs,
x ∈ Ct.

The conditions L guarantee that for each α ∈ A the measures P ε
α and Pw are equivalent

(P ε
α ∼ Pw), and if we denote zα,εs =

dP ε
α

dPw |Bs the density process (likelihood ratio process),
then

zα,εs (X) = Es(aε(α) ·X) := exp

{∫ s

0

aε(u,X;α) dXu − 1

2

∫ s

0

a2ε(u,X;α) du

}
.

Introduce class Ψ of Rm-valued nonanticipative functionals ψ, ψ : [0, t]×Ct×A → Rm

such that for each α ∈ A and ε > 0

1) Eε
α

∫ t

0

|ψ(s,X;α)|2ds < ∞, (2.4)

2)

∫ t

0

|ψ(s, Y 0(α);α)|2ds < ∞, (2.5)

3) uniformly in α on each compact K ⊂ A

P ε
α − lim

ε→0

∫ t

0

|ψ(s, εX;α)− ψ(s, Y 0(α);α)|2ds = 0, (2.6)

where | · | is an Euclidean norm in Rm, P ε
α − lim

ε→0
ζε = ζ denotes the convergence P ε

α{|ζε −
ζ| > ρ} → 0, as ε → 0, for all ρ, ρ > 0.

Assume that for each s ∈ [0, t] and x ∈ Ct the functional a(s, x; a) is differentiable in α

and gradient ȧ =
(

∂
∂α1

a, . . . , ∂
∂αm

a
)′

belongs to Ψ (ȧ ∈ Ψ), where the sign “′” denoted a
transposition.

Then the Fisher information process

Iεs (X;α) :=

∫ s

0

ȧε(u,X;α)[ȧε(u,X;α)]′du, 0 ≤ s ≤ t,

is well-defined and, moreover, uniformly in α on each compact

P ε
α − lim

ε→0
ε2Iεt (α) = I0(α), (2.7)

where

I0(α) :=

∫ t

0

ȧ(s, Y 0(α);α)[ȧ(s, Y 0(α);α]′ds.

For each ψ ∈ Ψ, introduce the functional ψε(s, x;α) :=
1
ε ψ(s, εx;α) and matrices Γψ

ε (α)

and γψ
ε α:

Γψ
ε (X;α) :=

∫ t

0

ψε(s,X;α)[ψε(s,X;α)]′ds, (2.8)

γψ
ε (X;α) :=

∫ t

0

ψε(s,X;α)[ȧε(s,X;α)]′ds. (2.9)
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Then from (2.6) it follows that uniformly in α on each compact

P ε
α − lim

ε→0
ε2Γψ

ε (α) = Γψ
0 (α), (2.10)

P ε
α − lim

ε→0
ε2γψ

ε (α) = γψ
0 (α), (2.11)

where the matrices Γψ
0 (α) and γψ

0 (α) are defined as follows

Γψ
0 (α) :=

∫ t

0

ψ(s, Y 0(α);α)[ψ(s, Y 0(α);α)]′ds, (2.12)

γψ
0 (α) :=

∫ t

0

ψ(s, Y 0(α);α)[ȧ(s, Y 0(α);α)]′ds. (2.13)

Note that,by virtue of (2.4), (2.5) and ȧ ∈ Ψ, matrices given by (2.8), (2.9), (2.12) and
(2.13) are well-defined.

Denote Ψ0 the subset of Ψ such that for each ψ ∈Ψ0 and α ∈ A, rankΓψ
0 (α) = m and

rank γψ
0 (α) = m.

Assume that ȧ ∈ Ψ0.
For each ψ ∈ Ψ0, define a P ε

α-square integrable martingale Lψ,ε(α) =
(Lψ,ε

s (α))0≤s≤t as follows

Lψ,ε
s (X;α) =

∫ s

0

ψε(u,X;α)(dXu − αε(u,X;α) du). (2.14)

Now we give a definition of CULAN M -estimates.

Definition 2.1. An estimate (αψ,ε
t )ε>0 = (αψ,ε

1,t , . . . , α
ψ,ε
m,t)

′
ε>0, ψ ∈ Ψ0, is called consistent

uniformly lineal asymptotically normal (CULAN) if it admits the following expansion

αψ,ε
t = α+ [γψ

0 (α)]
−1ε2Lψ,ε

t (α) + rψ,ε(α), (2.15)

where uniformly in α on each compact

P ε
α − lim

ε→0
ε−1rψ,ε(α) = 0. (2.16)

It is well-known (see Lazrieva, Toronjadze [19]) that under the above conditions uniformly
in α on each compact

L{ε−1(αψ,ε
t − α) | P ε

α}
w→ N(0, V (ψ;α)),

with
V (ψ;α) := [γψ

0 (α)]
−1Γψ

0 (α)([γ
ψ
0 (α)]

−1)′, (2.17)
where L(ζ|P ) denotes the distribution of random vector ζ calculated under measure P , sym-
bol “ w→” denotes the weak convergence of measures,
N(0, V (ψ;α)) is a distribution of Gaussian vector with zero mean and covariance matrix
V (ψ;α).

Remark 2.1. In context of diffusion type processes the M -estimate (αψ,ε
t )ε>0 is defined as a

solution of the following stochastic equation

Lψ,ε
t (X;α) = 0,

where Lψ,ε
t (X;α) is defined by (2.14), ψ ∈ Ψ0.
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The asymptotic theory of M -estimates for general statistical models with filtration is de-
veloped in Chitashvili et al. [7]. Namely, the problem of existence and global behaviour of
solutions is studied. In particular, the conditions of regularity and ergodicity type are estab-
lished, under which M -estimates have a CULAN property.

For our model, in case when A = Rm, the sufficient conditions for CULAN property take
the form:

(1) for all s, 0 ≤ s ≤ t, and x ∈ Ct the functionals ψ(s, x;α) and ȧ(s, x;α) are twice
continuously differentiable in α with bounded derivatives satisfying the functional Lipshitz
conditions with constants, which do not depend on α.

(2) the equation (w.r.t y)

∆(α, y) :=

∫ t

0

ψ(s, Y 0(α); y)(a(s, Y 0(α);α)− a(s, Y 0(α); y)) ds = 0,

has an unique solution y = α.
The MLE is a special case of M -estimates when ψ = ȧ.

Remark 2.2. According to (2.7) the asymptotic covariance matrix of MLE (α̂ε
t )ε>0 is [I0(α)]−1.

By the usual technique one can show that for each α ∈ A and ψ ∈ Ψ0, I−1
0 (α) ≤ V (ψ, α)

(see (2.17)), where for two symmetric matrices B and C the relation B ≤ C means that the
mattix C −B is nonnegative definite.

Thus, the MLE has a minimal covariance matrix among all M -estimates.

2.2. Shrinking contamination neighborhoods. In this subsection we give a notion of a
contamination of the basic model (2.3), described in terms of shrinking neighborhoods of
basic measures {P ε

α, α ∈ A, ε > 0}, which is an analog of the Huber gross error model (see,
e.g., Hampel et.al. [12] and also, Remark 2.3 below).

Let H be a family of bounded nonanticipative functionals h : [0, t] × Ct × A → R1

such that for all s ∈ [0, t] and α ∈ A the functional h(s, x;α) is continuous at the point
x0 = Y 0(α).

Let for each h ∈ H, α ∈ A and ε > 0, P ε,h
α be a measure on (Ct,Bt) such that

1) P ε,h
α ∼ P ε

α,

2)
dP ε,h

α

dP ε
α

= Et(εNε,h
α ), (2.18)

where

3) Nε,h
α,s :=

∫ s

0

hs(u,X;α)(dXu − aε(u,X;α) du), (2.19)

with hε(s, x;α) :=
1
ε h(s, εx;α), 0 ≤ s ≤ t, x ∈ Ct.

Denote Pε,H
α a class of measures P ε,h

α , h ∈ H, that is

Pε,H
α = {P ε,h

α ; h ∈ H}.

We call (Pε,H
α )ε>0 a shrinking contamination neighborhoods of the basic measures (P ε

α)ε>0,
and the element (P ε,h

α )ε>0 of these neighborhoods is called alternative measure (or simply
alternative).
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Obviously for each h ∈ H and α ∈ A, the process Nε,h
α = (Nε,h

α,s)0≤s≤t defined by (2.19)
is a P ε

α-square integrable martingale. Since under measure P ε
α the process w = (ws)0≤s≤t

defined as

ws := Xs −
∫ s

0

aε(u,X;α) du, 0 ≤ s ≤ t,

is a Wiener process, then by virtue of the Girsanov Theorem the process w̃ := w+〈w, εNε,h
α 〉

is a Wiener process under changed measure P ε,h
α . But by the definition

w̃s = Xs −
∫ s

0

(aε(u,X;α) + εhε(u,X;α)) du,

and hence, one can conclude that P ε,h
α is a weak solution of SDE

dXs = (aε(s,X;α) + εhε(s,X;α)) ds+ dws, X0 = 0.

This SDE can be viewed as a “small” perturbation of the basic model (2.3).

Remark 2.3. 1) In the case of i.i.d. observations X1, X2, . . . , Xn, n ≥ 1, the Huber gross
error model in shrinking setting is defined as follows

fn,h(x;α) := (1− εn)f(x;α) + εnh(x;α),

where f(x;α) is a basic (core) density of distribution of r.v. Xi (w.r.t some dominating
measure µ), h(x;α) is a contaminating density, fn,h(x;α) is a contaminated density, εn =
O(n−1/2). If we denote by Pn

α and Pn,h
α the measures on (Rn,B(Rn)), generated by f(x;α)

and fn,h(x;α), respectively, then

dPn,h
α

dPn
α

=

n∏
i=1

fn,h(Xi;α)

f(Xi;α)
=

n∏
i=1

(1 + εnH(Xi;α)) = En(εn ·Nn,h
α ),

where H = h−f
f , Nn,h

α = (Nn,h
α,m)1≤m≤n, Nn,h

α,m =
m∑
i=1

H(Xi;α), Nn,h
α is a Pn

α -martingale,

En(εnNn,h
α ) =

n∏
i=1

(1 + εn∆Nn,h
α,i ) is the Dolean exponential in discrete time case.

Thus
dPn,h

α

dPn
α

= E(εn ·Nn,n
α ), (2.20)

and the relation (2.18) is a direct analog of (2.20).
2) The concept of shrinking contamination neighborhoods, expressed in the form of (2.18)

was proposed in Lazrieva and Toronjadze [20] for more general situation, concerning with
the contamination areas for semimartingale statistical models with filtration. �

Note here that the power of the small parameter ε is crucial. One cannot consider the
perturbation of measure with different power of ε if he/she wish to get nontrivial result.

In the remainder of this subsection we study the asymptotic properties of CULAN esti-
mates under alternatives.

For this aim we first consider the problem of contiguity of measures (P ε,h
α )ε>0 to (P ε

α)ε>0.
Let (εn)n≥1, εn ↓ 0, and (αn)n≥1, αn ∈ K, K ⊂ A is a compact, be arbitrary sequences.
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Proposition 2.1. For each h ∈ H the sequence of measures (P εn,h
αn

) is contiguous to se-
quence of measures (P εn

αn
), i.e.

(P εn,h
αn

) � (P εn
αn

).

Proof. From the predictable criteria of contiguity (see, e.g., Jacod and Shiryaev [15]), follows
that we have to verify the relation

lim
N→∞

lim sup
n→∞

P εn,h
αn

{
hn
t

(
1

2

)
> N

}
= 0, (2.21)

where hn( 12 ) = (hn
s (

1
2 ))0≤s≤t is the Hellinger process of order 1

2 .
By the definition of Hellinger process (see, e.g., Jacod and Shiryaev [15]) we have

hn
t

(
1

2

)
= hn

t

(
1

2
, P εn,h

αn
, P εn

αn

)
=

1

8

∫ t

0

[h(s, εnX;αn)]
2
ds,

and since h ∈ H, and hence is bounded, hn
t (

1
2 ) is bounded too, which provides (2.21). �

Proposition 2.2. For each estimate (αε,ψ
t )ε>0 with ψ ∈ Ψ0 and each alternative (P ε,h

α )ε>0 ∈
(Pε,H

α )ε>0 the following relation holds true

L
{
ε−1(αψ,ε

t − α) | P ε,h
α

}
w→ N

(
[γψ

0 (α)]
−1b(ψ, h;α), V (ψ, α)

)
,

where

b(ψ, h;α) :=

∫ t

0

ψ(s, Y 0(α);α)h(s, Y 0(α);α) ds.

Proof. Proposition 2.1 together with (2.16) provides that uniformly in α on each compact

P ε,h
α − lim

ε→0
ε−1rψ,ε(α) = 0,

and therefore we have to establish the limit distribution of random vector [γψ
0 (α)]

−1εLψ,ε
t

under the measures (P ε,h
α )ε>0.

By virtue of the Girsanov Theorem the process Lψ,ε(α) = (Lψ,ε
s (α))0≤s≤t is a semi-

martingale with canonical decomposition

Lψ,ε
s (α) = L̃ψ,ε

s (α) + bε,s(ψ, h;α), 0 ≤ s ≤ t, (2.22)

where L̃ψ,ε(α) = (L̃ψ,ε
s (α))0≤s≤t is a P ε,h

α -square integrable martingales defined as follows

L̃ψ,ε
s (X;α) :=

∫ s

0

ψε(u,X;α) (dXu − (aε(u,X;α) + εhε(u,X;α)) du,

and

bε,s(ψ, h;α) := ε

∫ s

0

ψε(u,X;α)hε(u,X;α) du.

But 〈L̃ψ,ε(α)〉t = Γψ
ε (α), where Γψ

ε (α) is defined by (2.8). On the other hand, from
Proposition 2.1 and (2.10) it follows that

P ε,h
α − lim

ε→0
〈εL̃ψ,ε(α)〉t = P ε,h

α − lim
ε→0

ε2Γψ
ε (α) = P ε

α − lim
ε→0

ε2Γψ
ε (α) = Γψ

0 (α)

uniformly in α on each compact, and hence

L
{
[γψ

0 (α)]
−1εL̃ψ,ε

t (α) | P ε,h
α

}
w→ N(0, V (ψ;α)). (2.23)
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Finally, relation (2.23) together with (2.22) and relation

P ε,h
θ − lim

ε→0
εbε,t(ψ, h;α) =

∫ t

0

ψ(s, Y 0(α);α)h(s, Y 0(α);α) ds = b(ψ, h;α),

provides the desirable results. �

2.3. Optimization criteria. Construction of optimal B-robust estimates. In this subsec-
tion we state and solve an optimization problem, which results in construction of optimal
B-robust estimate.

Initially, it should be stressed that the bias vector b̃(ψ, h;α) := [γψ
0 (α)]

−1 ×
b(ψ, h;α) can be viewed as the influence functional of the estimate (αψ,ε

t )ε>0 w.r.t. alter-
native (Pψ,h

α )ε>0.
Indeed, the expansion (2.15) together with (2.22) and (2.23) allows to conclude that

L
{
ε−1(αψ,ε

t − α− ε2[γψ
0 (α)]

−1bε(ψ, h;α)) | P ε,h
α

}
w→ N(0, V (ψ, α)),

and, hence, the expression

α+ ε2[γψ
0 (α)]

−1bε(ψ, h;α)− α = ε2[γψ
0 (α)]

−1bε(ψ, h;α),

plays the role of bias on the “fixed step ε” and it seems natural to interpret the limit

P ε,h
α − lim

ε→0

α+ ε2[γψ
0 (α)]

−1bε(ψ, h;α)− α

ε
= [γψ

0 (α)]
−1b(ψ, h;α),

as the influence functional.
For each estimate (αψ,ε

t )ε>0, ψ ∈ Ψ0, define the risk functional w.r.t. alternative (P ε,h
α )ε>0,

h ∈ H, as follows:

D(ψ, h;α) = lim
a→∞

lim
ε→0

Eε,h
α

(
(ε−2|αψε

t − α|2) ∧ a
)
,

where x ∧ α = min(x, a), a > 0, Eε,h
α is an expectation w.r.t. measure P ε,h

α .
Using Proposition 2.2 it is not hard to verify that

D(ψ, h;α) = |̃b(ψ, h;α)|2 + trV (ψ, α),

where trA denotes the trace of matrix A.
By Proposition 2.2

ε−1(αψ,ε
t − α)

d→ N
(
b̃(ψ, h;α), V (ψ;α)

)
,

where d→ denotes the convergence by distribution (by distribution P ε,h
α in our case), N (̃b, V )

is a Gaussian random vector with mean b̃ and covariation matrix V .
But if ξ = (ξ1, . . . , ξm)′ is a Gaussian vector with parameters (µ, σ2), then

E|ξ|2 =

m∑
i=1

Eξ2i =

m∑
i=1

(Eξi)
2 +

m∑
i=1

Dξi = |µ|2 + trσ2,

as it was required.
Connect with each ψ ∈ Ψ0 the function ψ̃ as follows

ψ̃(s, x;α) = [γψ
0 (α)]

−1ψ(s, x;α), 0 ≤ s ≤ t, x ∈ Ct, α ∈ A.
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Then ψ̃ ∈ Ψ0 and

γψ̃
0 (α) = Id,

where Id is an unit matrix,

V (ψ;α) = V (ψ̃;α) = Γψ̃
0 (α), b̃(ψ, h;α) = b̃(ψ̃, h;α) = b(ψ̃, h;α).

Therefore
D(ψ, h;α) = D(ψ̃, h;α) = |b(ψ̃, h;α)|2 + tr Γψ̃

0 (α). (2.24)
Denote Hr, a set of functions h ∈ H such that for each α ∈ A∫ t

0

|h(s, Y 0(α);α)| ds ≤ r,

where r, r > 0, is a constant.
Since, for each r > 0,

sup
h∈Hr

|b(ψ̃, h;α)| ≤ const(r) sup
0≤s≤t

|ψ̃(s, Y 0(α);α)|,

where constant depends on r, we call the function ψ̃ an influence function of estimate (αψ,ε
t )ε>0

and a quantity
γ∗
ψ(α) = sup

0≤s≤t
|ψ̃(s, Y 0(α);α)|

is named as the (unstandardized) gross error sensitivity at point α of estimate (αψ,ε
t )ε>0.

Define

Ψ0,c =

{
ψ ∈ Ψ0 :

∫ t

0

ψ(s, Y 0(α);α)[ȧ(s, Y 0(α);α)]′ds = Id, (2.25)

γ∗
ψ(α) ≤ c

}
, (2.26)

where c ∈ [0,∞) is a generic constant.
Take into account the expression (2.24) for the risk functional we come to the following

optimization problem, known in robust estimation theory as Hampel’s optimization problem:
minimize the trace of the asymptotic covariance matrix of estimate (αψ,ε

t )ε>0 over the class
Ψ0,c, that is

minimize
∫ t

0

ψ(s, Y 0(α);α)[ψ(s, Y 0(α);α)]′ds (2.27)

under the side conditions (2.25) and (2.26).
Define the Huber function hc(z), z ∈ Rm, c > 0, as follows

hc(z) := zmin

(
1,

c

|z|

)
.

For arbitrary nondegenerate matrix A denote ψA
c = hc(Aȧ).

Theorem 2.1. Assume that for given constant c there exists a nondegenerate m×m-matrix
A∗

c(α), which solves the equation (w.r.t. matrix A)
∫ t

0

ψA
c (s, Y

0(α);α)[ȧ(s, Y 0(α);α)]′ds = Id. (2.28)
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Then the function ψ
A∗

c(α)
c = hc(A

∗
c(α)ȧ) solves the optimization problem (2.27).

Proof. We follow Hampel et al. [12].
Let A be an arbitrary m×m-matrix.
Since for each ψ ∈ Ψ0,c,

∫
ψ(ȧ)′ = Id,

∫
ȧ[ȧ]′ = I0(α) (see (2.7)), then∫

(ψ −Aȧ)(ψ −Aȧ)′ =

∫
ψψ′ −A−A′ +AI0(α)A′

(here and below we use simple evident notation for integrals).
Therefore since the trace is an additive functional instead of minimizing of tr

∫
ψψ′ we

can minimize

tr

∫
(ψ −Aȧ)(ψ −Aȧ)′ =

∫
|ψ −Aȧ|2.

Note that for each z

arg min
|y|≤c

|z − y|2 = hc(z).

Indeed, it is evident that minimizing y has the form y = βz, where β, 0 ≤ β ≤ 1, is constant.
Then

min
|y|≤c

|z − y|2 = min
β≤ c

|z|

(1− β)2|z|2.

Thus we have to find

arg min
β≤ c

|z|

(1− β)2 = min
(
1,

c

|z|

)
.

But last relation is trivially satisfied. Hence the minimizing y∗=zmin(1, c
|z| ) and

arg min
|ψ|≤c

|ψ −Aȧ|2 = hc(Aȧ).

From the other side,

|hc(z)|2 = |z|2I{|z|≤c} +
|z|2

|z|2
c2 I(|z|≥c) ≤ c2.

Hence
|hc(z)| ≤ c for all z

and therefore hc(Aȧ) satisfies the condition (2.26) for each A.
Now it is evident that a function hc(Aȧ) minimizes the expression under integral sign, and

hence the integral itself over all functions ψ ∈ Ψ0 satisfying (2.26).
At the same time the condition (2.25), generally speaking, can be violated. But, since a

matrix A is arbitrary, we can choose A = A∗
c(α) from (2.28) which, of course, guarantees

the validity of (2.25) for ψ∗
c = ψ

A∗
c(α)

c . �

As we have seen the resulting optimal influence functions ψ∗
c is defined along the process

Y 0(α) = (Y 0
s (α))0≤s≤t, which is a solution of equation (2.2).

But for constructing optimal estimate we need a function ψ∗
c (s, x;α) defined on whole

space [0, t]× Ct ×A.
For this purpose define ψ∗

c (s, x;α) as follows;

ψ∗
c (s, x;α) = ψ

A∗
c(α)

c (s, x;α) = hε(A
∗
c(α)ȧ(s, x;α)), (2.29)
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and as usual ψ∗
c,ε(s, x;α) =

1
εψ

∗
c (s, εx;α), 0 ≤ s ≤ t, x ∈ Ct, α ∈ A.

Definition 2.2. We say that ψ∗
c (s, x;α), 0 ≤ s ≤ t, x ∈ Ct, α ∈ A, is an influence function

of optimal B-robust estimate (α∗,ε
t )ε>0 = (α

ψ∗
c ,ε

t )ε>0 over the class of CULAN estimates
(αψ,ε

t )ε>0, ψ ∈ Ψ0,c, if the matrix A∗(α) is differentiable in α.

From (2.9), (2.11), (2.28) and (2.29) it directly follows that

γ
ψ∗

c
0 (α) = P ε

α − lim
εto0

ε2γ
ψ∗

c
ε (α) =

∫ t

0

ψ∗
c (s, Y

0(α);α)(ȧ(s, Y 0(α);α))′ds = Id.

Besides, for each alternative (P ε,h
α )ε>0, h ∈ H, according to the Proposition 2.2 we have

L
{
ε−1(α∗,ε

t − α) | P ε,h
α

} w→ N(b(ψ∗
c , h;α), V (ψ∗

c ;α)) as ε → 0,

where

b(ψ∗
c , h;α) =

∫ t

0

ψ∗
c (s, Y

0(α);α)h(s, Y 0(α);α) ds,

and V (ψ∗
c ;α) = Γ

ψ∗
c

0 (α).
Hence, the risk functional for estimate (α∗,ε

t )ε>0 is

D(ψ∗
c , h;α) = |b(ψ∗

c , h;α)|2 + tr Γ
ψ∗

c
0 , h ∈ H,

and the (unstandardized) gross error sensitivity of (α∗,ε
t )ε>0 is

γψ∗
c
(α) = sup

0≤s≤t
|ψ∗

c (s, Y
0(α);α)| ≤ c.

From above reasons, we may conclude that (α∗,ε
t )ε>0 is the optimal B-robust estimate

over the class of estimates (αψ,ε
t )ε>0, ψ ∈ Ψ0,c in the following sense: the trace of asymp-

totic covariance matrix of (α∗,ε
t )ε>0 is minimal among all estimates (αψ,ε

t )ε>0 with bounded
by constant gross error sensitivity, that is

Γ
ψ∗

c
0 (α) ≤ Γψ

0 (α) for all ψ ∈ Ψ0,c . �

Note that for each estimate (αψ,ε
t )ε>0 and alternatives (P ε,h

α )ε>0, h ∈ H, the influence
functional is bounded by const(r) · c. Indeed, we have for ψ ∈ Ψ0,c,

sup
h∈Hr

|b(ψ, h;α)| ≤ const(r) · c := C(r, c),

and since from (2.24)

inf
ψ∈Ψ0,c

sup
h∈Hr

D(ψ, h;α) ≤ C2(r, c) + tr Γ
ψ∗

c
0 (α),

we can choose “optimal level” of truncation, minimizing the expression

C2(r, c) + tr Γ
ψ∗

c
0 (α)

over all constants c, for which the equation (2.28) has a solution A∗
c(α). This can be done

using the numerical methods.
For the problem of existence and uniqueness of solution of equation (2.28) we address to

Rieder [34].
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In the case of one-dimensional parameter α (i.e. m = 1) the optimal level c∗ of truncation
is given as an unique solution of the following equation (see Lazrieva and Toronjadze [20],
[21])

r2c2 =

∫ t

0

[ȧ(s, Y 0(α);α)]c−cȧ(s, Y
0(α);α) ds−

∫ t

0

([ȧ(s, Y 0(α);α)]c−c)
2 ds,

where [x]ba = (x ∧ b) ∨ a and the resulting function

ψ∗(s, x;α) = [ȧ(s, x;α)]c
∗

−c∗ , 0 ≤ s ≤ t, x ∈ Ct,

is (Ψ0,Hr) optimal in the following minimax sense:

sup
h∈Hr

D(ψ∗, h;α) = inf
ψ∈Ψ

sup
h∈Hr

D(ψ, h;α).

3. OPTIMAL MEAN-VARIANCE ROBUST HEDGING

3.1. A financial market model. Let (Ω,F , F = (Ft)0≤t≤T , P ) be a filtered probability
space with filtration F satisfying the usual conditions, where T ∈ (0,∞] is a fixed time
horizon. Assume that F0 is a trivial and FT = F .

There exist d + 1, d ≥ 1 primitive assets: one bound, whose price process is assumed to
be 1 at all times and d risky assets (stocks), whose Rd-valued price process X = (Xt)0≤t≤T

is a continuous semimartingale given by the relation:

dXt = diag(Xt) dRt, X0 > 0, (3.1)

where diag(X) denotes the diagonal d× d-matrix with diagonal elements X1, . . . , Xd, and
the yield process R = (Rt)0≤t≤T is a Rd-valued continuous semimartingale satisfying the
stricture condition (SC). That is (see Schweizer [37])

dRt = d〈M̃〉tλt + dM̃t, R0 = 0, (3.2)

where M̃ = (M̃t)0≤t≤T is a Rd-valued continuous martingale, M̃ ∈ M2
0,loc(P ), λ =

(λt)0≤t≤T is a F -predictable Rd-valued process, and the mean-variance tradeoff (MVT)
process K̃ = (K̃t)0≤t≤T of process R

K̃t :=

∫ t

0

λ′
sd〈M̃〉sλs = 〈λ′ · M̃〉t < ∞ P -a.s., t ∈ [0, T ]. (3.3)

Remark 3.1. Remember that all vectors are assumed to be column vectors.

Suppose that the martingale M̃ has the form

M̃ = σ ·M, (3.4)

where M = (Mt)0≤t≤T is a Rd-valued continuous martingale, M ∈ M2
0,loc(P ) with

d〈M i,M j〉t = Id×d
ij

dCt, Id×d is the identity matrix, C = (Ct)0≤t≤T is a continuous in-
creasing bounded process with C0 = 0.

Further, let σ = (σt)0≤t≤T is a d×d-matrix valued, F -predictable process with rank(σt) =

d for any t, P -a.s., the process (σ−1
t )0≤t≤T is locally bounded, and

∫ T

0

σt d〈M〉tσ′
t < ∞ P -a.s. (3.5)
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Assume now that the following condition be satisfied:
There exist fixed Rd-valued, F -predictable process k = (kt)0≤t≤T such that

λ = λ(σ) = (σ′)−1k. (3.6)

In the case from (3.2) we get

dRt = d〈M̃〉tλt + dM̃t = σtd〈M〉tσ′
t(σ

′
t)

−1kt + σtdMt

= σt(d〈M〉tkt + dMt), (3.7)

and

K̃t =

∫ t

0

λ′
sd〈M̃〉sλs =

∫ t

0

k′t((σ
′
t)

−1)′σtd〈M̃〉tσ′
t(σ

′
t)

−1kt

=

∫ t

0

k′td〈M〉tkt = 〈k ·M〉t := Kt.

From (3.3) we have
Kt < ∞ P -a.s. for all t ∈ [0, T ]. (3.8)

Thus, of we introduce the process M0 = (M0
t )0≤t≤T by the relarion

dM0
t = d〈M〉tkt + dMt, M0

0 = 0, (3.9)

then the MVT process K = (Kt)0≤t≤T of Rd-valued semimartingale M0 is finite, and hence
M0 satisfies SC.

Finally, the scheme (3.1), (3.2), (3.4), (3.6) and (3.9) can be rewritten in the following
form

dXt = diag(Xt) dRt, X0 > 0,

dRt = σt dM
0
t , R0 = 0,

dM0
t = d〈M〉tkt + dMt, M0 = 0,

(3.10)

where σ and k satisfy (3.5) and (3.8), respectively.
This is our financial market model.

3.2. Characterization of variance-optimal ELMM (equivalent local martingale mea-
sure). A key role in mean-variance hedging plays variance-optimal ELMM (see, e.g., RSch
[33], GLP [11]). Here we collect some facts characterizing this measure.

We start with remark that the sets ELMMs for processes X , R and M0 form (3.10) coin-
cide. Hence we can and will consider the simplest process M0.

Introduce the notation

Me
2 :=

{
Q ∼ P :

dQ

dP
∈ L2(P ), M0 is a Q-local martingale

}
,

and suppose that

(c.1) Me
2 �= ∅.

The solution P̃ of the optimization problem

EE2
T (MQ) → inf

Q∈Me
2

is called variance-optimal ELMM.
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Here
dQ

dP

∣∣∣
FT

= ET (MQ),

and (Et(MQ))0≤t≤T is the Dolean exponential of martingale MQ.
It is well-known (see, e.g., Schweizer [37], [38]) that under condition (c.1) variance-

optimal ELMM P̃ exist.
Denote

z̃T :=
dP̃

dP

∣∣∣
FT

,

and introduce RCLL process z̃ = (z̃t)0≤t≤T by the relation

z̃t = EP̃ (z̃T /FT ), 0 ≤ t ≤ T.

Then, by Schweizer [37], [38]

z̃T = z̃0 +

∫ T

0

ζ ′t dM
0
t , (3.11)

where ζ = (ζt)0≤t≤T is the Rd-valued F -predictable process with
∫ T

0

ζ ′t d〈M〉tζt < ∞,

and the process
( t∫
0

ζ ′sdM
0
s

)
0≤t≤T

is a P̃ -martingale.

Relation (3.11) easily implies that the process z̃ is actually continuous.
Suppose, in addition to (c.1), that the following condition is satisfied:
(c.∗) all P -local martingales are continuous.
This technical assumption is satisfied in stochastic volatility models, where F = Fw is

the natural filtration generated by the Wiener process.
It shown in Mania and Tevzadze [34], Mania et al. [25] that under conditions (c.1) and

(c∗) density z̃T of variance optimal ELMM is uniquely characterized by the relation

z̃T =
ET ((ϕ− k)′ ·M0)

EET ((ϕ− k)′ ·M0)
, (3.12)

where ϕ together with the pair (L, c) is the unique solution of the following equation

ET ((ϕ− 2k)′ ·M)

ET (L)
= cE2

T (−k′ ·M), (3.13)

where L ∈ M2
0,loc(P ), 〈L,M〉 = 0, c is a constant.

Moreover, the process ζ = (ζt)0≤t≤T from (3.11) has the form

ζt = (ϕt − kt)Et((ϕ− k)′ ·M0). (3.14)

Here ϕ = (ϕt)0≤t≤T is a Rd-valued, F -predictable process with
∫ T

0

ϕ′
t d〈M〉tϕt < ∞.

Let τ be F -stopping time.
Denote 〈k′ ·M〉Tτ = 〈k′ ·M〉T − 〈k′ ·M〉τ .



Stochastic Analysis: Applications to Statistics and Finance 21

Proposition 3.1 (see also Biagini et al. [3], LLaurent and Pham [18]).
1. Equation (3.13) is equivalent to equation

ET (ϕ′ ·M∗)

ET (L)
= ce〈k

′·M〉T , (3.15)

where the Rd-valued process M∗ = (M∗
t )0≤t≤T is given by the relation

dM∗
t = 2d〈M〉tkt + dMt, M∗

0 = 0.

2. a) If there exists the martingale m = (mt)0≤t≤T , m ∈ M2
0,loc(P ) such that

e−〈k′·M〉T = c+mT , 〈m,M〉 = 0, (3.16)

then ϕ ≡ 0 and LT =
T∫
0

1
c+m dms solve the equation (3.15).

In this case

z̃T =
ET (−k′ ·M0)

EET (−k′ ·M0)
, (3.17)

process ζ = (ζt)0≤t≤T from (3.11) is equal to

ζt = −ktEt(−k′ ·M0),

and

E

[(
z̃T
z̃τ

)2/
Fτ

]
=

1

E(e−〈k′·M〉Tτ /Fτ )
.

b) If there exist Rd-valued F -predictable process � = (�t)0≤t≤T ,
T∫
0

�′td〈M〉�t < ∞ and

e〈k
′·M〉T = c+

∫ T

0

�′t dM
∗
t ,

then L ≡ 0 and ϕt =
�t

c+
∫ t
0
�′sdM

∗
s

solve the equation (3.15).
In this case

z̃T = ET (−k′ ·M) (:= ẑT , the density of minimal martingale measure P̂ ),

and

E

((
z̃T
z̃τ

)2 /
Fτ

)
= EP∗

(e〈k
′·M〉Tτ

/
Fτ ),

where dP ∗ = ET (−2k′ ·M)dP .

Proof. 1. By the Yor formula

ET (ϕ− 2k)′ ·M) = ET (ψ′ ·M − 2k′ ·M)

= ET

(
ϕ′ ·

(
M + 2

∫ ·

0

d〈M〉tkt
)
− 2

∫ ·

0

ψ′
td〈M〉tkt − 2k′ ·M

)

= ET (ϕ′ ·M∗)ET (−2k′ ·M),

and
E2
T (−k′ ·M) = ET (−2k′ ·M)e〈k

′·M〉T .
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Assertion follows.
2. a) Note at first that 〈L,M〉 = 0. Further, by the formula we can write

ln(c+mt)− ln c =

∫ t

0

1

c+ms
dms −

1

2

∫ t

0

1

(c+ms)2
d〈m〉s.

Hence
eln(c+mT )−ln c = ET (L),

and thus

ET (L) =
c+mT

c
=

e−〈k′·M〉T

c
.

Finally, by the Bayes rule and the Girasnov Theorem

E

((
z̃T
z̃τ

)2 /
Fτ

)
=

E(ET (−2k′ ·M)e−〈k′·M〉T /Fτ )

E2(ET (−k′ ·M)e−〈k′·M〉T /Fτ )

=
E∗(c+mT /Fτ )E2

T (−k′ ·M)

(Ê(c+mτ/Fτ ))2E2
T (−2k′ ·M)

=
c+mτ

(c+mτ )2
· e〈k

′·M〉τ

=
1

E(e〈k′ ·M〉Tτ/Fτ )
.

The proof of case 2 b) is quite analogous. �

3.3. Misspecified asset price model and robust hedging. Denote by BallL(0, r), r ∈
[0,∞) the closed r-radius ball in the space L = L∞(dt× dP ), with the center at the origin,
and let

H :=
{
h = {hij}, i, j = 1̂, d : h is F -predictable d× d-matrix

valued process, rank(h) = d, hij ∈ BallL(0, r), r ∈ [0,∞)
}
. (3.18)

Class H is called the class of alternatives.
Fix the value of small parameter δ > 0, as well as d × d-matrix valued, F -predictable

process σ0 = (σ0
t )0≤t≤T = ({σ0

ij,t}, 1 ≤ i, j ≤ d)t such that |σ0
ij,t| ≤ const, ∀i, j, t, the

matrix (σ0)2 = σ0(σ0)′ is uniformly elliptic, i.e. for each vector vt = (v′t, . . . , v
d
t ) with

probability 1
d∑

i,j=1

(σ0)2ij,tv
i
tv

j
t ≥ c

d∑
i=1

|vit|2, c > 0, 0 ≤ t ≤ T, (3.19)

and denote
Aδ = {σ : σ = σ0 + δh, h ∈ H}. (3.20)

Proposition 3.2. Every σ from the class Aδ for sufficiently small δ is F -predictable d × d-
valued process with bounded elements and the matrix σ2 = σσ′ is uniformly elliptic.

Proof. The process σ is F -predictable as linear combination of F -predictable processes. Fur-
ther,

|σij,t| = |σ0
ij,t + δhij,t| ≤ const+ δr, 0 < δ � 1.
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From (3.19) and (3.20) for each vector νt = (ν1t , . . . , ν
d
t ) we have

d∑
i,j=1

(σ2)ij,tν
i
tν

j
t =

d∑
i,j=1

(σ0 + δh)(σ0 + δh)′ij,tν
i
tν

j
t

=

d∑
i,j=1

(σ0(σ0)′)ij,tν
i
tν

j
t + δ

d∑
i,j=1

(σ0h′)ij,tν
i
tν

j
t

+ δ

d∑
i,j=1

(h(σ0)′)ij,tν
i
tν

j
t + δ2

d∑
i,j=1

(hh′)ij,tν
i
tν

j
t . (3.21)

Note now that the elements of matrices σ0 and h are bounded. Hence choosing δ suffi-
ciently small we get

max
(
δ|(σ0h′)ij,t|, δ|(h(σ0))ij,t|, δ2|(hh′)ij,t|

)
≤ ε

3
.

Therefore from (3.19) and (3.21) we get

d∑
i,j=1

σ2
ij,tν

i
tν

j
t ≥ (c− const · ε)

d∑
i,j=1

|νit |2 for each ε > 0.

Proposition is proved. �

Consider the set of processes {Rσ(or Xσ), σ ∈ Aδ}, which represents the misspecified
of asset price model.

Define the class of admissible trading strategies Θ = Θ(σ0).

Proposition 3.3. For each Rd-valued F -predictable process θ = (θt)0≤t≤T and for each
σ ∈ Aδ , δ > 0,

aE

∫ T

0

|θt|2dCt ≤ E

∫ T

0

θ′tσtd〈M〉tσ′
tθt = E

∫ T

0

θ′tσtσ
′
tθtdCt ≤ AE

∫ T

0

|θt|2dCt,

where the constants a, A are such that 0 < a ≤ A < ∞, and the parameter δ > 0 is
sufficiently small.

Proof. Remember that d〈M〉t = d〈M i,M j〉t = Id×d
ij dCt. Hence

E

∫ T

0

θ′tσtd〈M〉tσ′
tθt = E

∫ T

0

θ′tσtσ
′
tθt dCt.

Further, since σ = σ0 + δh and elements of matrices σ0 and h are bounded, then the
same is true for the elements of matrix σ with 0 ≤ δ ≤ const. Thus using the inequality
ab ≤ 2(a2 + b2) we get

E

∫ T

0

θ′tσtσ
′
tθt dCt ≤ AE

∫ T

0

|θt|2dCt.

On the other hand, by Proposition 3.2 the matrix σ2 = σσ′ is uniformly elliptic for suffi-
ciently small δ, which yields the first inequality. �



24 Optimal Robust Mean-Variance Hedging in Incomplete Financial Markets

Definition 3.1. The class Θ = Θ(σ0) is a class of Rd-valued F -predictable processes θ =
(θt)0≤t≤T such that

E

∫ T

0

|θt|2dCt < ∞. (3.22)

Let θ ∈ Θ be the dollar amount (rather than the number of shares) invested in the stock
Xσ , σ ∈ Aδ . Then for each σ ∈ Aδ the trading gains induced by the self-financing portfolio
strategy associated to θ has the form

Gt(σ, θ) =

∫ t

0

θ′s dR
σ
s , 0 ≤ t ≤ T, (3.23)

where Rd = (Rd
t )0≤t≤T is the yield process given by (3.10).

Introduce the condition:
(c.2) There exists ELMM Q such that the density process z = zQ satisfies the reverse

Hölder inequality R2(P ), see definition in RSch [33].
It is well-known that under the conditions (c.1) and (c.2) the density process z̃ = (z̃t)≤t≤T

of the variance-optimal ELMM satisfies R2(P ) as well, see Dolean et al. [8].
Now under the conditions (c.1) and (c.2) the r.v. GT (σ, θ) ∈ L2(P ), ∀σ ∈ Aδ , and the

space GT (σ,Θ) is closed in L2(P ), ∀σ ∈ Aδ (see, e.g., Theorem 2 of RSch [33]).
A contingent claim is an FT -measurable square-integrable r.v. H , which models the pay-

off from a financial product at the maturity date T .
The problem we are interested in is to find the robust hedging strategy for a contingent

claim H in the above described incomplete financial market model with misspecified asset
price process Xσ , σ ∈ Aδ , using mean-variance approach.

For each σ ∈ Aδ , the total loss of a hedger, who starts with the initial capital x, uses the
strategy θ, believes that the stock price process follows Xσ , and has to pay a random amount
H at the date T , is H-x-GT (σ, θ).

Denote
J (σ, θ) := E(H − x−GT (σ, θ))

2. (3.24)
One setting of the robust mean-variance hedging problem consist in solving the optimiza-

tion problem
minimize sup

σ∈Aδ

J (σ, θ) over all strategies θ ∈ Θ. (3.25)

We “slightly” change this problem using the approach developed in Toronjadze [41] which
based on the following approximation

sup
σ∈Aδ

J (σ, θ) = exp
{
sup
h∈H

lnJ (σ0 + δh, θ)
}

� exp

{
sup
h∈H

[
lnJ (σ0, θ) + δ

DJ (σ0, h, θ)

J (σ0, θ)

]}

= J (σ0, θ) exp

{
δ sup
h∈H

DJ (σ0, h, θ)

J (σ0, θ)

}
,

where

DJ (σ0, h, θ) :=
d

dδ
J (σ0 + δh, θ)|δ=0 = lim

δ→0

J (σ0 + δh, θ)− J (σ0, θ)

δ
,
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is the Gateaux differential of the functional J at the point σ0 in the direction h.
Approximate (in leading order δ) the optimization problem (3.25) by the problem

minimize J (σ0, θ) exp

{
δ sup
h∈H

DJ (σ0, h, θ)

J (σ0, θ)

}

over all strategies θ ∈ Θ. (3.26)

Note that each solution θ∗ of the problem (3.26) minimizes J (σ0, θ) under the constraint

sup
h∈H

DJ (σ0, h, θ)

J (σ0, θ)
≤ c := sup

h∈H

DJ (σ0, h, θ∗)

J (σ0, θ∗)
.

This characterization of an optimal strategy θ∗ of the problem (3.26) leads to the

Definition 3.2. The trading strategy θ∗ ∈ Θ is called optimal mean-variance robust trading
strategy against the class of alternatives H if it is a solution of the optimization problem

minimize J (σ0, θ) over all strategies θ ∈ Θ, subject to constraint

sup
h∈H

DJ (σ0, h, θ)

J (σ0, θ)
≤ c, (3.27)

where c is some generic constant.

Remark 3.2. In contrast to “mean-variance robust” trading strategy which associates with
optimization problem (3.25) and control theory, we find the “optimal mean-variance robust”
strategy in the sense of Definition 3.2. Such approach and term are common in robust statis-
tics theory (see, e.g., Hampel et al. [12], Rieder [34]).

Does the suggested approach provide “good” approximation? Consider the case.
Diffusion model with zero drift. Let a standard Wiener process w = (wt)0≤t≤T be

given on the complete probability space (Ω,F , P ). Denote by Fw = (Fw
t , 0 ≤ t ≤ T ) the

P -augmentation of the natural filtration Fw
t = σ(ws, 0 ≤ s ≤ t), 0 ≤ t ≤ T , generated

by w.
Let the stock price process be modeled by the equation

dXσ
t = Xσ

t · σt dwt, Xσ
0 > 0, 0 ≤ t ≤ T,

where σ ∈ Aδ with
T∫

0

(σ0
t )

2 dt < ∞

and h ∈ BallL∞(dt×dP )(0, r), 0 < r < ∞. All considered processes are real-valued.
Denote by Rσ the yield process, i.e.,

dRσ
t = σt dwt, Rσ

0 = 0, 0 ≤ t ≤ T.

The wealth at maturity T , with the initial endowment x, is equal to

V x,θ
T (σ) = x+

∫ T

0

θt dR
σ
t .

Let, further, the contingent claim H be Fw
T -measurable P -square-integrable r.v.
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Consider the optimization problem (3.25). It is easy to see that if σ ∈ Aδ; then

σ0
t − δr ≤ σt ≤ σ0

t + δr, 0 ≤ t ≤ T, P -a.s.,

By the martingale representation theorem

H = EH +

∫ T

0

ϕH
t dwt, P -a.s.,

where ϕH is the Fw-predictable process with

E

∫ T

0

(ϕH
t )2 dt < ∞. (3.28)

Hence

E
(
H − V x,θ

T (σ)
)2

= (EH − x)2 + E

∫ T

0

(ϕH
t − σtθt)

2 dt.

From this it directly follows that the process

σ∗
t (θ) = (σ0

t − δr)I
{ϕH

t
θt

≥σ0
t }
I{θt �=0}

+ (σ0
t + δr)I

{ϕH
t
θt

<σ0
t }
I{θt �=0}, 0 ≤ t ≤ T, (3.29)

is a solution of the optimization problem

maximize E
(
H − V x,θ

T (σ)
)2

over all σ ∈ Aδ, with a given θ ∈ Θ.

It remains to minimize (w.r.t. θ) the expression

E

∫ T

0

(
ϕH
t − σ∗

t (θ)θt
)2

dt.

From (3.29) it easily follows that the equation (w.r.t. θ)

ϕH
t − σ∗

t (θ)θt = 0,

has no solution, but

θ∗t =
ϕH
t

σ0
t

I{σ0
t �=0}, 0 ≤ t ≤ T, (3.30)

solves problem. We assume that 0/0 := 0.
Consider now the optimization problem (3.27).
For each fixed h

J(σ, θ) = E
(
H − x−

∫ T

0

θt dR
σ
t

)2

= E

(
H − x−

∫ T

0

θtσ
0
t dwt − δ

∫ T

0

θtht dwt

)2

= J(σ0, θ)− 2δE

[(
EH − x+

∫ T

0

(
ϕH
t − θtσ

0
t

)
dwt

)∫ T

0

θtht dwt

]

+ δ2E

∫ T

0

θ2t h
2
t dt,
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and hence

DJ(σ0, h; θ) = 2E

∫ T

0

(
θtσ

0
t − ϕH

t

)
θtht dt, (3.31)

as follows from (3.28), the definition of the class H and the estimation
(
E

∫ T

0

(
θtσ

0
t − ϕH

t

)
θtht dt

)2

≤ E

∫ T

0

(
θtσ

0
t − θHt

)2
dt E

∫ T

0

θ2t h
2
t dt

≤ const ·r2
(
E

∫ T

0

θ2t (σ
0
t )

2 dt+ E

∫ T

0

(ϕH
t )2 dt

)
E

∫ T

0

θ2t dt < ∞. (3.32)

Since, further, DJ(σ0, h; θ) = 0 for h ≡ 0, using (3.32) we get

0 ≤ sup
h∈H

DJ(σ0, h; θ) < ∞.

Hence we can take 0 ≤ c < ∞ in problem (6). Now if we substitute θ∗ from (3.30) into
(3.31), we get DJ(σ0, h; θ∗) = 0 for each h, and thus

sup
h∈H

DJ(σ0, h; θ∗)

J(σ0, θ∗)
= 0.

If we recall that θ∗ = arg min
θ∈ΘAδ

J(σ0, θ), we get that θ∗ defined by (3.30) is a solution of

this optimization problem as well.
Thus we prove that
(a) the mean-variance robust trading strategy θ∗ = (θ∗t )0≤t≤T for the optimization prob-

lem (3.25) is given by the formula

θ∗t =
ϕH
t

σ0
t

I{σ0
t �=0};

(b) at the same time this strategy is an optimal mean-variance robust trading strategy for
the optimization problem (3.27).

Hence in this case the suggested approach leads to the perfect solution of initial problem
(3.25).

To solve the problem (3.27) in general case we need to calculate DJ (σ0, h, θ). Suppose
that k = (kt)0≤t≤T = (ki,t, 1 ≤ i ≤ d)0≤t≤T from (3.10) is such that |ki,t| ≤ const ∀i, t.

Following RSch [33] and GLP [11] introduce the probability measure Q̃ ∼ P on FT by
the relation

dQ̃ =
z̃T
z̃0

dP̃
(

and hence dQ̃ =
z̃2T
z̃0

dP
)
. (3.33)

Using Proposition 5.1 of GLP [11] we can write

J (σ, θ) = E
z̃2T
z̃20

z̃20
z̃2T

(
H − x−

∫ T

0

θ′t dR
σ
t

)2

= z̃−1
0 EQ̃ z̃20

z̃2T

(
H − x−

∫ T

0

θ′tσt dM
0
t

)2

= z̃−1
0 EQ̃

(
Hz̃0
z̃T

− x−
∫ T

0

ψ0
t (σ) d

z̃20
z̃2t

−
∫ T

0

(
ψ1
t (σ)

)′
d
M0

t

z̃t
z̃0

)2

:= J (σ, ψ0, ψ1) (or J (σ, ψ) with ψ = (ψ0, ψ1)′ ), (3.34)
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where
ψ1
t = ψ1

t (σ) = σ′
tθt,

ψ0
t = ψ0

t (σ) =

∫ t

0

θ′sσsdM
0
s − θ′tσtM

0
t , 0 ≤ t ≤ T.

(3.35)

Thus
ψ1
t (σ) = ψ1

t (σ
0) + δψ1

t (h), ψ0
t (σ) = ψ0

t (σ
0) + δψ0

t (h).

Let (following RSch [33])

H

z̃T
z̃0 = E

(
H

z̃T
z̃0

)
+

∫ T

0

(ψH
t )′dUt + LT , (3.36)

be the Galtchouk–Kunita–Watanabe decomposition of r.v. H
z̃T

z̃0 w.r.t. R(d+1)-valued Q̃-

local martingale U =
(
z̃0
z̃ ,

M0

z̃ z̃0
)′

, where ψH = (ψ0,H , ψ1,H)′ ∈ L2(U, Q̃), the space of
F -predictable processes ψ such that

∫
ψ′dU ∈ M2(Q̃) of martingale, and L ∈ M2

0,loc(Q̃),
L is Q̃-strongly orthogonal to U .

Remember that
ψ = (ψ0, ψ1)′. (3.37)

Then, using (3.34), (3.35) and (3.36) we can write for each h

J (σ0 + δh, ψ) = J (σ0, ψ) + δ · 2z̃−1
0

×EQ̃

{[(
x− EQ̃ H

z̃T
z̃0

)
− LT +

∫ T

0

(ψt(σ
0)− ψH

t )′dUt

] ∫ T

0

(ψt(h))
′dUt

}

+δ2z̃−1
0 EQ̃

[∫ T

0

(ψt(h))
′dUt

]2

= J (σ0, ψ) + δ · 2z̃−1
0 EQ̃

[∫ T

0

(ψt(σ
0)− ψH

t )′dUt

∫ T

0

(ψt(h))
′dUt

]

+δ2z̃−1
0 EQ̃

[∫ T

0

(ψt(h))
′dUt

]2

. (3.38)

Using Proposition 8 of RSch [33] we have for each h

z̃0
z̃T

Gr(h,Θ) =

{∫ T

0

(ψ(h))′dUt : ψ(h) ∈ L2(U, Q̃)

}
,

and hence by (3.23)

EQ̃

(∫ T

0

(ψt(h))
′dUt

)2

= EQ̃ z̃20
z̃2T

G2
T (h, θ) = z̃0EG2

T (h, θ) = z̃0E

(∫ T

0

θ′t dR
h
t

)2

= z̃0E

(∫ T

0

θ′thtdM
0
t

)2

= z̃0E

(∫ T

0

θ′thtd〈M〉tkt +
∫ T

0

θ′thtdMt

)2
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≤ const

[
E

(∫ T

0

|θ′thtd〈M〉tkt|

)2

+ E

(∫ T

0

θ′thtdMt

)2]

≤ const r2E

∫ T

0

|θt|2dCt < ∞. (3.39)

Further,
(
EQ̃

[∫ T

0

(ψt(σ
0)− ψH

t )′dUt

∫ T

0

(ψt(h))
′dUt

])2

≤ EQ̃

(∫ T

0

(ψt(σ
0)− ψH

t )′dUt

)2

EQ̃

(∫ T

0

(ψt(h))
′dUt

)2

< ∞. (3.40)

From these estimates we conclude that:

1) DJ (σ0, h, ψ) = 2z̃−1
0 EQ̃

∫ T

0

(ψt(σ
0)− ψH

t )′d〈U〉tψt(h) < ∞, (3.41)

thanks to (3.39).
2) DJ (σ0, h, ψ)|h≡0 = 0, since ψ(0) = 0 by (3.37) and (3.35).
Thus

sup
h∈H

DJ (σ0, h, ψ) ≥ 0. (3.42)

3) From (3.40) and (3.39) we get

(DJ (σ0, h, ψ))2 ≤ const z̃−2
0 r2

×EQ̃

∫ T

0

(ψt(σ
0)− ψH

t )′d〈U〉t(ψt(σ
0)− ψH

t )E

∫ T

0

|θt|2dCt < ∞.

Thus |DJ (σ0, h, ψ)| is estimated by the expression which does not depend on h, and is equal
to zero if we substitute ψt(σ

0) ≡ ψH
t , 0 ≤ t ≤ T .

Hence, by (3.42)

0 ≤ sup
h∈H

DJ (σ0, h, ψ)|ψ≡ψH ≤ sup
h∈H

|DJ (σ0, h, ψ)|
∣∣
ψ≡ψH = 0 (3.43)

Further, from (3.42) follows that we can take c ∈ [0,∞) in (3.27).
Now substituting ψ ≡ ψH into J (σ0, ψ) and DJ (σ0, h, ψ) we get

J (σ0, ψH) = min
ψ

J (σ0, ψ) = z̃−1
0 (EP̃H − x)2 + z̃−1

0 EQ̃L2
T

(see Lemma 5.1 of GLP [11]) and

sup
h∈H

DJ (σ0, h, ψH)

J (σ0, ψH)
= 0.

Hence the constraint of problem (3.27) is satisfied.

Remark 3.3. If x = EP̃H and LT ≡ 0, then we get

DJ (σ0, h, ψH)

J (σ0, ψH)
=

0

0
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which is assumed to be zero, since if we consider the shifted risk functional J̃ = J + 1, the
optimization problem and the optimal trading strategy will not change, but DJ̃ (σ0, h, ψH) =

DJ (σ0, h, ψH) = 0 and J̃ (σ0, ψH) = 1.

Finally, using Proposition 8 of RSch [33] we arrive at the following

Theorem 3.1. In Model (3.10) under conditions (c.1) and (c.2) the optimal mean-variance
robust trading strategy (in the sense of Definition 3.1) is given by the formula

θ∗t = ((σ0
t )

′)−1[ψ1,H
t + ζt(V

∗
t − (ψH

t )′Ut)], 0 ≤ t ≤ T, (3.44)

where

ψH
t = (ψ0,H

t , ψ1,H
t )′, Ut =

(
z̃0
z̃t

,
M0

t

z̃t
z̃0

)′

,

V ∗
t =

z̃0
z̃t

(
x+

∫ t

0

(ψH
t )′dUt

)
,

ψH
t and ζt are given by the relations (3.36) and (3.11), respectively, z̃t is defined in (3.11).
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MEAN-VARIANCE HEDGING UNDER PARTIAL INFORMATION

M. MANIA, R. TEVZADZE AND T. TORONJADZE

Abstract. We consider the mean-variance hedging problem under partial information. The
underlying asset price process follows a continuous semimartingale, and strategies have to be
constructed when only part of the information in the market is available. We show that the
initial mean-variance hedging problem is equivalent to a new mean-variance hedging problem
with an additional correction term, which is formulated in terms of observable processes. We
prove that the value process of the reduced problem is a square trinomial with coefficients sat-
isfying a triangle system of backward stochastic differential equations and the filtered wealth
process of the optimal hedging strategy is characterized as a solution of a linear forward equa-
tion.

Key words and phrases: Backward stochastic differential equation, semimartingale market
model, incomplete markets, mean-variance hedging, partial information

MSC 2010: 90A09, 60H30, 90C39

1. INTRODUCTION

In the problem of derivative pricing and hedging it is usually assumed that the hedging
strategies have to be constructed by using all market information. However, in reality, in-
vestors acting in a market have limited access to the information flow. For example, an
investor may observe just stock prices, but stock appreciation rates depend on some unob-
servable factors; one may think that stock prices can be observed only at some time intervals
or up to some random moment before an expiration date, or an investor would like to price
and hedge a contingent claim whose payoff depends on an unobservable asset, and he ob-
serves the prices of an asset correlated with the underlying asset. Besides, investors may
not be able to use all available information even if they have access to the full market flow.
In all such cases, investors are forced to make decisions based on only a part of the market
information.

We study a mean-variance hedging problem under partial information when the asset price
process is a continuous semimartingale and the flow of observable events do not necessarily
contain all information on prices of the underlying asset.

We assume that the dynamics of the price process of the asset traded on the market is
described by a continuous semimartingale S = (St, t ∈ [0, T ]) defined on a filtered proba-
bility space (Ω,A, (At, t ∈ [0, T ]), P ), satisfying the usual conditions, where A = AT and
T < ∞ is the fixed time horizon. Suppose that the interest rate is equal to zero and the asset
price process satisfies the structure condition; i.e., the process S admits the decomposition

St = S0 +Nt +

∫ t

0

λud〈N〉u, 〈λ ·N〉T < ∞ a.s., (1.1)

Published in SIAM J. Control Optim. 47 (2008), no. 5, 2381–2409.
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where N is a continuous A-local martingale and λ is an A-predictable process.
Let G be a filtration smaller than A:

Gt ⊆ At for every t ∈ [0, T ].

The filtration G represents the information that the hedger has at his disposal; i.e., hedging
strategies have to be constructed using only information available in G.

Let H be a P -square integrable AT -measurable random variable, representing the payoff
of a contingent claim at time T .

We consider the mean-variance hedging problem

to minimize E[(Xx,π
T −H)2] over all π ∈ Π(G), (1.2)

where Π(G) is a class of G-predictable S-integrable processes. Here Xx,π
t = x+

∫ t

0
πudSu

is the wealth process starting from initial capital x, determined by the self-financing trading
strategy π ∈ Π(G).

In the case G = A of complete information, the mean-variance hedging problem was
introduced by Föllmer and Sondermann [8] in the case when S is a martingale and then
developed by several authors for a price process admitting a trend (see, e.g., [6], [12], [25],
[26], [24], [10], [11]).

Asset pricing with partial information under various setups has been considered. The
mean-variance hedging problem under partial information was first studied by Di Masi,
Platen, and Runggaldier [3] when the stock price process is a martingale and the prices are
observed only at discrete time moments. For general filtrations and when the asset price pro-
cess is a martingale, this problem was solved by Schweizer [27] in terms of G-predictable
projections. Pham [22] considered the mean-variance hedging problem for a general semi-
martingale model, assuming that the observable filtration contains the augmented filtration
FS generated by the asset price process S

FS
t ⊆ Gt for every t ∈ [0, T ]. (1.3)

In this paper, using the variance-optimal martingale measure with respect to the filtration G
and suitable Kunita–Watanabe decomposition, the theory developed by Gourieroux, Laurent,
and Pham [10] and Rheinländer and Schweizer [23] to the case of partial information was
extended.

If G is not containing FS , then S is not a G-semimartingale and the problem is more in-
volved. Let us introduce an additional filtration F = (Ft, t ∈ [0, T ]), which is an augmented
filtration generated by FS and G.

Then the price process S is a continuous F -semimartingale, and the canonical decompo-
sition of S with respect to the filtration F is of the form

St = S0 +

∫ t

0

λ̂F
u d〈M〉u +Mt, (1.4)

where λ̂F is the F -predictable projection of λ and

Mt = Nt +

∫ t

0

[λu − λ̂F
u ]d〈N〉u

is a continuous F -local martingale. Besides 〈M〉 = 〈N〉, and these brackets are FS-
predictable.
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Throughout the paper we shall make the following assumptions:
(A) 〈M〉 is G-predictable and d〈M〉tdP a.e. λ̂F = λ̂G; hence P -a.s. for each t

E(λt|FS
t− ∨Gt) = E(λt|Gt);

(B) any G-martingale is an F -local martingale;
(C) the filtration G is continuous; i.e., all G-local martingales are continuous;
(D) there exists a martingale measure for S (on FT ) that satisfies the reverse Hölder con-

dition.
Remark. It is evident that if FS ⊆ G, then 〈M〉 is G-predictable. Besides, in this case

G = F , and conditions (A) and (B) are satisfied.
We shall use the notation Ŷt for the process of the G-projection of Y . Condition (A)

implies that

Ŝt = E(St|Gt) = S0 +

∫ t

0

λ̂ud〈M〉u + M̂t.

Let

Ht = E(H|Ft) = EH +

∫ t

0

hudMu + Lt

and

Ht = EH +

∫ t

0

hG
u dM̂u + LG

t

be the Galtchouk–Kunita–Watanabe (GKW) decompositions of Ht = E(H|Ft) with respect
to local martingales M and M̂ , where h and hG are F -predictable processes and L and LG

are local martingales strongly orthogonal to M and M̂ , respectively.
We show (Theorem 3.1) that the initial mean-variance hedging problem (1.2) is equivalent

to the problem to minimize the expression

E

[(
x+

∫ T

0

πudŜu − ĤT

)2

+

∫ T

0

(
π2
u

(
1− ρ2u

)
+ 2πuh̃u

)
d〈M〉u

]
(1.5)

over all π ∈ Π(G), where

h̃t = ĥG
t ρ

2
t − ĥt and ρ2t =

d〈M̂〉t
d〈M〉t

.

Thus, the problem (1.5), equivalent to (1.2), is formulated in terms of G-adapted processes.
One can say that (1.5) is the mean-variance hedging problem under complete information
with an additional correction term.

Let us introduce the value process of the problem (1.5):

V H(t, x) = ess inf
π∈Π(G)

E

[(
x+

∫ T

t

πudŜu − ĤT

)2

+

∫ T

t

[
π2
u

(
1− ρ2u

)
+ 2πuh̃u

]
d〈M〉u|Gt

]
. (1.6)

We show in Theorem 4.1 that the value function of the problem (1.5) admits a representation

V H(t, x) = Vt(0)− 2Vt(1)x+ Vt(2)x
2,
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where the coefficients Vt(0), Vt(1), and Vt(2) satisfy a triangle system of backward stochastic
differential equations (BSDEs). Besides, the filtered wealth process of the optimal hedging
strategy is characterized as a solution of the linear forward equation

X̂∗
t = x−

∫ t

0

ρ2uϕu(2) + λ̂uVu(2)

1− ρ2u + ρ2uVu(2)
X̂∗

udŜu +

∫ t

0

ρ2uϕu(1) + λ̂uVu(1) + h̃u

1− ρ2u + ρ2uVu(2)
dŜu. (1.7)

Note that if FS ⊆ G, then

ρ = 1, h̃ = 0, M̂ = M, and Ŝ = S. (1.8)

In the case of complete information (G = A), in addition to (1.8) we have λ̂ = λ and
M̂ = N , and (1.7) gives equations for the optimal wealth process from [19].

In section 5 we consider a diffusion market model, which consists of two assets S and η,
where St is a state of a process being controlled and ηt is the observation process. Suppose
that St and ηt are governed by

dSt = µtdt+ σtdw
0
t ,

dηt = atdt+ btdwt,

where w0 and w are Brownian motions with correlation ρ and the coefficients µ, σ, a, and b

are Fη-adapted. In this case At = Ft = FS,η
t , and the flow of observable events is Gt = Fη

t .
As an application of Theorem 4.1 we also consider a diffusion market model with constant
coefficients and assume that an investor observes the price process S only up to a random
moment τ before the expiration date T . In this case we give an explicit solution of (1.2).

2. MAIN DEFINITIONS AND AUXILIARY FACTS

Denote by Me(F ) the set of equivalent martingale measures for S, i.e., the set of proba-
bility measures Q equivalent to P such that S is a F -local martingale under Q.

Let
Me

2(F ) = {Q ∈ Me(F ) : EZ2
T (Q) < ∞},

where Zt(Q) is the density process (with respect to the filtration F ) of Q relative to P . We
assume that Me

2(F ) �= ∅.

Remark 2.1. Note that Me
2(A) �= ∅ implies that Me

2(F ) �= ∅ (see Remark 2.1 from Pham
[22].

It follows from (1.4) and condition (A), that the density process Zt(Q) of any element Q
of Me(F ) is expressed as an exponential martingale of the form

Et(−λ̂ ·M + L),

where L is a F -local martingale strongly orthogonal to M and Et(X) is the Doleans–Dade
exponential of X .

If the local martingale Zmin
t = Et(−λ̂ · M) is a true martingale, dQmin/dP = Zmin

T

defines the minimal martingale measure for S.
Recall that a measure Q satisfies the reverse Hölder inequality R2(P ) if there exists a

constant C such that

E

(
Z2
T (Q)

Z2
τ (Q)

|Fτ

)
≤ C, P -a.s.
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for every F -stopping time τ .

Remark 2.2. If there exists a measure Q ∈ Me(F ) that satisfies the reverse Hölder inequality
R2(P ), then according to Theorem 3.4 of Kazamaki [14] the martingale MQ = −λ̂ ·M +L

belongs to the class BMO and hence −λ̂ ·M also belongs to BMO, i.e.,

E

(∫ T

τ

λ̂2
ud〈M〉u|Fτ

)
≤ const (2.1)

for every stopping time τ . Therefore, it follows from Theorem 2.3 of [14] that Et(−λ̂ ·M) is
a true martingale. So, condition (D) implies that the minimal martingale measure exists (but
Zmin is not necessarily square integrable).

Let us make some remarks on conditions (B) and (C).

Remark 2.3. Condition (B) is satisfied if and only if the σ-algebras FS
t ∨ Gt and GT are

conditionally independent given Gt for all t ∈ [0, T ] (see Theorem 9.29 from Jacod [13]).

Remark 2.4. Condition (C) is weaker than the assumption that the filtration F is continuous.
The continuity of the filtration F and condition (B) imply the continuity of the filtration G,
but the converse is not true in general. Note that filtrations F and FS can be discontinuous.
Recall that the continuity of a filtration means that all local martingales with respect to this
filtration are continuous.

By µK we denote the Dolean measure of an increasing process K. For all unexplained
notations concerning the martingale theory used below, we refer the reader to [5], [18], [13].

Let Π(F ) be the space of all F -predictable S-integrable processes π such that the stochas-
tic integral

(π · S)t =
∫ t

0

πudSu, t ∈ [0, T ],

is in the S2 space of semimartingales, i.e.,

E

(∫ T

0

π2
sd〈M〉s

)
+ E

(∫ T

0

|πsλ̂s|d〈M〉s

)2

< ∞.

Denote by Π(G) the subspace of Π(F ) of G-predictable strategies.

Remark 2.5. Since λ̂·M ∈ BMO (see Remark 2.2), it follows from the proof of Theorem 2.5
of Kazamaki [14] that

E

(∫ T

0

|πuλ̂u|d〈M〉u

)2

= E〈|π| ·M, |λ̂| ·M〉2T ≤ 2||λ̂ ·M ||BMOE

∫ T

0

π2d〈M〉u < ∞.

Therefore, under condition (D) the G-predictable (resp., F -predictable) strategy π belongs to
the class Π(G) (resp., Π(F )) if and only if E

∫ T

0
π2
sd〈M〉s < ∞.

Define J2
T (F ) and J2

T (G) as spaces of terminal values of stochastic integrals, i.e.,

J2
T (F ) = {(π · S)T : π ∈ Π(F )}.

J2
T (G) = {(π · S)T : π ∈ Π(G)}.
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For convenience we give some assertions from [4], which establishes necessary and suffi-
cient conditions for the closedness of the space J2

T (F ) in L2.

Proposition 2.1. Let S be a continuous semimartingale. Then the following assertions are
equivalent:

(1) There is a martingale measure Q ∈ Me(F ), and J2
T (F ) is closed in L2.

(2) There is a martingale measure Q ∈ Me(F ) that satisfies the reverse Hölder condi-
tion R2(P ).

(3) There is a constant C such that for all π ∈ Π(F ) we have

|| sup
t≤T

(π · S)t||L2(P ) ≤ C||(π · S)T ||L2(P ).

(4) There is a constant c such that for every stopping time τ , every A ∈ Fτ , and every
π ∈ Π(F ), with π = πI]τ,T ], we have

||IA − (π · S)T ||L2(P ) ≥ cP (A)1/2.

Note that assertion (4) implies that for every stopping time τ and for every π ∈ Π(G) we
have

E

((
1 +

∫ T

τ

πudSu

)2/
Fτ

)
≥ c. (2.2)

Now we recall some known assertions from the filtering theory. The following proposition
can be proved similarly to [18].

Proposition 2.2. If conditions (A), (B), and (C) are satisfied, then for any continuous F -local
martingale M , with M0 = 0, and any G-local martingale mG

M̂t = E(Mt|Gt) =

∫ t

0

̂d〈M,mG〉u
d〈mG〉u

dmG
u + LG

t , (2.3)

where LG is a local martingale orthogonal to mG.

It follows from this proposition that for any G-predictable, M -integrable process π and
any G-martingale mG

〈 ̂(π ·M),mG〉t =
∫ t

0

πu

̂d〈M,mG〉u
d〈mG〉u

d〈mG〉u

=

∫ t

0

πud〈M̂,mG〉u = 〈π · M̂,mG〉t.

Hence, for any G-predictable, M -integrable process π

̂(π ·M)t = E

(∫ t

0

πsdMs|Gt

)
=

∫ t

0

πsdM̂s. (2.4)

Since π, λ, and 〈M〉 are G-predictable, from (2.4) we have

̂(π · S)t = E

(∫ t

0

πudSu|Gt

)
=

∫ t

0

πudŜu, (2.5)

where

Ŝt = S0 +

∫ t

0

λ̂ud〈M〉u + M̂t.
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3. SEPARATION PRINCIPLE: THE OPTIMALITY PRINCIPLE

Let us introduce the value function of the problem (1.2) defined as

UH(t, x) = ess inf
π∈Π(G)

E

((
x+

∫ T

t

πudSu −H

)2

|Gt

)
. (3.1)

By the GKW decomposition

Ht = E(H|Ft) = EH +

∫ t

0

hudMu + Lt (3.2)

for a F -predictable, M -integrable process h and a local martingale L strongly orthogonal to
M . We shall use also the GKW decompositions of Ht = E(H|Ft) with respect to the local
martingale M̂

Ht = EH +

∫ t

0

hG
u dM̂u + LG

t , (3.3)

where hG is a F -predictable process and LG is a F -local martingale strongly orthogonal
to M̂ .

It follows from Proposition 2.2 (applied for mG = M̂ ) and Lemma A.1 that

〈E(H|G.), M̂〉t =
∫ t

0

ĥG
u ρ

2
ud〈M〉u. (3.4)

We shall use the notation

h̃t = ĥG
t ρ

2
t − ĥt. (3.5)

Note that h̃ belongs to the class Π(G) by Lemma A.2.
Let us introduce now a new optimization problem, equivalent to the initial mean-variance

hedging problem (1.2), to minimize the expression

E

[(
x+

∫ T

0

πudŜu − ĤT

)2

+

∫ T

0

(
π2
u

(
1− ρ2u

)
+ 2πuh̃u

)
d〈M〉u

]
(3.6)

over all π ∈ Π(G). Recall that Ŝt = E(St|Gt) = S0 +
∫ t

0
λ̂ud〈M〉u + M̂t.

Theorem 3.1. Let conditions (A), (B), and (C) be satisfied. Then the initial mean-variance
hedging problem (1.2) is equivalent to the problem (3.6). In particular, for any π ∈ Π(G)
and t ∈ [0, T ]

E

[(
x+

∫ T

t

πudSu −H

)2

|Gt

]
= E

[(
H − ĤT

)2

|Gt

]

+E

[(
x+

∫ T

t

πudŜu − ĤT

)2

+

∫ T

t

(
π2
u

(
1− ρ2u

)
+ 2πuh̃u

)
d〈M〉u|Gt

]
. (3.7)
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Proof. We have

E

[(
x+

∫ T

t

πudSu −H

)2

|Gt

]

= E

[(
x+

∫ T

t

πudŜu −H +

∫ T

t

πud
(
Mu − M̂u

))2

|Gt

]

= E

[(
x+

∫ T

t

πudŜu −H

)2

|Gt

]

+ 2E

[(
x+

∫ T

t

πudŜu −H

)(∫ T

t

πud
(
Mu − M̂u

))
|Gt

]

+ E

[(∫ T

t

πud
(
Mu − M̂u

))2

|Gt

]
= I1 + 2I2 + I3. (3.8)

It is evident that

I1 = E

[(
x+

∫ T

t

πudŜu − ĤT

)2

|Gt

]
+ E

[(
H − ĤT

)2

|Gt

]
. (3.9)

Since π, λ̂, and 〈M̂〉 are GT -measurable and the σ-algebras FS
t ∨Gt and GT are conditionally

independent given Gt (see Remark 2.3), it follows from (2.4) that

E

[ ∫ T

t

πuλ̂ud〈M〉u
∫ T

t

πud
(
Mu − M̂u

)
|Gt

]

= E

[ ∫ T

t

πuλ̂ud〈M〉u
∫ T

0

πud
(
Mu − M̂u

)
|Gt

]

− E

[ ∫ T

t

πuλ̂ud〈M〉u
∫ t

0

πud
(
Mu − M̂u

)
|Gt

]

= E

[ ∫ T

t

πuλ̂ud〈M〉uE
(∫ T

0

πud
(
Mu − M̂u

)
|GT

)
|Gt

]

− E

[ ∫ T

t

πuλ̂ud〈M〉u|Gt

]
E

[ ∫ t

0

πud
(
Mu − M̂u

)
|Gt

]

= 0. (3.10)

On the other hand, by using decomposition (3.2), equality (3.4), properties of square char-
acteristics of martingales, and the projection theorem, we obtain

E

[
H

∫ T

t

πud
(
Mu − M̂u

)
|Gt

]

= E

[
H

∫ T

t

πudMu|Gt

]
− E

[
ĤT

∫ T

t

πudM̂u|Gt

]

= E

[ ∫ T

t

πud〈M,E(H|F·)〉u|Gt

]
− E

[ ∫ T

t

πud〈Ĥ, M̂〉u|Gt

]
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= E

[ ∫ T

t

πuhud〈M〉u|Gt

]
− E

[ ∫ T

t

πuĥG
u ρ

2
ud〈M〉u|Gt

]

= E

[ ∫ T

t

πu

(
ĥu − ĥG

u ρ
2
u

)
d〈M〉u|Gt

]
= −E

[ ∫ T

t

πuh̃ud〈M〉u|Gt

]
. (3.11)

Finally, it is easy to verify that

2E

[ ∫ T

t

πuM̂u

∫ T

t

πud
(
Mu − M̂u

)
|Gt

]
+ E

[(∫ T

t

πud
(
Mu − M̂u

))2

|Gt

]

= E

[(∫ T

t

π2
ud〈M〉u−

∫ T

t

π2
ud〈M̂〉u

)
|Gt

]
=E

[ ∫ T

t

π2
u

(
1− ρ2u

)
d〈M〉u|Gt

]
. (3.12)

Therefore (3.8), (3.9), (3.10), (3.11), and (3.12) imply the validity of equality (3.7). �

Thus, it follows from Theorem 3.1 that the optimization problems (1.2) and (3.6) are
equivalent. Therefore it is sufficient to solve the problem (3.6), which is formulated in terms
of G-adapted processes. One can say that (3.6) is a mean-variance hedging problem under
complete information with a correction term and can be solved by using methods for complete
information.

Let us introduce the value process of the problem (3.6)

V H(t, x) = ess inf
π∈Π(G)

E

[(
x+

∫ T

t

πudŜu − ĤT

)2

+

∫ T

t

[
π2
u

(
1− ρ2u

)
+ 2πuh̃u

]
d〈M〉u|Gt

]
. (3.13)

It follows from Theorem 3.1 that

UH(t, x) = V H(t, x) + E
[
(H − ĤT )

2|Gt

]
. (3.14)

The optimality principle takes in this case the following form.

Proposition 3.1 (optimality principle). Let conditions (A), (B) and (C) be satisfied. Then

(a) for all x ∈ R, π ∈ Π(G), and s ∈ [0, T ] the process

V H

(
t, x+

∫ t

s

πudŜu

)
+

∫ t

s

[
π2
u

(
1− ρ2u

)
+ 2πuh̃u)

]
d〈M〉u

is a submartingale on [s, T ], admitting an right continuous with left limits (RCLL)
modification.

(b) π∗ is optimal if and only if the process

V H

(
t, x+

∫ t

s

π∗
udŜu

)
+

∫ t

s

[
(π∗

u)
2 (

1− ρ2u
)
+ 2π∗

uh̃u

]
d〈M〉u

is a martingale.

This assertion can be proved in a standard manner (see, e.g., [7], [15]). The proof more
adapted to this case one can see in [19].
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Let

V (t, x) = ess inf
π∈Π(G)

E

[(
x+

∫ T

t

πudŜu

)2

+

∫ T

t

π2
u

(
1− ρ2u

)
d〈M〉u|Gt

]

and

Vt(2) = ess inf
π∈Π(G)

E

[(
1 +

∫ T

t

πudŜu

)2

+

∫ T

t

π2
u

(
1− ρ2u

)
d〈M〉u|Gt

]
.

It is evident that V (t, x) (resp., Vt(2)) is the value process of the optimization problem (3.6)
in the case H = 0 (resp., H = 0 and x = 1), i.e.,

V (t, x) = V 0(t, x) and Vt(2) = V 0(t, 1).

Since Π(G) is a cone, we have

V (t, x) = x2 ess inf
π∈Π(G)

E

[(
1 +

∫ T

t

πu

x
dŜu

)2

+

∫ T

t

(πu

x

)2 (
1− ρ2u

)
d〈M〉u|Gt

]

= x2Vt(2). (3.15)

Therefore from Proposition 3.1 and equality (3.15) we have the following.

Corollary 3.1. (a) The process

Vt(2)

(
1 +

∫ t

s

πudŜu

)2

+

∫ t

s

(πu)
2(1− ρ2u)d〈M〉u,

t ≥ s, is a submartingale for all π ∈ Π(G) and s ∈ [0, T ].
(b) π∗ is optimal if and only if

Vt(2)

(
1 +

∫ t

s

π∗
udŜu

)2

+

∫ t

s

(π∗
u)

2(1− ρ2u)d〈M〉u,

t ≥ s, is a martingale.

Note that in the case H = 0 from Theorem 3.1 we have

E

[(
1 +

∫ T

t

πudSu

)2

|Gt

]

= E

[(
1 +

∫ T

t

πudŜu

)2

+

∫ T

t

π2
u

(
1− ρ2u

)
d〈M〉u|Gt

]
(3.16)

and, hence,
Vt(2) = U0(t, 1). (3.17)

Lemma 3.1. Let conditions (A)–(D) be satisfied. Then there is a constant 1 ≥ c > 0 such
that Vt(2) ≥ c for all t ∈ [0, T ] a.s. and

1− ρ2t + ρ2tVt(2) ≥ c µ〈M〉a.e. (3.18)
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Proof. Let

V F
t (2) = ess inf

π∈Π(F )
E

[(
1 +

∫ T

t

πudSu

)2

|Ft

]
.

It follows from assertion (4) of Proposition 2.1 that there is a constant c > 0 such that
V F
t (2) ≥ c for all t ∈ [0, T ] a.s. Note that c ≤ 1 since V F ≤ 1. Then by (3.17)

Vt(2) = U0(t, 1) = ess inf
π∈Π(G)

E

[(
1 +

∫ T

t

πudSu

)2

|Gt

]

= ess inf
π∈Π(G)

E

[
E

((
1 +

∫ T

t

πudSu

)2

|Ft

)
|Gt

]

≥ E(V F
t (2)|Gt) ≥ c.

Therefore, since ρ2t ≤ 1 by Lemma A.1,

1− ρ2t + ρ2tVt(2) ≥ 1− ρ2t + ρ2t c ≥ inf
r∈[0,1]

(1− r + rc) = c. �

4. BSDES FOR THE VALUE PROCESS

Let us consider the semimartingale backward equation

Yt = Y0 +

∫ t

0

f(u, Yu, ψu)d〈m〉u +

∫ t

0

ψudmu + Lt (4.1)

with the boundary condition

YT = η, (4.2)

where η is an integrable GT -measurable random variable, f : Ω × [0, T ] × R2 → R is
P × B(R2) measurable, and m is a local martingale. A solution of (4.1)–(4.2) is a triple
(Y, ψ, L), where Y is a special semimartingale, ψ is a predictable m-integrable process, and
L a local martingale strongly orthogonal to m. Sometimes we call Y alone the solution of
(4.1)–(4.2), keeping in mind that ψ ·m+ L is the martingale part of Y .

Backward stochastic differential equations have been introduced in [1] for the linear case
as the equations for the adjoint process in the stochastic maximum principle. The semimartin-
gale backward equation, as a stochastic version of the Bellman equation in an optimal control
problem, was first derived in [2]. The BSDE with more general nonlinear generators was in-
troduced in [21] for the case of Brownian filtration, where the existence and uniqueness of a
solution of BSDEs with generators satisfying the global Lifschitz condition was established.
These results were generalized for generators with quadratic growth in [16], [17] for BSDEs
driven by a Brownian motion and in [20], [28] for BSDEs driven by martingales. But condi-
tions imposed in these papers are too restrictive for our needs. We prove here the existence
and uniqueness of a solution by directly showing that the unique solution of the BSDE that
we consider is the value of the problem.

In this section we characterize optimal strategies in terms of solutions of suitable semi-
martingale backward equations.
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Theorem 4.1. Let H be a square integrable FT -measurable random variable, and let condi-
tions (A), (B), (C), and (D) be satisfied. Then the value function of the problem (3.6) admits
a representation

V H(t, x) = Vt(0)− 2Vt(1)x+ Vt(2)x
2, (4.3)

where the processes Vt(0), Vt(1), and Vt(2) satisfy the following system of backward equa-
tions:

Yt(2) = Y0(2) +

∫ t

0

(
ψs(2)ρ

2
s + λ̂sYs(2)

)2
1− ρ2s + ρ2sYs(2)

d〈M〉s

+

∫ t

0

ψs(2)dM̂s + Lt(2), YT (2) = 1, (4.4)

Yt(1) = Y0(1) +

∫ t

0

(
ψs(2)ρ

2
s + λ̂sYs(2)

)(
ψs(1)ρ

2
s + λ̂sYs(1)− h̃s

)
1− ρ2s + ρ2sYs(2)

d〈M〉s

+

∫ t

0

ψs(1)dM̂s + Lt(1), YT (1) = E(H|GT ), (4.5)

Yt(0) = Y0(0) +

∫ t

0

(
ψs(1)ρ

2
s + λ̂sYs(1)− h̃s

)2
1− ρ2s + ρ2sYs(2)

d〈M〉s

+

∫ t

0

ψs(0)dM̂s + Lt(0), YT (0) = E2(H|GT ), (4.6)

where L(2), L(1), and L(0) are G-local martingales orthogonal to M̂ .
Besides, the optimal filtered wealth process X̂x,π∗

t = x +
∫ t

0
π∗
udŜu is a solution of the

linear equation

X̂∗
t = x−

∫ t

0

ρ2uψu(2) + λ̂uYu(2)

1− ρ2u + ρ2uYu(2)
X̂∗

udŜu

+

∫ t

0

ψu(1)ρ
2
u + λ̂uYu(1)− h̃u

1− ρ2u + ρ2uYu(2)
dŜu. (4.7)

Proof. Similarly to the case of complete information one can show that the optimal strategy
exists and that V H(t, x) is a square trinomial of the form (4.3) (see, e.g., [19]). More precisely
the space of stochastic integrals

J2
t,T (G) =

{∫ T

t

πudSu : π ∈ Π(G)

}

is closed by Proposition 2.1, since 〈M〉 is G-predictable.
Hence there exists optimal strategy π∗(t, x) ∈ Π(G) and UH(t, x) = E[|H − x −∫ T

t
π∗
u(t, x)dSu|2|Gt].

Since
∫ T

t
π∗
u(t, x)dSu coincides with the orthogonal projection of H − x ∈ L2 on the

closed subspace of stochastic integrals, then the optimal strategy is linear with respect to x,
i.e., π∗

u(t, x) = π0
u(t) + xπ1

u(t). This implies that the value function UH(t, x) is a square
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trinomial. It follows from the equality (3.14) that V H(t, x) is also a square trinomial, and it
admits the representation (4.3).

Let us show that Vt(0), Vt(1), and Vt(2) satisfy the system (4.4)–(4.6). It is evident that

Vt(0) = V H(t, 0) = ess inf
π∈Π(G)

E

[(∫ T

t

πudŜu − ĤT

)2

+

∫ T

t

[π2
u

(
1− ρ2u

)
+ 2πuh̃u]d〈M〉u|Gt

]
(4.8)

and

Vt(2) = V 0(t, 1) = ess inf
π∈Π(G)

E

[(
1 +

∫ T

t

πudŜu

)2

+

∫ T

t

π2
u

(
1− ρ2u

)
d〈M〉u|Gt

]
. (4.9)

Therefore, it follows from the optimality principle (taking π = 0) that Vt(0) and Vt(2) are
RCLL G-submartingales and

Vt(2) ≤ E(VT (2)|Gt) ≤ 1,

Vt(0) ≤ E(E2(H|GT )|Gt) ≤ E(H2|Gt).

Since

Vt(1) =
1

2
(Vt(0) + Vt(2)− V H(t, 1)), (4.10)

the process Vt(1) is also a special semimartingale, and since Vt(0) − 2Vt(1)x + Vt(2)x
2 =

V H(t, x) ≥ 0 for all x ∈ R, we have V 2
t (1) ≤ Vt(0)Vt(2); hence

V 2
t (1) ≤ E

(
H2|Gt

)
.

Expressions (4.8), (4.9), and (3.13) imply that VT (0) = E2(H|GT ), VT (2) = 1, and
V H(T, x) = (x − E(H|GT ))

2. Therefore from (4.10) we have VT (1) = E(H|GT ), and
V (0), V (1), and V (2) satisfy the boundary conditions.

Thus, the coefficients Vt(i), i = 0, 1, 2, are special semimartingales, and they admit the
decomposition

Vt(i) = V0(i) +At(i) +

∫ t

0

ϕs(i)dM̂s +mt(i), i = 0, 1, 2, (4.11)

where m(0),m(1), and m(2) are G-local martingales strongly orthogonal to M̂ and A(0),
A(1), and A(2) are G-predictable processes of finite variation.

There exists an increasing continuous G-predictable process K such that

〈M〉t =
∫ t

0

νudKu, At(i) =

∫ t

0

au(i)dKu, i = 0, 1, 2,

where ν and a(i), i = 0, 1, 2, are G-predictable processes.
Let X̂x,π

s,t ≡ x+
∫ t

s
πudŜu and

Y x,π
s,t ≡ V H

(
t, X̂x,π

s,t

)
+

∫ t

s

[
π2
u

(
1− ρ2u

)
+ 2πuh̃u

]
d〈M〉u.
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Then by using (4.3), (4.11), and the Itô formula for any t ≥ s we have
(
X̂x,π

s,t

)2

= x+

∫ t

s

[
2πuλ̂uX̂

x,π
s,u + π2

uρ
2
u

]
d〈M〉u + 2

∫ t

s

πuX̂
x,π
s,u dM̂u (4.12)

and

Y x,π
s,t − V H(s, x) =

∫ t

s

[(
X̂x,π

s,u

)2

au(2)− 2X̂x,π
s,u au(1) + au(0)

]
dKu

+

∫ t

s

[
π2
u

(
1− ρ2u + ρ2uVu−(2)

)
+ 2πuX̂

x,π
s,u

(
λ̂uVu−(2) + ϕu(2)ρ

2
u

)

− 2πu

(
Vu−(1)λ̂u + ϕu(1)ρ

2
u − h̃u

) ]
νudKu +mt −ms, (4.13)

where m is a local martingale.
Let

G(π, x) = G(ω, u, π, x) = π2
(
1− ρ2u + ρ2uVu−(2)

)
+ 2πx

(
λ̂uVu−(2) + ϕu(2)ρ

2
u

)

− 2π(Vu−(1)λ̂u + ϕu(1)ρ
2
u − h̃u).

It follows from the optimality principle that for each π ∈ Π(G) the process
∫ t

s

[(
X̂x,π

s,u

)2

au(2)− 2X̂x,π
s,u au(1) + au(0)

]
dKu +

∫ t

s

G
(
πu, X̂

x,π
s,u

)
νudKu (4.14)

is increasing for any s on s ≤ t ≤ T , and for the optimal strategy π∗ we have the equality
∫ t

s

[(
X̂x,π∗

s,u

)2

au(2)−2X̂x,π∗

s,u au(1)+au(0)

]
dKu= −

∫ t

s

G
(
π∗
u, X̂

x,π∗

s,u

)
νudKu. (4.15)

Since νudKu = d〈M〉u is continuous, without loss of generality one can assume that the
process K is continuous (see [19] for details). Therefore, by taking in (4.14) τs(ε) = inf{t ≥
s : Kt −Ks ≥ ε} instead of t, we have that for any ε > 0 and s ≥ 0

1

ε

∫ τs(ε)

s

[(
X̂x,π

s,u

)2

au(2)− 2X̂x,π
s,u au(1) + au(0)

]
dKu

≥ −1

ε

∫ τs(ε)

s

G
(
πu, X̂

x,π
s,u

)
νudKu. (4.16)

By passing to the limit in (4.16) as ε → 0, from Proposition B of [19] we obtain

x2au(2)− 2xau(1) + au(0) ≥ −G(πu, x)νu, µK-a.e.,

for all π ∈ Π(G). Similarly from (4.15) we have that µK-a.e.

x2au(2)− 2xau(1) + au(0) = −G(π∗
u, x)νu

and hence
x2au(2)− 2xau(1) + au(0) = −νu ess inf

π∈Π(G)
G(πu, x). (4.17)

The infimum in (4.17) is attained for the strategy

π̂t =
Vt(1)λ̂t + ϕt(1)ρ

2
t − h̃t − x(Vt(2)λ̂t + ϕt(2)ρ

2
t )

1− ρ2t + ρ2tVt(2)
. (4.18)
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From here we can conclude that

ess inf
π∈Π(G)

G(πt, x) ≥ G(π̂t, x)

= −

(
Vt(1)λ̂t + ϕt(1)ρ

2
t − h̃t − x

(
Vt(2)λ̂t + ϕt(2)ρ

2
t

))2

1− ρ2t + ρ2tVt(2)
. (4.19)

Let πn
t = I[0,τn[(t)π̂t, where τn = inf{t : |Vt(1)| ≥ n}.

It follows from Lemmas A.2, 3.1, and A.3 that πn ∈ Π(G) for every n ≥ 1 and hence

ess inf
π∈Π(G)

G(πt, x) ≤ G(πn
t , x)

for all n ≥ 1. Therefore

ess inf
π∈Π(G)

G(πt, x) ≤ lim
n→∞

G(πn
t , x) = G(π̂t, x). (4.20)

Thus (4.17), (4.19), and (4.20) imply that

x2at(2)− 2xat(1) + at(0)

= νt
(Vt(1)λ̂t + ϕt(1)ρ

2
t − h̃t − x(Vt(2)λ̂t + ϕt(2)ρ

2
t ))

2

1− ρ2t + ρ2tVt(2)
, µK-a.e., (4.21)

and by equalizing the coefficients of square trinomials in (4.21) (and integrating with respect
to dK) we obtain

At(2) =

∫ t

0

(ϕs(2)ρ
2
s + λ̂sVs(2))

2

1− ρ2s + ρ2sVs(2)
d〈M〉s, (4.22)

At(1) =

∫ t

0

(ϕs(2)ρ
2
s + λ̂sVs(2))(ϕs(1)ρ

2
s + λ̂sVs(1)− h̃s)

1− ρ2s + ρ2sVs(2)
d〈M〉s, (4.23)

At(0) =

∫ t

0

(ϕs(1)ρ
2
s + λ̂sVs(1)− h̃s)

2

1− ρ2s + ρ2sVs(2)
d〈M〉s, (4.24)

which, together with (4.11), implies that the triples (V (i), ϕ(i),m(i)), i = 0, 1, 2, satisfy the
system (4.4)–(4.6).

Note that A(0) and A(2) are integrable increasing processes and relations (4.22) and (4.24)
imply that the strategy π̂ defined by (4.18) belongs to the class Π(G).

Let us show now that if the strategy π∗ ∈ Π(G) is optimal, then the corresponding filtered
wealth process X̂π∗

t = x+
∫ t

0
π∗
udŜu is a solution of (4.7).

By the optimality principle the process

Y π∗

t = V H
(
t, X̂π∗

t

)
+

∫ t

0

[
(π∗

u)
2 (

1− ρ2u
)
+ 2π∗

uh̃u

]
d〈M〉u

is a martingale. By using the Itô formula we have

Y π∗

t =

∫ t

0

(
X̂π∗

u

)2

dAu(2)− 2

∫ t

0

X̂π∗

u dAu(1) +At(0) +

∫ t

0

G
(
π∗
u, X̂

π∗

u

)
d〈M〉u +Nt,
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where N is a martingale. Therefore by applying equalities (4.22), (4.23), and (4.24) we
obtain

Y π∗

t =

∫ t

0

(
π∗
u − Vu(1)λ̂u + ϕu(1)ρ

2
u − h̃u

1− ρ2u + ρ2uVu(2)

+ X̂π∗

u

Vu(2)λ̂u + ϕu(2)ρ
2
u

1− ρ2u + ρ2uVu(2)

)2 (
1− ρ2u + ρ2uVu(2)

)
d〈M〉u +Nt,

which implies that µ〈M〉-a.e.

π∗
u =

Vu(1)λ̂u + ϕu(1)ρ
2
u − h̃u

1− ρ2u + ρ2uVu(2)
− X̂π∗

u

(
Vu(2)λ̂u + ϕu(2)ρ

2
u

)

1− ρ2u + ρ2uVu(2)
.

By integrating both parts of this equality with respect to dŜ (and adding then x to the both
parts), we obtain that X̂π∗

satisfies (4.7). �

The uniqueness of the system (4.4)–(4.6) we shall prove under following condition (D∗),
stronger than condition (D).

Assume that
(D∗) ∫ T

0

λ̂2
u

ρ2u
d〈M〉u ≤ C.

Since ρ2 ≤ 1 (Lemma A.1), it follows from (D∗) that the mean-variance tradeoff of S is
bounded, i.e., ∫ T

0

λ̂2
ud〈M〉u ≤ C,

which implies (see, e.g., Kazamaki [14]) that the minimal martingale measure for S exists
and satisfies the reverse Hölder condition R2(P ). So, condition (D∗) implies condition (D).
Besides, it follows from condition (D∗) that the minimal martingale measure Q̂min for Ŝ

dQ̂min = ET
(
− λ̂

ρ2
· M̂

)

also exists and satisfies the reverse Hölder condition. Indeed, condition (D∗) implies that
Et(−2 λ̂

ρ2 · M̂) is a G-martingale and hence

E

(
E2
tT

(
− λ̂

ρ2
· M̂

)
|Gt

)
= E

(
EtT

(
− 2

λ̂

ρ2
· M̂

)
e
∫ T
t

λ̂2
u

ρ2u
d〈M〉u

Gt

)
≤ eC .

Recall that the process Z belongs to the class D if the family of random variables ZτI(τ≤T )

for all stopping times τ is uniformly integrable.

Theorem 4.2. Let conditions (A), (B), (C), and (D∗) be satisfied. If a triple (Y (0), Y (1),
Y (2)), where Y (0) ∈ D, Y 2(1) ∈ D, and c ≤ Y (2) ≤ C for some constants 0 < c < C,
is a solution of the system (4.4)–(4.6), then such a solution is unique and coincides with the
triple (V (0), V (1), V (2)).
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Proof. Let Y (2) be a bounded strictly positive solution of (4.4), and let
∫ t

0

ψu(2)dM̂u + Lt(2)

be the martingale part of Y (2).
Since Y (2) solves (4.4), it follows from the Itô formula that for any π ∈ Π(G) the process

Y π
t = Yt(2)

(
1 +

∫ t

s

πudŜu

)2

+

∫ t

s

π2
u

(
1− ρ2u

)
d〈M〉u, (4.25)

t ≥ s, is a local submartingale.
Since π ∈ Π(G), from Lemma A.1 and the Doob inequality we have

E sup
t≤T

(
1 +

∫ t

0

πudŜ

)2

≤ const
(
1 + E

∫ T

0

π2
uρ

2
ud〈M〉u

)
+ E

(∫ T

0

|πuλ̂u|d〈M〉u
)2

< ∞. (4.26)

Therefore, by taking in mind that Y (2) is bounded and π ∈ Π(G) we obtain

E
(

sup
s≤u≤T

Y π
u

)2
< ∞,

which implies that Y π ∈ D. Thus Y π is a submartingale (as a local submartingale from the
class D), and by the boundary condition YT (2) = 1 we obtain

Ys(2) ≤ E

((
1 +

∫ T

s

πudŜu

)2

+

∫ T

s

π2
u

(
1− ρ2u

)
d〈M〉u|Gs

)

for all π ∈ Π(G) and hence

Yt(2) ≤ Vt(2). (4.27)

Let

π̃t = − λ̂tYt(2) + ψt(2)ρ
2
t

1− ρ2t + ρ2tYt(2)
Et
(
− λ̂Y (2) + ψ(2)ρ2

1− ρ2 + ρ2Y (2)
· Ŝ

)
.

Since 1 +
∫ t

0
π̃udŜu = Et(− λ̂Y (2)+ψ(2)ρ2

1−ρ2+ρ2Y (2) · Ŝ), it follows from (4.4) and the Itô formula that
the process Y π̃ defined by (4.25) is a positive local martingale and hence a supermartingale.
Therefore

Ys(2) ≥ E

((
1 +

∫ T

s

π̃udŜu

)2

+

∫ T

s

π̃2
u

(
1− ρ2u

)
d〈M〉u|Gs

)
. (4.28)

Let us show that π̃ belongs to the class Π(G).
From (4.28) and (4.27) we have for every s ∈ [0, T ]

E

((
1 +

∫ T

s

π̃udŜu

)2

+

∫ T

s

π̃2
u

(
1− ρ2u

)
d〈M〉u|Gs

)
≤ Ys(2) ≤ Vs(2) ≤ 1 (4.29)
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and hence

E

(
1 +

∫ T

0

π̃udŜu

)2

≤ 1, (4.30)

E

∫ T

0

π̃2
u

(
1− ρ2u

)
d〈M〉u ≤ 1. (4.31)

By (D∗) the minimal martingale measure Q̂min for Ŝ satisfies the reverse Hölder condition,
and hence all conditions of Proposition 2.1 are satisfied. Therefore the norm

E

(∫ T

0

π̃2
sρ

2
sd〈M〉s

)
+ E

(∫ T

0

|π̃sλ̂s|d〈M〉s
)2

is estimated by E
(
1 +

∫ T

0
π̃udŜu)

2 and hence

E

∫ T

0

π̃2
uρ

2
ud〈M〉u < ∞, E

(∫ T

0

|π̃sλ̂s|d〈M〉s
)2

< ∞.

It follows from (4.31) and the latter inequality that π̃ ∈ Π(G), and from (4.28) we obtain

Yt(2) ≥ Vt(2),

which together with (4.27) gives the equality Yt(2) = Vt(2).
Thus V (2) is a unique bounded strictly positive solution of (4.4). Besides,

∫ t

0

ψu(2)dM̂u =

∫ t

0

ϕu(2)dM̂u, Lt(2) = mt(2) (4.32)

for all t, P -a.s.
Let Y (1) be a solution of (4.5) such that Y 2(1) ∈ D. By the Itô formula the process

Rt = Yt(1)Et
(
− ϕ(2)ρ2 + λ̂V (2)

1− ρ2 + ρ2V (2)
· Ŝ

)

+

∫ t

0

Eu
(
− ϕ(2)ρ2 + λ̂V (2)

1− ρ2 + ρ2V (2)
· Ŝ

)
(ϕu(2)ρ

2
u + λ̂uVu(2))h̃u

1− ρ2u + ρ2uVu(2)
d〈M〉u (4.33)

is a local martingale. Let us show that Rt is a martingale.
As was already shown, the strategy

π̃u =
ψu(2)ρ

2
u + λ̂uYu(2)

1− ρ2 + ρ2Yu(2)
Eu

(
− ψ(2)ρ2 + λ̂Y (2)

1− ρ2 + ρ2Y (2)
· Ŝ

)

belongs to the class Π(G).
Therefore (see (4.26)),

E sup
t≤T

E2
t

(
− ψ(2)ρ2 + λ̂Y (2)

1− ρ2 + ρ2Y (2)
· Ŝ

)
= E sup

t≤T

(
1 +

∫ t

0

π̃udŜ

)2

< ∞, (4.34)

and hence

Yt(1)Et
(
− ϕ(2)ρ2 + λ̂V (2)

1− ρ2 + ρ2V (2)
· Ŝ

)
∈ D.
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On the other hand, the second term of (4.33) is the process of integrable variation, since
π̃ ∈ Π(G) and h̃ ∈ Π(G) (see Lemma A.2) imply that

E

∫ T

0

∣∣∣∣Eu
(
− ϕ(2)ρ2 + λ̂V (2)

1− ρ2 + ρ2V (2)
· Ŝ

)
(ϕu(2)ρ

2
u + λ̂uVu(2))h̃u

1− ρ2u + ρ2uVu(2)

∣∣∣∣d〈M〉u

= E

∫ T

0

|π̃uh̃u|d〈M〉u ≤ E1/2

∫ T

0

π̃2
ud〈M〉uE1/2

∫ T

0

h̃2
ud〈M〉u < ∞.

Therefore, the process Rt belongs to the class D, and hence it is a true martingale. By
using the martingale property and the boundary condition we obtain

Yt(1) = E

(
ĤT EtT

(
− ϕ(2)ρ2 + λ̂V (2)

1− ρ2 + ρ2V (2)
· Ŝ

)

+

∫ T

t

Etu
(
− ϕ(2)ρ2 + λ̂V (2)

1− ρ2 + ρ2V (2)
· Ŝ

)
(ϕu(2)ρ

2
u + λ̂uVu(2))h̃u

1− ρ2u + ρ2uVu(2)
d〈M〉u|Gt

)
. (4.35)

Thus, any solution of (4.5) is expressed explicitly in terms of (V (2), ϕ(2)) in the form (4.35).
Hence the solution of (4.5) is unique, and it coincides with Vt(1).

It is evident that the solution of (4.6) is also unique. �

Remark 4.1. In the case FS ⊆ G we have ρt = 1, h̃t = 0, and Ŝt = St, and (4.7) takes the
form

X̂∗
t = x−

∫ t

0

ψu(2) + λ̂uYu(2)

Yu(2)
X̂∗

udSu +

∫ t

0

ψu(1) + λ̂uYu(1)

Yu(2)
dSu.

Corollary 4.1. In addition to conditions (A)–(C) assume that ρ is a constant and the mean-
variance tradeoff 〈λ̂ · M〉T is deterministic. Then the solution of (4.4) is the triple
(Y (2), ψ(2), L(2)), with ψ(2) = 0, L(2) = 0, and

Yt(2) = Vt(2) = ν
(
ρ, 1− ρ2 + 〈λ̂ ·M〉T − 〈λ̂ ·M〉t

)
, (4.36)

where ν(ρ, α) is the root of the equation

1− ρ2

x
− ρ2 lnx = α. (4.37)

Besides,

Yt(1) = E

(
HEtT

(
− λ̂V (2)

1− ρ2 + ρ2V (2)
· Ŝ

)

+

∫ T

t

Etu
(
− λ̂V (2)

1− ρ2 + ρ2V (2)
· Ŝ

)
λuVu(2)h̃u

1− ρ2 + ρ2Vu(2)
d〈M〉u|Gt

)
(4.38)

uniquely solves (4.5), and the optimal filtered wealth process satisfies the linear equation

X̂∗
t = x−

∫ t

0

λ̂uVu(2)

1− ρ2 + ρ2Vu(2)
X̂∗

udŜu +

∫ t

0

ϕu(1)ρ
2 + λ̂uVu(1)− h̃u

1− ρ2 + ρ2Vu(2)
dŜu. (4.39)

Proof. The function f(x) = 1−ρ2

x −ρ2 lnx is differentiable and strictly decreasing on ]0,∞[
and takes all values from ]−∞,+∞[. So (4.37) admits a unique solution for all α. Besides,
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the inverse function α(x) is differentiable. Therefore Yt(2) is a process of finite variation,
and it is adapted since 〈λ̂ ·M〉T is deterministic.

By definition of Yt(2) we have that for all t ∈ [0, T ]

1− ρ2

Yt(2)
− ρ2 lnYt(2) = 1− ρ2 + 〈λ̂ ·M〉T − 〈λ̂ ·M〉t.

It is evident that for α = 1− ρ2 the solution of (4.37) is equal to 1, and it follows from (4.36)
that Y (2) satisfies the boundary condition YT (2) = 1. Therefore

1− ρ2

Yt(2)
− ρ2 lnYt(2)−

(
1− ρ2

)
= −

(
1− ρ2

) ∫ T

t

d
1

Yu(2)
+ ρ2

∫ T

t

d lnYu(2)

=

∫ T

t

(
1− ρ2

Y 2
u (2)

+
ρ2

Yu(2)

)
dYu(2)

and ∫ T

t

1− ρ2 + ρ2Yu(2)

Y 2
u (2)

dYu(2) = 〈λ̂ ·M〉T − 〈λ̂ ·M〉t

for all t ∈ [0, T ]. Hence
∫ t

0

1− ρ2 + ρ2Yu(2)

Y 2
u (2)

dYu(2) = 〈λ̂ ·M〉t,

and, by integrating both parts of this equality with respect to Y (2)/(1 − ρ2 + ρ2Y (2)), we
obtain that Y (2) satisfies

Yt(2) = Y0(2) +

∫ t

0

Y 2
u (2)λ̂

2
u

1− ρ2 + ρ2Yu(2)
d〈M〉u, (4.40)

which implies that the triple (Y (2), ψ(2) = 0, L(2) = 0) satisfies (4.4) and Y (2) = V (2)
by Theorem 4.2. Equations (4.38) and (4.39) follow from (4.35) and (4.7), respectively, by
taking ϕ(2) = 0. �

Remark 4.2. In case FS ⊆ G we have M̂ = M and ρ = 1. Therefore (4.40) is lin-
ear and Yt(2) = e〈λ̂·M〉t−〈λ̂·M〉T . In the case A = G of complete information, Yt(2) =
e〈λ·N〉t−〈λ·N〉T .

5. DIFFUSION MARKET MODEL

Example 1. Let us consider the financial market model

dS̃t = S̃tµt(η)dt+ S̃tσt(η)dw
0
t ,

dηt = at(η)dt+ bt(η)dwt,

subjected to initial conditions. Here w0 and w are correlated Brownian motions with
Edw0

t dwt = ρdt, ρ ∈ (−1, 1).

Let us write
wt = ρw0

t +
√
1− ρ2w1

t ,
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where w0 and w1 are independent Brownian motions. It is evident that w⊥ = −
√
1− ρ2w0+

ρw1 is a Brownian motion independent of w, and one can express Brownian motions w0 and
w1 in terms of w and w⊥ as

w0
t = ρwt −

√
1− ρ2w⊥

t , w1
t =

√
1− ρ2wt + ρw⊥

t . (5.1)

Suppose that b2 > 0, σ2 > 0, and coefficients µ, σ, a, and b are such that FS,η
t = Fw0,w

t

and F η
t = Fw

t .
We assume that an agent would like to hedge a contingent claim H (which can be a func-

tion of ST and ηT ) using only observations based on the process η. So the stochastic basis
will be (Ω,F , Ft, P ), where Ft is the natural filtration of (w0, w) and the flow of observable
events is Gt = Fw

t .
Also denote dSt = µtdt+ σtdw

0
t , so that dS̃t = S̃tdSt and S is the return of the stock.

Let π̃t be the number of shares of the stock at time t. Then πt = π̃tS̃t represents an
amount of money invested in the stock at the time t ∈ [0, T ]. We consider the mean-variance
hedging problem

to minimize E

[(
x+

∫ T

0

π̃tdS̃t −H

)2]
over all π̃ for which π̃S̃ ∈ Π(G), (5.2)

which is equivalent to studying the mean-variance hedging problem

to minimize E

[(
x+

∫ T

0

πtdSt −H

)2]
over all π ∈ Π(G).

Remark 5.1. Since S is not G-adapted, π̃t and π̃tS̃t cannot be simultaneously G-predictable
and the problem

to minimize E

[(
x+

∫ T

0

π̃tdS̃t −H

)2]
over all π̃ ∈ Π(G)

is not equivalent to the problem (5.2). In this setting, condition (A) is not satisfied, and it
needs separate consideration.

By comparing with (1.1) we get that in this case

Mt =

∫ t

0

σsdw
0
s , 〈M〉t =

∫ t

0

σ2
sds, λt =

µt

σ2
t

.

It is evident that w is a Brownian motion also with respect to the filtration Fw0,w1

and con-
dition (B) is satisfied. Therefore by Proposition 2.2

M̂t = ρ

∫ t

0

σsdws.

By the integral representation theorem the GKW decompositions (3.2) and (3.3) take the
following forms:

cH = EH, Ht = cH +

∫ t

0

hsσsdw
0
s +

∫ t

0

h1
sdw

1
s , (5.3)

Ht = cH + ρ

∫ t

0

hG
s σsdws +

∫ t

0

h⊥
s dw

⊥
s . (5.4)
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By putting expressions (5.1) for w0 and w1 in (5.3) and equalizing integrands of (5.3) and
(5.4), we obtain

ht = ρ2hG
t −

√
1− ρ2

h⊥
t

σt

and hence

ĥt = ρ2ĥG
t −

√
1− ρ2

ĥ⊥
t

σt
.

Therefore by the definition of h̃

h̃t = ρ2ĥG
t − ĥt =

√
1− ρ2

ĥ⊥
t

σt
. (5.5)

By using notations

Zs(0) = ρσsϕs(0), Zs(1) = ρσsϕs(1), Zs(2) = ρσsϕs(2), θs =
µs

σs
,

we obtain the following corollary of Theorem 4.1.

Corollary 5.1. Let H be a square integrable FT -measurable random variable. Then the pro-
cesses Vt(0), Vt(1), and Vt(2) from (4.3) satisfy the following system of backward equations:

Vt(2) = V0(2) +

∫ t

0

(ρZs(2) + θsVs(2))
2

1− ρ2 + ρ2Vs(2)
ds+

∫ t

0

Zs(2)dws, VT (2) = 1, (5.6)

Vt(1) = V0(1) +

∫ t

0

(ρZs(2) + θsVs(2))(ρZs(1) + θsVs(1)−
√
1− ρ2 ĥ⊥

s )

1− ρ2 + ρ2Vs(2)
ds

+

∫ t

0

Zs(1)dws, VT (1) = E(H|GT ), (5.7)

Vt(0) = V0(0) +

∫ t

0

(ρZs(1) + θsVs(1)−
√
1− ρ2 ĥ⊥

s )
2

1− ρ2 + ρ2Vs(2)
ds

+

∫ t

0

Zs(0)dws, VT (0) = E2(H|GT ). (5.8)

Besides, the optimal wealth process X̂∗ satisfies the linear equation

X̂∗
t = x−

∫ t

0

ρZs(2) + θsVs(2)

1− ρ2 + ρ2Vs(2)
X̂∗

s (θsds+ ρdws)

+

∫ t

0

ρZs(1) + θsVs(1)−
√
1− ρ2 ĥ⊥

s

1− ρ2 + ρ2Vs(2)
(θsds+ ρdws). (5.9)

Suppose now that θt and σt are deterministic. Then the solution of (5.6) is the pair
(Vt(2), Zt(2)), where Z(2) = 0 and V (2) satisfies the ordinary differential equation

dVt(2)

dt
=

θ2tV
2
t (2)

1− ρ2 + ρ2Vt(2)
, VT (2) = 1. (5.10)

By solving this equation we obtain

Vt(2) = ν

(
ρ, 1− ρ2 +

∫ T

t

θ2sds

)
≡ νθ,ρt , (5.11)
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where ν(ρ, α) is the solution of (4.37). From (5.10) it follows that
(
ln νθ,ρt

)′
=

θ2t ν
θ,ρ
t

1− ρ2 + ρ2νθ,ρt

and ln
νθ,ρs

νθ,ρt

=

∫ s

t

θ2rν
θ,ρ
r dr

1− ρ2 + ρ2νθ,ρr

. (5.12)

If we solve the linear BSDE (5.7) and use (5.12), we obtain

Vt(1) = E

[
ĤT (w)EtT

(
−
∫ ·

0

θrν
θ,ρ
r

1− ρ2 + ρ2νθ,ρr

(θrdr + ρdwr)

)
|Gt

]
,

∫ T

t

θsν
θ,ρ
s σs

1− ρ2 + ρ2νθ,ρs

E

[
h̃s(w)Ets

(
−
∫ ·

0

θrν
θ,ρ
r

1− ρ2 + ρ2νθ,ρr

(θrdr + ρdwr)

)
|Gt

]
ds

= νθ,ρt E

[
ĤT (w)EtT

(
−
∫ ·

0

θrν
θ,ρ
r

1− ρ2 + ρ2νθ,ρr

ρdwr

)
|Gt

]

+ νθ,ρt

∫ T

t

µs

1− ρ2 + ρ2νθ,ρs

E

[
h̃s(w)Ets

(
−
∫ ·

0

θrν
θ,ρ
r

1− ρ2 + ρ2νθ,ρr

ρdwr

)
|Gt

]
ds.

By using the Girsanov theorem we finally get

Vt(1) = νθ,ρt E

[
ĤT

(
ρ

∫ ·

0

θrν
θ,ρ
r

1− ρ2 + ρ2νθ,ρr

dr + w

) ∣∣Gt

]

+ νθ,ρt

∫ T

t

µs

1− ρ2 + ρ2νθ,ρs

E

[
h̃s

(
ρ

∫ ·

0

θrν
θ,ρ
r

1− ρ2 + ρ2νθ,ρr

dr + w

) ∣∣Gt

]
ds. (5.13)

Besides, the optimal strategy is of the form

π∗
t = − θtVt(2)

(1− ρ2 + ρ2Vt(2))σt
X̂∗

t +
ρZt(1) + θtVt(1)−

√
1− ρ2 ĥ⊥

t

(1− ρ2 + ρ2Vt(2))σt
. �

If, in addition, µ and σ are constants and the contingent claim is of the form H=H(ST , ηT ),
then one can give an explicit expressions also for h̃, ĥ⊥, Ĥ , and Z(1).

Example 2. In Frey and Runggaldier [9] the incomplete-information situation arises, assum-
ing that the hedger is unable to monitor the asset continuously but is confined to observations
at discrete random points in time τ1, τ2, . . . , τn. Perhaps it is more natural to assume that the
hedger has access to price information on full intervals [σ1, τ1], [σ2, τ2], . . . , [σn, τn]. For the
models with nonzero drifts, even the case n = 1 is nontrivial. Here we consider this case in
detail.

Let us consider the financial market model

dS̃t = µS̃tdt+ σS̃tdWt, S0 = S,

where W is a standard Brownian motion and the coefficients µ and σ are constants. Assume
that an investor observes only the returns St − S0 =

∫ t

0
1

S̃u
dS̃u of the stock prices up to a

random moment τ before the expiration date T . Let At = FS
t , and let τ be a stopping time

with respect to FS . Then the filtration Gt of observable events is equal to the filtration FS
t∧τ .

Consider the mean-variance hedging problem

to minimize E

[(
x+

∫ T

0

πtdSt −H

)2]
over all π ∈ Π(G),
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where πt is a dollar amount invested in the stock at time t.
By comparing with (1.1) we get that in this case

Nt = Mt = σWt, 〈M〉t = σ2t, λt =
µ

σ2
.

Let θ = µ
σ . The measure Q defined by dQ = ET (θW )dP is a unique martingale measure for

S, and it is evident that Q satisfies the reverse Hölder condition. It is also evident that any
G-martingale is FS-martingale and that conditions (A)–(C) are satisfied. Besides,

E(Wt|Gt) = Wt∧τ , Ŝt = µt+ σWt∧τ and ρt = I{t≤τ}. (5.14)

By the integral representation theorem

E
(
H|FS

t

)
= EH +

∫ t

0

huσdWu (5.15)

for F -predictable W -integrable process h. On the other hand, by the GKW decomposition
with respect to the martingale W τ = (Wt∧τ , t ∈ [0, T ]),

E
(
H|FS

t

)
= EH +

∫ t

0

hG
u σdW

τ
u + LG

t (5.16)

for FS-predictable process hG and FS martingale LG strongly orthogonal to W τ . Therefore,
by equalizing the right-hand sides of (5.15) and (5.16) and taking the mutual characteristics
of both parts with W τ , we obtain

∫ t∧τ

0
(hG

u ρ
2
u − hu)du = 0 and hence

∫ t

0

h̃udu =

∫ t

0

(
ĥG
u I(u≤τ) − ĥu

)
du = −

∫ t

0

I(u>τ)E
(
hu|FS

τ

)
du. (5.17)

Therefore, by using notations

Zs(0) = ρσϕs(0), Zs(1) = ρσϕs(1), Zs(2) = ρσϕs(2),

it follows from Theorem 4.1 that the processes (Vt(2), Zt(2)) and (Vt(1), Zt(1)) satisfy the
following system of backward equations:

Vt(2) = V0(2) +

∫ t∧τ

0

(
Zs(2) + θVs(2)

)2
Vs(2)

ds+

∫ t

t∧τ

θ2V 2
s (2)ds

+

∫ t∧τ

0

Zs(2)dWs, VT (2) = 1, (5.18)

Vt(1) = V0(1) +

∫ t∧τ

0

(
Zs(2) + θVs(2)

)(
Zs(1) + θVs(1)

)
Vs(2)

ds

+

∫ t

t∧τ

θVs(2)
(
θVs(1) + E

(
hs|FS

τ

))
ds

+

∫ t∧τ

0

Zs(1)dWs, VT (1) = E(H|GT ). (5.19)

Equation (5.18) admits in this case an explicit solution. To obtain the solution one should
solve first the equation

Ut = U0 +

∫ t

0

θ2U2
s ds, UT = 1, (5.20)
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in the time interval [τ, T ] and then the BSDE

Vt(2) = V0(2) +

∫ t

0

(
Zs(2) + θVs(2)

)2
Vs(2)

ds+

∫ t

0

Zs(2)dWs (5.21)

in the interval [0, τ ], with the boundary condition Vτ (2) = Uτ . The solution of (5.20) is

Ut =
1

1 + θ2(T − t)
,

and the solution of (5.21) is expressed as

Vt(2) =
1

E
(
(1 + θ2(T − τ))E2

t,τ (−θW )|FS
t

)

(this can be verified by applying the Itô formula for the process V −1
t (2)E2

t (−θW ) and by
using the fact that this process is a martingale). Therefore

Vt(2) =




1
1+θ2(T−t) if t ≥ τ,

1

E
(
(1+θ2(T−τ))E2

t,τ (−θW )|FS
t

) if t ≤ τ.
(5.22)

According to (4.37), taking in mind (5.14), (5.17), and the fact that e−
∫ T
t
θ2Vu(2)du= 1

1+θ2(T−t)

on the set t ≥ τ , the solution of (5.19) is equal to

Vt(1) = E

(
H

1 + θ2(T − t)
+

∫ T

t

θVu(2)hudu

1 + θ2(T − u)
|FS

τ

)
I(t>τ)

+ E

(
Et,τ

(
− ϕ(2) + λV (2)

V (2)
· S

)(
H

1 + θ2(T − τ)

+

∫ T

τ

θVu(2)hudu

1 + θ2(T − u)

)
|FS

t

)
I(t≤τ). (5.23)

By Theorem 4.1 the optimal filtered wealth process is a solution of a linear SDE, which takes
in this case the following form:

X̂∗
t = x−

∫ t∧τ

0

ϕu(2) + θVu(2)

Vu(2)
X̂∗

u(θdu+ dWu)−
∫ t

t∧τ

θ2Vu(2)X̂
∗
udu

+

∫ t∧τ

0

ϕu(1) + θVu(1)

Vu(2)
(θdu+ dWu) +

∫ t

t∧τ

(
θ2Vu(1) + µE

(
hu|FS

τ

))
du. (5.24)

The optimal strategy is equal to

π∗
t =

[
−ϕt(2) + θVt(2)

Vt(2)
I(t≤τ) − θ2Vt(2)I(t>τ)

]
X̂∗

t

+
ϕt(1) + θVt(1)

Vt(2)
I(t≤τ) +

(
θ2Vt(1) + µE

(
ht|FS

τ

))
I(t>τ), (5.25)

where X̂∗
t is a solution of the linear equation (5.24), V (2) and V (1) are given by (5.22) and

(5.23), and ϕ(2) and ϕ(1) are integrands of their martingale parts, respectively. In particular
the optimal strategy in time interval [τ, T ] (i.e., after interrupting observations) is of the form

π∗
t = −θ2Vt(2)X̂

∗
t + θ2Vt(1) + µE

(
ht|FS

τ

)
, (5.26)
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where

X̂∗
t =

X̂∗
τ

1 + θ2(t− τ)
−
∫ t

τ

(
θ2Vu(1)− µE

(
hu|FS

τ

)) 1

1 + θ2(t− u)
du.

For instance, if τ is deterministic, then Vt(2) is also deterministic:

Vt(2) =

{
1

1+θ2(T−t) if t ≥ τ,
1

1+θ2(T−t)e
−θ2(τ−t) if t ≤ τ,

and ϕ(2) = 0.
Note that it is not optimal to do nothing after interrupting observations, and in order to act

optimally one should change the strategy deterministically as it is given by (5.26).

APPENDIX A

For convenience we give the proofs of the following assertions used in the paper.

Lemma A.1. Let conditions (A)–(C) be satisfied and M̂t = E(Mt|Gt). Then 〈M̂〉 is abso-
lutely continuous w.r.t. 〈M〉 and µ〈M〉 a.e.

ρ2t =
d〈M̂〉t
d〈M〉t

≤ 1.

Proof. By (2.4) for any bounded G-predictable process h

E

∫ t

0

h2
sd〈M̂〉s = E

(∫ t

0

hsdM̂s

)2

= E

(
E

(∫ t

0

hsdMs

∣∣Gt

))2

≤ E

(∫ t

0

hsdMs

)2

= E

∫ t

0

h2
sd〈M〉s, (A.1)

which implies that 〈M̂〉 is absolutely continuous w.r.t. 〈M〉, i.e.,

〈M̂〉t =
∫ t

0

ρ2sd〈M〉s

for a G-predictable process ρ. �

Moreover (A.1) implies that the process 〈M〉–〈M̂〉 is increasing and hence ρ2 ≤ 1 µ〈M〉

a.e.

Lemma A.2. Let H ∈ L2(P, FT ), and let conditions (A)–(C) be satisfied. Then

E

∫ T

0

h̃2
ud〈M〉u < ∞.

Proof. It is evident that

E

∫ T

0

(hG
u )

2d〈M̂〉u < ∞, E

∫ T

0

h2
ud〈M〉u < ∞.
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Therefore, by the definition of h̃ and Lemma A.1,

E

∫ T

0

h̃2
ud〈M〉u ≤ 2E

∫ T

0

ĥ2
ud〈M〉u + 2E

∫ T

0

(
ĥG
u

)2

ρ4ud〈M〉u

≤ 2E

∫ T

0

h2
ud〈M〉u + 2E

∫ T

0

(
hG
u

)2
ρ2ud〈M̂〉u < ∞.

Thus h̃ ∈ Π(G) by Remark 2.5. �

Lemma A.3. (a) Let Y = (Yt, t ∈ [0, T ]) be a bounded positive submartingale with the
canonical decomposition

Yt = Y0 +Bt +mt,

where B is a predictable increasing process and m is a martingale. Then m ∈ BMO.
(b) In particular the martingale part of V (2) belongs to BMO. If H is bounded, then

martingale parts of V (0) and V (1) also belong to the class BMO, i.e., for i = 0, 1, 2,

E

(∫ T

τ

ϕ2
u(i)ρ

2
ud〈M〉u|Gτ

)
+ E (〈m(i)〉T − 〈m(i)〉τ |Gτ ) ≤ C (A.2)

for every stopping time τ .

Proof. By applying the Itô formula for Y 2
T − Y 2

τ we have

〈m〉T − 〈m〉τ + 2

∫ T

τ

YudBu + 2

∫ T

τ

Yudmu = Y 2
T − Y 2

τ ≤ const (A.3)

Since Y is positive and B is an increasing process, by taking conditional expectations in (A.3)
we obtain

E(〈m〉T − 〈m〉τ |Fτ ) ≤ const
for any stopping time τ , and hence m ∈ BMO.

(A.2) follows from assertion (a) applied for positive submartingales V (0), V (2), and
V (0) + V (2)− 2V (1). For the case i = 1 one should take into account also the inequality

〈m(1)〉t ≤ const(〈m(0) +m(2)− 2m(1)〉t + 〈m(0)〉t + 〈m(2)〉t). �
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SOLVABILITY OF BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS
WITH QUADRATIC GROWTH

R. TEVZADZE

Abstract. We prove the existence of the unique solution of a general Backward Stochastic
Differential Equation with quadratic growth driven by martingales. Some kind of comparison
theorem is also proved.

Key words and phrases: Backward Stochastic Differential Equation, Contraction principle,
BMO-martingale

MSC 2010: 90A09, 60H30, 90C39

1. INTRODUCTION

In this paper we show a general result of existence and uniqueness of Backward Stochastic
Differential Equation (BSDE) with quadratic growth driven by continuous martingale. Back-
ward stochastic differential equations have been introduced by Bismut [1] for the linear case
as equations of the adjoint process in the stochastic maximum principle. A nonlinear BSDE
(with Bellman generator) was first considered by Chitashvili [4]. He derived the semimartin-
gale BSDE (or SBE), which can be considered as a stochastic version of the Bellman equation
for a stochastic control problem, and proved the existence and uniqueness of a solution. The
theory of BSDEs driven by the Brownian motion was developed by Pardoux and Peng [22] for
more general generators. The results of Pardoux and Peng were generalized by Kobylansky
[11], Lepeltier and San Martin [12] for generators with quadratic growth. In the work of Hu at
all [8] BMO-martingales were used for BSDE with quadratic generators in Brownian setting
and in [15], [16], [17], [18], [19], [21] for BSDEs driven by martingales. By Chitashvili [4],
Buckdahn [3],and El Karoui and Huang [7] the well posedness of BSDE with generators sat-
isfying Lipschitz type conditions was established. Here we suggest new approach including
an existence and uniqueness of the solution of general BSDE with quadratic growth. In the
earlier papers [15], [16], [17], [18], [19] we studied, as well as Bobrovnytska and Schweizer
[2], the particular cases of BSDE with quadratic nonlinearities related to the primal and dual
problems of Mathematical Finance. In these works the solutions were represented as a value
function of the corresponding optimization problems.

The paper is organized as follows. In Section 2 we give some basic definitions and facts
used in what follows. In Section 3 we show the solvability of the system of BSDEs for
sufficiently small initial condition and further prove the solvability of one dimensional BSDE
for arbitrary bounded initial data. At the end of Section 4 we prove the comparison theorem,
which generalizes the results of Mania and Schweizer [14], and apply this results to the
uniqueness of the solution.

Published in Stochastic Process. Appl. 118 (2008), no. 3, 503–515.
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2. SOME BASIC DEFINITIONS AND ASSUMPTIONS

Let (Ω,F ,F = (Ft)t≥0, P ) be filtered probability space satisfying the usual conditions.
We assume that all local martingales with respect to F are continuous. Here the time horizon
T < ∞ is a stopping time and F = FT . Let us consider Backward Stochastic Differential
Equation (BSDE) of the form

dYt = −f(t, Yt, σ
∗
tZt)dKt − d〈N〉tgt + Z∗

t dMt + dNt, (2.1)
YT = ξ, (2.2)

We suppose that
• (Mt, t ≥ 0) is an Rn-valued continuous martingale with cross-variations matrix

〈M〉t = (〈M i,M j〉t)1≤i,j≤n,
• (Kt, t≥0) is a continuous, adapted, increasing process, such that 〈M〉t=

∫ t

0
σsσ

∗
sdKs

for some predictable, non degenerate n× n matrix σ,
• ξ is F-measurable an Rd-valued random variable,
• f : Ω× R+ × Rd × Rn×d → Rd is a stochastic process, such that for any (y, z) ∈

Rd ×Rn×d the process f(·, ·, y, z) is predictable,
• g : Ω×R+ → Rd×d is a predictable process.

The notation Rn×d here denotes the space of n× d-matrix C with Euclidian norm |C| =√
tr(CC∗). For some stochastic process Xt and sopping times τ, ν, such that τ ≥ ν we

denote Xν,τ = Xτ − Xν . For all unexplained notations concerning the martingale theory
used below we refer [9], [5] and [13]. About BMO-martingales see [6] or [10].

A solution of the BSDE is a triple (Y, Z,N) of stochastic processes, such that (2.1), (2.2)
is satisfied and

• Y is an adapted Rd-valued continuous process,
• Z is an Rn×d-valued predictable process,
• N is an Rd-valued continuous martingale, orthogonal to the basic martingale M .

One says that (f, g, ξ) is a generator of BSDE (2.1),(2.2).
We introduce the following spaces

• L∞(Rd) = {X : Ω → Rd,FT − measurable, ‖X‖∞ = ess sup
Ω

|X(ω)| < ∞},

• S∞(Rd)={ϕ : Ω×R+→Rd, continuous, adapted, ‖ϕ‖∞=ess sup
[[0,T ]]

|ϕ(t, ω)|<∞},

• H2(Rn×d, σ) =
{
ϕ : Ω×R+ → Rn×d, predictable,

‖ϕ‖2H = ess sup
[[0,T ]]

E
(∫ T

t

|σ∗
sϕs|2dKs|Ft

)
≡ ess sup

[[0,T ]]

E(tr〈ϕ ·M〉tT |Ft

)
< ∞

}
, (2.3)

• BMO(Q)={N, Rd-valued Q-martingale ‖N‖2Q=ess sup
[[0,T ]]

EQ(tr〈N〉tT |Ft)<∞}.

We also use the notation |r|2,∞ for the norm ‖
∫ T

0
r2sdKs‖∞.

The norm of the triple is defined as

‖(Y, Z,N)‖2 = ‖Y ‖2 + ‖Z‖2H + ‖N‖2P .

Throughout the paper we use the condition
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A) There exist a constant θ and predictable processes

α : Ω×R+ → Rd, Γ : Ω×R+ → Lin(Rn×d, Rd), r : Ω×R+ → R,

such that the following conditions
∫ T

0
rsdKs,

∫ T

0
r2sdKs ∈ L∞, Γ(σ−1) ∈ H2

T , |αt| ≤ rt,
|gt| ≤ θ2 and

|f(t, y1, z1)− f(t, y2, z2)− αt(y1 − y2)− Γt(z1 − z2)|
≤ (rt|y1 − y2|+ θ|z1 − z2|)(rt(|y1|+ |y2|) + θ(|z1|+ |z2|)) (2.4)

are satisfied.
Sometimes we use the more restrictive conditions

B1)
∫ T

0
|f(t, 0, 0)|dKt + |gt| ≤ θ2 for all t ∈ [0, T ],

B2) |fy(t, y, z)| ≤ rt, |fz(t, y, z)| ≤ rt + θ|z| for all (t, y, z),
B3) |fyy(t, y, z)| ≤ r2t , |fyz(t, y, z)| ≤ θrt, |fzz(t, y, z)| ≤ θ2 for all (t, y, z).

Remark 1. Condition A) follow from conditions B1)-B3), since using notations δy = y1 −
y2, δz = z1 − z2 for αt = fy(t, 0, 0), Γt = fz(t, 0, 0) by the mean value theorem we have

|f(t, y1, z1)− f(t, y2, z2)− αtδy − Γt(δz)|
= |fy(t, νy1 + (1− ν)y2, νz1 + (1− ν)z2)δy − fy(t, 0, 0)δy|

+fz(t, νy1 + (1− ν)y2, νz1 + (1− ν)z2)(δz)− fz(t, 0, 0)(δz)|,

for some ν ∈ [0, 1]. Using again mean value theorem we obtain that

|f(t, y1, z1)− f(t, y2, z2)− αtδy − Γt(δz)|
≤ (|νy1 + (1− ν)y2|max

y,z
|fyy(t, y, z)|+ |νz1 + (1− ν)z2|max

y,z
|fyz(t, y, z)|)|δy|

+(|νy1 + (1− ν)y2|max
y,z

|fyz(t, y, z)|+ |νz1 + (1− ν)z2|max
y,z

|fzz(t, y, z)|)|δz|

≤ [r2t (|y1|+ |y2|) + rtθ(|z1|+ |z2|)]|δy|+ [rtθ(|y1|+ |y2|) + θ2(|z1|+ |z2|)]|δz|
= (rt|δy|+ θ|δz|)(rt(|y1|+ |y2|) + θ(|z1|+ |z2|).

Remark 2. If d = 1 the operator Γt is given by an n-dimensional vector γt such that Γt(z) =
γ∗
t z. Thus inequality in A) can be rewritten as

|f(t, y1, z1)− f(t, y2, z2)− αtδy − γ∗
t δz|

≤ (rt|δy|+ θ|δz|)(rt(|y1|+ |y2|) + θ(|z1|+ |z2|)).

The main statement of the paper is the following

Theorem 1. Let ξ ∈ L∞, d = 1 and conditions B1)–B3) are satisfied. Then there exists a
unique triple (Y, Z,N), where Y ∈ S∞, Z ∈ H2, N ∈ BMO, that satisfies equation (2.1),
(2.2).

3. EXISTENCE OF THE SOLUTION

First we prove the existence and uniqueness of the solution for a sufficiently small initial
data.
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Proposition 1. Let f and g satisfy condition A) with α = 0 and γt = 0. Then for ξ with the
norm ‖ξ‖∞ < 1

32β , β = 8max(|r|22,∞, θ2) there exists a unique solution (Y, Z,N) of BSDE

dYt = (f(t, 0, 0)− f(t, Yt, σ
∗
tZt))dKt + d〈N〉tgt + Z∗

t dMt + dNt, (3.1)
YT = ξ,

with the norm ‖(Y, Z,N)‖ ≤ R, where R is a constant satisfying the inequality 4‖ξ‖2∞ +

β2R4 ≤ R2, namely R = 2
√
2‖ξ‖∞.

Moreover, if ‖ξ‖∞ + ‖
∫∞
0

|f(s, 0, 0)|dKs‖∞ is small enough then BSDE (2.1) admits a
unique solution.

Proof. We define the mapping (Y, Z,N) = F (y, z, n), n is orthogonal to M , (y, z ·M+n) ∈
S∞
T ×BMO(P ) by the relation

dYt = (f(t, 0, 0)− f(t, yt, σ
∗
t zt))dKt + d〈n〉tgt + Z∗

t dMt + dNt,

YT = ξ. (3.2)

Using the Itô formula for |Yt|2 we obtain that

|Yt|2 = |ξ|2 + 2

∫ T

t

Y ∗
s (f(s, ys, σ

∗
szs)− f(s, 0, 0))dKt

+2

∫ T

t

Y ∗
s d〈n〉sgs −

∫ T

t

trZ∗
sd〈M〉sZs − tr〈N〉tT −

∫ T

t

Y ∗
s Z

∗
sdMs −

∫ T

t

Y ∗
s dNs.

If we take the conditional expectation and use (2.3) and the elementary inequality 2ab ≤
1
4a

2 + 4b2, we get

|Yt|2 + E

(∫ T

t

|σ∗
sZs|2dKs + tr〈N〉tT |Ft

)
≤ ‖ξ‖2 + 1

4
‖Y ‖2∞

+4E2

(∫ T

t

|f(s, ys, σ∗
szs)− f(s, 0, 0)|dKs +

∫ T

t

|gs|dtr〈n〉s|Ft

)
. (3.3)

Thus using condition A), identities

tr〈z ·M〉t = tr

∫ t

0

z∗sd〈M〉szs =
∫ t

0

tr(z∗sσsσ
∗
szs)dKs =

∫ t

0

|σ∗
szs|2dKs (3.4)

and explicit inequalities

1

2
(‖Y ‖2∞ + ‖Z ·M +N‖2BMO) ≤ max(‖Y ‖2∞, ‖Z ·M +N‖2BMO)

≤ ess sup
[[0,T ]]

[
|Yt|2 + E

(∫ T

t

|σ∗
sZs|2dKs + tr〈N〉tT |Ft

)]
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we obtain from (3.3)
1

4
‖Y ‖2∞ +

1

2
‖Z ·M +N‖2BMO

≤ ‖ξ‖2 + 4ess sup
[[0,T ]]

E2

(∫ T

t

|f(s, ys, σ∗
szs)− f(s, 0, 0)|dKt + θ2tr〈n〉tT |Ft

)
(3.5)

≤ ‖ξ‖2 + 16ess sup
[[0,T ]]

E2

(∫ T

t

r2sy
2
sdKs + θ2tr〈z ·M + n〉tT |Ft

)

≤ ‖ξ‖2 + 16|r|42,∞‖y‖4∞ + 16θ4‖z ·M + n‖4BMO.

Therefore
‖Y ‖2∞ + ‖Z ·M +N‖2BMO ≤ 4‖ξ‖2 + 64|r|42,∞‖y‖4∞ + 64θ4‖z ·M + n‖4BMO

≤ 4‖ξ‖2 + β2(‖y‖2∞ + ‖z ·M + n‖2BMO)
2,

where β = 8max(|r|22,∞, θ2). We can pick R such that

4‖ξ‖2 + β2R4 ≤ R2

if and only if ‖ξ‖∞ ≤ 1
4β . For instance R = 2

√
2‖ξ‖∞ satisfies this quadratic inequality.

Therefore the ball

BR = {(Y, Z ·M +N) ∈ S∞ × BMO, N⊥M, ‖Y ‖2∞ + ‖Z ·M +N‖2BMO ≤ R2}
is such that F (BR) ⊂ BR.

Similarly, for (yj , zj · M + nj) ∈ BR, j = 1, 2, using the notations δy = y1 − y2,
δz = z1 − z2, δn = n1 − n2, we can show that

‖δY ‖2∞ + ‖δZ ·M + δN‖2BMO ≤ 4ess sup
[[0,T ]]

E2

(∫ T

t

|f(s, y1s , σ∗
sz

1
s)− f(s, y2s , σ

∗
sz

2
s)|dKs

+

∫ T

t

|gs|dvar(tr〈δn, n1 + n2〉)s|Ft

)

≤ 8ess sup
[[0,T ]]

E

(∫ T

t

(r2s |δys|2 + θ2|σ∗
sδzs|2dKs)|Ft

)

×E

(∫ T

t

(rs(|y1s |+ |y2s |) + θ(|σ∗
sz

1
s |+ |σ∗

sz
2
s |)2dKs)|Ft

)

+θ2E(tr〈δn〉tT |Fs)E(tr〈n1 + n2〉tT |Ft)

Again using the equalities (3.4) we can pass to the norm. Thus

‖δY ‖2∞ + ‖δZ ·M + δN‖2BMO ≤ 8(|r|22,∞‖δy‖2∞ + θ2‖δz ·M‖2BMO)

×(|r|22,∞(‖y1‖2∞ + ‖y2‖2∞) + θ2(‖z1 ·M‖2P + ‖z2 ·M‖2P )
+2θ2‖δn‖2BMO(‖n1‖2BMO + ‖n2‖2BMO)

2).

Since ‖z1 ·M‖, ‖z2 ·M‖ ≤ R, ‖n1‖, ‖n2‖ ≤ R, we get

‖δY ‖2∞ + ‖δZ ·M + δN‖2BMO ≤ 128β2R2(‖δy‖2∞ + ‖δz ·M‖2BMO) + 4β2R2‖δn‖2BMO

≤ 128β2R2(‖δy‖2∞ + ‖δz ·M + δn‖2BMO). (3.6)
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Now we can take R = 2
√
2‖ξ‖∞ < 1

8
√
2β

. This means that ‖ξ‖∞ < 1
32β and F is

contraction on BR. By contraction principle the mapping F admits a unique fixed point,
which is the solution of (3.1). �

From now we suppose that d = 1.

Lemma 1. Let condition A) is satisfied. Then the generator (f̄ , ḡ, ξ̄), where

f̄(t, ȳ, z̄) = e
∫ t
0
αsdKs(f(t, e−

∫ t
0
eαsdKs

ȳ, e−
∫ t
0
eαsdKs

z̄)− f(t, 0, 0))− αtȳ − γ∗
t z̄,

ḡt = e−
∫ t
0
αsdKsgt and ξ̄ = e

∫ T
0

αsdKsξ,

satisfies condition A) with α = 0, γ = 0, r̄t = rte
‖
∫ ∞
0

rsdKs‖∞ and θ̄ = θe‖
∫ T
0

rsdKs‖∞ .
Moreover, (Y, Z,N) is a solution of BSDE (3.1) if and only if

(Ȳt, Z̄t, N̄t) =

(
e
∫ t
0
αsdKsYt, e

∫ t
0
αsdKsZt,

∫ t

0

e
∫ s
0
αudKudNs

)

is a solution w.r.t. measure dP̄ = ET ((γσ−1) ·M)dP of BSDE

dȲt = −f̄(t, Ȳt, σ
∗
t Z̄t)dKt − d〈N̄〉tḡt + Z̄∗

t dM̄t + dN̄t, (3.7)
ȲT = ξ̄,

where M̄t = Mt − 〈(γσ−1) ·M,M〉t.

Proof. Condition A) for (f̄ , ḡ, ξ̄) is satisfied since by (2.4)

|f̄(t, ȳ1, z̄1)− f̄(t, ȳ2, z̄2)| ≤ e
∫ t
0
αsdKs(rt|δȳ|+ θ|δz̄|)(rt(|ȳ1|+ |ȳ2|) + θ(|z̄1|+ |z̄2|))

≤ (r̄t|δȳ|+ θ̄|δz̄|)(r̄t(|ȳ1|+ |ȳ2|) + θ̄(|z̄1|+ |z̄2|)).

On the other hand, using the Itô formula we have

dȲt = e
∫ t
0
αsdKsdYt + αte

∫ t
0
αsdKsYtdKt

= e
∫ t
0
αsdKs(f(t, 0, 0)− f(t, Yt, σ

∗
tZt))dKt + e

∫ t
0
αsdKsd〈N〉tgt

+ e
∫ t
0
αsdKsZ∗

t dMt + e
∫ t
0
αsdKsdNt + αtȲtdKt

Taking into account that

e
∫ t
0
αsdKs(f(t, 0, 0)− f(t, Yt, σ

∗
tZt)) + αtȲt = −f̄(t, Ȳt, σ

∗
t Z̄t)− γtσ

∗
t Z̄t,

e
∫ t
0
αsdKsd〈N〉tgt = d〈N̄〉te−

∫ t
0
αsdKsgt = d〈N̄〉tḡt

and

Z̄ ·M −
∫ ·

0

γtσ
∗
t Z̄tdKt = Z̄ ·M −

∫ ·

0

γtσ
−1
t σtσ

∗
t Z̄tdKt

= Z̄ ·M −
∫ ·

0

γtσ
−1
t d〈M〉tZ̄t = Z̄ ·M − 〈(γ · σ−1) ·M, Z̄ ·M〉 = Z̄ · M̄

we obtain
dȲt = −f̄(t, Ȳt, σ

∗
t Z̄t)dKt − d〈N̄〉tḡt + Z̄tdM̄t + dN̄t.

Here M̄ is a local martingale w.r.t. P̄ by Girsanov theorem. �
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Corollary 1. Let f and g satisfy condition A) and ‖ξ‖∞ ≤ 1
32β exp(−2‖

∫ T

0
rsdKs‖∞).

Then there exist the solution of (3.1) with the norm ‖Y ‖2∞ + ‖Z · M̄ +N‖2
BMO(P̄)

≤ 1
128β2 .

Proof. It is obvious that

‖Y ‖2∞+‖Z ·M̄+N‖2BMO(P̄) ≤
(
‖Ȳ ‖2∞ + ‖Z̄ · M̄ + N̄‖2BMO(P̄)

)
exp

(
2‖

∫ T

0

rsdKs‖∞
)

≤ 8‖ξ̄‖2∞ exp

(
2‖

∫ T

0

rsdKs‖∞
)

≤ 8‖ξ‖2∞ exp

(
4‖

∫ T

0

rsdKs‖∞
)
.

From ‖ξ‖∞ ≤ 1
32β exp(−2‖

∫ T

0
rsdKs‖∞) follows that 8‖ξ‖∞ exp(4‖

∫ T

0
rsdKs‖∞) ≤

1
128β2 . Hence we get ‖Y ‖2∞ + ‖Z · M̄ +N‖2

BMO(P̄)
≤ 1

128β2 . �

Corollary 2. Let generator (f, g, ξ) satisfies conditions B1)–B3) and (Ỹt, Z̃t, Ñt) be a solu-
tion of (3.1). Then BSDE

dŶt = (f(t, Ỹt, σ
∗
t Z̃t)− f(t, Ŷt + Ỹt, σ

∗
t Ẑt + σ∗

t Z̃t))dKt (3.8)

−d(〈N̂〉t + 2〈Ñ , N̂〉t)gt + Ẑ∗
t dMt + dN̂t,

ŶT = ξ̂

satisfy condition A) with −f̂(t, y, z) = f(t, Ỹt, σ
∗
t Z̃t) − f(t, y + Ỹt, z + σ∗

t Z̃t), αt =

fy(t, Ỹt, σ
∗
t Z̃t), γt = fz(t, Ỹt, σ

∗
t Z̃t) and the new probability measure ET (2g · Ñ)dP . More-

over (3.8) admits a unique solution (Ŷt, Ẑt, N̂t) if ‖ξ̂‖∞ ≤ 1
32β exp(−2‖

∫ ·
0
rsdKs‖∞).

Proof. Using a change of measure equation (3.8) reduces to equation of type (3.1). By pre-
vious corollary we obtain the existence and uniqueness of the BSDE. �

Lemma 2. Let conditions B1)–B3) be satisfied and random variables ξ̃ and ξ̂ be such that
max(‖ξ̃‖∞, ‖ξ̂‖∞) ≤ 1

32β e
−2‖

∫ T
0

r2sdKs‖∞ . Then there exist solutions of BSDEs (3.8) and

dỸt = (f(t, 0, 0)− f(t, Ỹt, σ
∗
t Z̃t))dKt − d〈Ñ〉tgt + Z̃∗

t dMt + dÑt, (3.9)

ỸT = ξ̃

and the triple (Y, Z,N) = (Ỹ + Ŷ , Z̃ + Ẑ, Ñ + N̂) satisfies BSDE

dYt = (f(t, 0, 0)− f(t, Yt, σ
∗
tZt))dKt − d〈N〉tgt + Z∗

t dMt + dNt,

YT = ξ̃ + ξ̂.

Proof. Similarly to the Remark from Section 1 we can show that for

f̂(t, y, z) = f(t, Ỹt, σ
∗
t Z̃t)− f(t, y + Ỹt, σ

∗
t z + σ∗

t Z̃t),

αt = fy(t, Ỹt, σ
∗
t Z̃t), γt = fz(t, Ŷt, σ

∗
t Ẑt), the estimate

|f̂(t, y1, z1)− f̂(t, y2, z2)− αtδy − γ∗
t δz|

≤ (rt|δy|+ θ|δz|)(rt(|y1|+ |y2|) + θ(|z1|+ |z2|))
holds.

Now by Lemma 1 and Corollary 2 of Lemma 1 we obtain the solvability of both equations
(3.9), (3.8). �
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Proposition 2. Let f and g satisfy condition B1)–B3) and ξ ∈ L∞. Then BSDE (2.1) admits
a solution (Y, Z ·M +N) ∈ S∞ × BMO.

Proof. An arbitrary ξ ∈ L∞(R) can be represented as sum ξ =
∑m

i=1 ξi with ‖ξi‖∞ ≤
1

32β exp(−2‖
∫ ·
0
rsdKs‖∞). Denote by (Y j , Zj , N j), j = 1, . . . ,m, the solution of

dY j
t = (f(t, Y 0

t + · · ·+ Y j−1
t , σ∗

t (Z
0
t + · · ·+ Zj−1

t ))

− f(t, Y 0
t + · · ·+ Y j

t , σ
∗
t (Z

0
t + · · ·+ Zj

t ))dKt

− d(〈N j〉t + 2〈N j , N0 + · · ·+N j−1〉t)gt + Zj∗
t dMt + dN j

t , (3.10)

Y j
T = ξj ,

Y 0 = 0, Z0 = 0 N0 = 0.

By Corollary 1 we get

‖Y j‖2∞ + ‖Zj ·M j +N j‖2BMO(Pj) ≤
1

128β2
,

where dP j = ET (
∫ ·
0
fz(s, Y

0
s + · · ·+Y j−1

s , σ∗
s (Z

0
s + · · ·+Zj−1

s ))σ−1
s dMs)dP, and M j =

M − 〈fz(·, Y 0 + · · ·+ Y j−1, σ∗(Z0 + · · ·+ Zj−1))σ−1 ·M,M〉.
Using Lemma 2 we get the existence of a solution for BSDE

dȲt = (f(t, 0, 0)− f(t, Ȳt, σ
∗
tZt))dKt − d〈N〉tgt + Z∗

t dMt + dNt,

ȲT = ξ.

Since
∫ T

0
f(t, 0, 0)dKt is bounded we can apply the above argument with f replaced by

f̄(t, y, z) = f(t, y −
∫ t

0
f(s, 0, 0)dKs, z) to get the existence of solution

dȲt = (f(t, 0, 0)− f(t, Ȳt −
∫ t

0

f(s, 0, 0)dKs, σ
∗
tZt))dKt − d〈N〉tgt + Z∗

t dMt + dNt,

ȲT = ξ +

∫ T

0

f(s, 0, 0)dKs.

Obviously, Yt = Ȳt −
∫ t

0
f(s, 0, 0)dKs is a solution of BSDE (2.1), (2.2). �

4. A COMPARISON THEOREM FOR BSDES

Let us consider BSDE (2.1),(2.2) in the case d = 1.

Lemma 3. Let ξ ∈ L∞ and assume that there are positive constants C(f), C(g), increasing
function λ : R+ → R+, bounded on all bounded subsets and a predictable process k ∈
H2(R, 1) such that

|f(t, y, z)| ≤ k2t λ(|y|) + C(f)z2, (4.1)

|g(t)| ≤ C(g). (4.2)

Then the martingale part of any bounded solution of (2.1), (2.2) belongs to the space
BMO(P ).
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Proof. Let Y be a solution of (2.1), (2.2) and there is a constant C > 0 such that

|Yt| ≤ C a.s. for all t.

Applying the Itô formula for exp{βYT }−exp{βYτ} and using the boundary condition YT =
ξ we have

β2

2

∫ T

τ

eβYsZ∗
sd〈M〉sZs +

β2

2

∫ T

τ

eβYsd〈N〉s − β

∫ T

τ

eβYsf(s, Ys, Zs)dKs

− β

∫ T

τ

eβYsg(s)d〈N〉s + β

∫ T

τ

eβYsZ∗
sdMs + β

∫ T

τ

eβYsdNs

= eβξ − eβYτ ≤ eβC , (4.3)

where β is a constant yet to be determined.
If Z ·M and N are square integrable martingales taking conditional expectations in (4.3)

we obtain

β2

2
E

(∫ T

τ

eβYsZ∗
sd〈M〉sZs|Fτ

)
+

β2

2
E

(∫ T

τ

eβYsd〈N〉s|Fτ

)

≤ eβC + βE

(∫ T

τ

eβYs |f(s, Ys, Zs)|dKs|Fτ

)
+ βE

(∫ T

τ

eβYs |g(s)|d〈N〉s|Fτ

)
.

Now if we use the estimates (4.1), (4.2), we get

β2

2
E

(∫ T

τ

eβYsZ∗
sd〈M〉sZs|Fτ

)
+

β2

2
E

(∫ T

τ

eβYsd〈N〉s|Fτ

)

≤ eβC + βλ(C)E

(∫ T

τ

eβYsk2sdKs|Fτ

)

+βC(f)E

(∫ T

τ

eβYs |σ∗
sZs|2dKs|Fτ

)
+ βE

(∫ T

τ

eβYs |g(s)|d〈N〉s|Fτ

)

≤ eβC + βλ(C)E

(∫ T

τ

eβYsk2sdKs|Fτ

)

+βC(f)E

(∫ T

τ

eβYs |Z∗
sd〈M〉sZs|2|Fτ

)
+ C(g)βE

(∫ T

τ

eβYsd〈N〉s|Fτ

)
.

Conditions (4.1) and (4.2) imply that

(
β2

2
− βC(f)

)
E

(∫ T

τ

eβYsZ∗
sd〈M〉sZs|Fτ

)

+

(
β2

2
− βC(g)

)
E

(∫ T

τ

eβYsd〈N〉s|Fτ

)

≤ eβC + βλ(C)E

(∫ T

τ

eβYsk2sdKs|Fτ

)
. (4.4)
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Taking β = 4C, where C = max(C(f), C(g)), from (4.4) we have

4C
2
[
E

(∫ T

τ

eβYsZ∗
sd〈M〉sZs|Fτ

)
+ E

(∫ T

τ

eβYsd〈N〉s|Fτ

)]

≤ e4CC
(
4Cλ(C)‖k‖H + 1

)
.

Since Y ≥ −C, from the latter inequality we finally obtain the estimate

E
(
〈Z ·M〉τT |Fτ

)
+ E

(
〈N〉τT |Fτ

)
≤ e8CC [4Cλ(C)‖k‖H + 1]

4C
2 (4.5)

for any stopping time τ , hence Z ·M,N ∈ BMO.
For general Z · M and N we stop at τn and derive (4.5) with T replaced τn. Letting

n → ∞, the proof is completed. �

Further we use some notations. Let (Y, Z), (Ỹ , Z̃) be two pairs of processes and (f, g, ξ),
(f̃ , g̃, ξ̃) be two triples of generators. We denote:

δf = f − f̃ , δg = g − g̃, δξ = ξ − ξ̃,

∂yf(t, Yt, Ỹt, Zt) ≡ ∂fy(t) =
f(t, Yt, Zt)− f(t, Ỹt, Zt)

Yt − Ỹt

for all j = 1, . . . , n, ∂jf(t, Ỹt, Zt, Z̃t) ≡ ∂jf(t)

=
f(t, Ỹt, Z

1
t , . . . , Z

j−1
t , Zj

t , Z̃
j+1
t , . . . , Z̃n

t )− f(t, Ỹt, Z
1
t , . . . , Z

j−1
t , Z̃j

t , Z̃
j+1
t , . . . , Z̃n

t )

Zj
t − Z̃j

t

,

∇f(t) = (∂1f(t), . . . , ∂nf(t))
∗.

Thus we have

f(t, Yt, Zt)− f(t, Ỹt, Z̃t) = ∂yf(t)δYt +∇f(t)∗δZt. (4.6)

Theorem 2. Let Y and Ỹ be the bounded solutions of SBE (2.1) with generators (f, g, ξ)

and (f̃ , g̃, ξ̃) respectively, satisfying the conditions of Lemma 3.
If ξ ≥ ξ̃ (a.s), f(t, y, z) ≥ f̃(t, y, z) (µK-a.e.), g(t) ≥ g̃(t) (µ〈N〉-a.e.) and f (or f̃)

satisfies the following Lipschitz condition:
L1) for any Y, Ỹ , Z

f(t, Yt, Zt)− f(t, Ỹt, Zt)

Yt − Ỹt

∈ S∞,

L2) for any Z, Z̃ ∈ H2 and any bounded process Y

(σtσ
∗
t )

−1∇f(t, Yt, Zt, Z̃t) ∈ H2(Rn, σ),

then Yt ≥ Ỹt a.s. for all t ∈ [0, T ].

Proof. Taking the difference of the equations (2.1), (2.2) with generators (f, g, ξ) and (f̃ , g̃, ξ̃)
respectively, we have

Yt − Ỹt = Y0 − Ỹ0 −
∫ t

0

[f(s, Ys, Zs)− f(s, Ỹs, Z̃s)]dKs
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−
∫ t

0

[f(s, Ỹs, Z̃s)− f̃(s, Ỹs, Z̃s)]dKs −
∫ t

0

[g(s)− g̃(s)]d〈N〉s

−
∫ t

0

g̃(s)d(〈N〉s − 〈Ñ〉s) +
∫ t

0

(Zs − Z̃s)dMs +Nt − Ñt. (4.7)

Let us define the measure Q by dQ = ET (Λ)dP , where

Λt =

∫ t

0

∇f(s)∗(σsσ
∗
s )

−1dMs +

∫ t

0

g̃(s)d(Ns + Ñs).

By Lemma 3 Z, Z̃ ∈ H2 and N , Ñ are BMO- martingales. Therefore Condition L1), L2)
and (4.2) imply that Λ ∈ BMO and hence Q is a probability measure equivalent to P .

Denote by Λ̄ the martingale part of δY = Y − Ỹ , i.e.,

Λ̄ = (Z − Z̃) ·M +N − Ñ .

Therefore, by Girsanov’s Theorem and by (4.6) the process

δYt +

∫ t

0

(∂yf(s)δYs +∇f(s)∗δZs)dKs +

∫ t

0

δf(s, Ỹs, Z̃s)dKs +

∫ t

0

δg(s)d〈N〉s

= δYt +

∫ t

0

(∂yf(s)δYs + δf(s, Ỹs, Z̃s))dKs

+

∫ t

0

∇f(s)∗(σsσ
∗
s )

−1d〈M〉sδZs +

∫ t

0

δg(s)d〈N〉s

= −
∫ t

0

g̃(s)d(〈N〉s − 〈Ñ〉s) +
∫ t

0

(Zs − Z̃s)dMs +Nt − Ñt = Λ̄t − 〈Λ, Λ̄〉t

is a local martingale under Q. Moreover, since by Lemma 3 N̄ ∈ BMO, Proposition 11 of
[6] implies that

Λ̄t − 〈Λ, Λ̄〉t ∈ BMO(Q).

Thus, using the martingale property and the boundary conditions YT = ξ, ỸT = ξ̃ we have

Yt − Ỹt

= EQ

(
e
∫ T
t

∂yfsdKs(ξ − ξ̃) +

∫ T

t

e
∫ s
t
∂yfudKu(f(s, Ỹs, Z̃s)− f̃(s, Ỹs, Z̃s))dKs|Ft

)

+EQ

(∫ T

t

e
∫ s
t
∂yfudKu(g(s)− g̃(s))d〈N〉s|Ft

)
,

which implies that Yt ≥ Ỹt a.s. for all t ∈ [0, T ]. �

Corollary 3. Let condition A) be satisfied. Then if the solution of (2.1), (2.2) exists, it is
unique.

The proof of Theorem 1 follows now from the last corollary and Proposition 2.

Remark 3. Conditions L1), L2) are satisfied if there is constant C > 0 such that

|f(t, y, z)− f(t, ỹ, z̃)| ≤ C|y − ỹ|+ C|z − z̃|(|z|+ |z̃|)
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and tr(σtσ
∗
t )

−1 ≤ C for all y, ỹ ∈ R, z, z̃ ∈ Rn t ∈ [0, T ]. Conditions L1),L2) are also
fulfilled if f(t, y, z) satisfies the global Lipschitz condition and M ∈ BMO.
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Lect. Notes in Math., Springer, Berlin, N. 721, pp. 204-215.
[7] El Karoui N., Huang S.J., (1997) A general result of existence and uniqueness of backward stochastic differ-

ential equations. Pitman Res. Notes Math. Ser.,364, Longman, Harlow, 27-36.
[8] Hu Y., Imkeller P. and Müller M., (2005), Utility maximization in incomplete markets. Ann. Appl. Probab. 15

, no. 3, 1691-1712.
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L2-APPROXIMATING PRICING UNDER RESTRICTED INFORMATION

M. MANIA, R. TEVZADZE AND T. TORONJADZE

ABSTRACT. We consider the mean-variance hedging problem under partial information in
the case where the flow of observable events does not contain the full information on the un-
derlying asset price process. We introduce a certain type martingale equation and characterize
the optimal strategy in terms of the solution of this equation. We give relations between this
equation and backward stochastic differential equations for the value process of the problem.

Key words and phrases: Semimartingale, incomplete markets, mean-variance hedging, par-
tial information, backward stochastic differential equation.

MSC 2010: 90A09, 60H30, 90C39.

1. INTRODUCTION

We assume that the dynamics of the price process of the asset traded on a market is de-
scribed by a continuous semimartingale S = (St, t ∈ [0, T ]) defined on a filtered probability
space (Ω, F,F = (Ft, t ∈ [0, T ], P ), satisfying the usual conditions, where F = FT and
T < ∞ is the fixed time horizon. Suppose that the interest rate is equal to zero and the asset
price process satisfies the structure condition, i.e., the process S admits the decomposition

St = S0 +Mt +

∫ t

0

λud〈M〉u, 〈λ ·M〉T < ∞ a.s., (1.1)

where M is a continuous F−local martingale and λ is a F-predictable process.
Let us introduce an additional filtration smaller than F

Gt ⊆ Ft, for every t ∈ [0, T ].

The filtration G represents the information that the hedger has at his disposal, i.e., hedging
strategies have to be constructed using only information available in G. We assume that the
filtration G also satisfies the usual conditions.

Let H be a P -square integrable FT -measurable random variable, representing the payoff
of a contingent claim at time T .

We consider the mean-variance hedging problem

to minimize E[(Xx,π
T −H)2] over all π ∈ Π(G), (1.2)

where Π(G) is a class of G-predictable S-integrable processes to be specified later. Here
Xx,π

t = x+
∫ t

0
πudSu is the wealth process starting from initial capital x, determined by the

self-financing trading strategy π ∈ Π(G).
In the case G = F of complete information the mean-variance hedging problem was

introduced by Föllmer and Sondermann [9] in the case when S is a martingale and then

Published in Appl. Math. Optim. 60 (2009), no. 1, 39–70.
73
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developed by several authors for price process admitting a trend (see, e.g., [7], [13], [26],[27],
[25], [11], [12], [1]).

Asset pricing with partial information under various setups has been considered. The
mean-variance hedging problem under partial information was first studied by Di Masi,
Platen and Runggaldier (1995) when the stock price process is a martingale and the prices are
observed only at discrete time moments. For a general filtrations and when the asset price pro-
cess is a martingale this problem was solved by Schweizer (1994) in terms of G-predictable
projections. Pham (2001) considered the mean-variance hedging problem for a general semi-
martingale model, assuming that the observable filtration contains the augmented filtration
FS generated by the asset price process S

FS
t ⊆ Gt, for every t ∈ [0, T ]. (1.3)

In this paper, using the variance-optimal martingale measure with respect to the filtration G
and suitable Kunita-Watanabe decomposition, the theory developed by Gourieroux, Laurent
and Pham (1998) and Rheinländer and Schweizer (1997) was extended to the case of partial
information .

If FS ⊆ G, then the price process is a G-semimartingale and the sharp bracket 〈M〉 is
G-adapted. If G is not containing FS , then S is not a G-semimartingale and the problem is
more involved. At the beginning of Section 3 under mild conditions (see Proposition 3.1)
we derive a ‘forward-backward’ equation which gives a necessary condition of optimality.
In the case when S is a martingale this equation admits an explicit solution and gives the
optimal strategy constructed by Schweizer (1994). We focus our attention to the case when
the filtration G of observable events does not contain the full information about the asset price
process S. In this case this equation is hard to solve and we require the following additional
assumptions:

A) 〈M〉 and λ are G-predictable,
B) any G- martingale is an F-local martingale,
D) there exists a martingale measure for S that satisfies the Reverse Hölder condition (see

definition in Section 2).
Denote by Ŷ and pY - the G-optional and G predictable projections of a process Y . For the

processes of finite variation, by Y p we denote the dual G-predictable projections. Condition
A) implies that

Ŝt = E(St|Gt) = S0 +

∫ t

0

λud〈M〉u + M̂t.

Let

Ht = E[H] +

∫ t

0

hudMu + LH
t

and

Ht = E[H] +

∫ t

0

hG
udM̂u + LH,G

t
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be the Galtchouk-Kunita-Watanabe (GKW) decompositions of Ht = E(H|Ft) with respect
to local martingales M and M̂ , where h, hG are F-predictable process and LH , LH,G are F-
local martingales strongly orthogonal to M and M̂ respectively. We shall use also notations:

ρ2t =
d〈 M̂ 〉t
d〈M〉t

, h̃t =
p(hG)tρ

2
t − pht and H̃ = ĤT −

∫ T

0

h̃t

1− ρ2t
dŜt − x.

We introduce the following martingale equation

ỸT = H̃ −
∫ T

0

1

1− ρ2t

[
λtỸt− + ρ2t ψ̃t

] (
λtd〈M〉t + dM̂t

)
. (1.4)

The solution of this equation is a pair (Ỹ , ψ̃), where Ỹ is a square integrable martingale and
ψ̃ is defined by the GKW decomposition of Ỹ

Ỹt = Ỹ0 +

∫ t

0

ψ̃udM̂u + Lt, 〈 M̂, L〉 = 0. (1.5)

Now we formulate the main result of the paper which is proved in Section 3.
Theorem. Let conditions A), B) and D) be satisfied. Assume also that EH̃2 < ∞ and

ρ2t < 1 for all t ∈ [0, T ]. Then there exists a unique solution (Ỹ , ψ̃) of equation (1.4) and the
strategy π∗ is optimal if and only if it admits the representation

π∗
t =

1

1− ρ2t

(
h̃t + λtỸt− + ρ2t ψ̃t

)
. (1.6)

In Section 4 (see Propositions 4.2 and 4.3), we establish connections between equation
(1.4) and BSDEs for the value process of the problem (1.2) derived in [21], additionally
assuming that

C) the filtration G is continuous, i.e., all G-local martingales are continuous.
It was shown in [21] that the optimal strategy is determined by

π∗
t =

λtVt(1) + ρ2tϕt(1)− X̂π∗

t (λtVt(2) + ρ2tϕt(2))

1− ρ2t + ρ2tVt(2)
, X̂π∗

0 = x, (1.7)

where the triples (V (1), ϕ(1), L(1)) and (V (2), ϕ(2), L(2)) satisfy the following system of
BSDEs

dVt(1) =
(λtVt(2) + ρ2tϕt(2))(λtVt(1) + ρ2tϕt(1))

1− ρ2t + ρ2tVt(2)
d〈M〉t + ϕt(1)dM̂t + dLt(1), (1.8)

VT (1) = H̃.

dVt(2) =
(λtVt(2) + ρ2tϕt(2))

2

1− ρ2t + ρ2tVt(2)
d〈M〉t + ϕt(2) dM̂t + dLt(2), VT (2) = 1, (1.9)

Here L(1) and L(2) are G-local martingales strongly orthogonal to M̂ .
Note that, to construct the optimal strategy (1.6) we need to solve only equation (1.4),

which is easier to solve than equation (1.9), whereas for the construction of the optimal
strategy by (1.7) one should solve equation (1.9) and two linear equations (1.7) and (1.8).
Besides proving the main theorem we don’t need the continuity of the filtration G imposed in
[21]. On the other hand the construction by (1.4), (1.6) does not contain the case of the full
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information, since in this case ρ2 = 1 and the integral in (1.4) is not defined (this case can be
included only by using certain limiting procedures), but the construction (1.7)- (1.9) includes
this case directly.

The relations between these equations are as follows (here we assume that condition C) is
satisfied):
If (Ỹ , ψ̃) is a solution of (1.4) for H equal to strictly positive constant c, then the processes
Ỹt, c−

∫ t

0
π∗
udŜu are strictly positive and the process

Ut =
Ỹt

c−
∫ t

0
π∗
udŜu

,

where π∗ is defined by (1.6), satisfies the BSDE (1.9).
On the other hand, if the triples (V (1), ϕ(1), L(1)) and (V (2), ϕ(2), L(2)) satisfy (1.8)-

(1.9), then the pair (Ỹ , ψ̃), where Ỹt = Vt(1) − X̂π∗

t Vt(2) and ψ̃t = ϕt(1) − Vt(1)π
∗
t −

ϕt(2)X̂
π∗

t (π∗ and X̂π∗

t are defined by (1.7)), is a solution of equation (1.4).
In Section 5, we consider a diffusion market model which consists of two assets S and η,

where St is a state of a process being controlled and ηt is the observation process. Suppose
that St and ηt are governed by

dSt = µt(η)dt+ σt(η)dw
0
t ,

dηt = at(η)dt+ bt(η)dwt,

where w0 and w are Brownian motions with correlation ρ. In this case Ft = FS,η
t and the

flow of observable events is Gt = Fη
t . We give in the case of markovian coefficients solution

of the problem (1.2) in terms of parabolic differential equations (PDE) and an explicit solution
when coefficients and the contingent claim are deterministic.

2. MAIN DEFINITIONS AND AUXILIARY FACTS

Denote by Me(F) the set of equivalent martingale measures for S, i.e., set of probability
measures Q equivalent to P such that S is a F-local martingale under Q.

Let
Me

2(F) = {Q ∈ Me(F) : EZ2
T (Q) < ∞},

where Zt(Q) is the density process (with respect to the filtration F) of Q relative to P .

Remark 2.1. If S is continuous, then the existence of an equivalent martingale measure and
the Girsanov theorem imply that the structure condition (1.1) is satisfied.

Note that the density process Zt(Q) of any element Q of Me(F) is expressed as an
exponential martingale of the form

Et(−λ ·M +N),

where N is a F-local martingale strongly orthogonal to M and Et(X) is the Doleans-Dade
exponential of X .

If the local martingale Zmin
t = Et(−λ ·M) is a true martingale, dQmin/dP = Zmin

T dP
defines an equivalent probability measure called the minimal martingale measure for S.
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Recall that a measure Q satisfies the Reverse Hölder inequality R2(P ) if there exists a
constant C such that

E
(Z2

T (Q)

Z2
τ (Q)

|Fτ

)
≤ C, P − a.s.

for every F-stopping time τ .

Remark 2.2. If there exists a measure Q ∈ Me(F) that satisfies the Reverse Hölder in-
equality R2(P ), then according to Theorem 3.4 of Kazamaki [16] the martingale MQ =
−λ ·M +N belongs to the class BMO and hence −λ ·M also belongs to BMO, i.e.,

E
( ∫ T

τ

λ2
ud〈M〉u|Fτ

)
≤ const (2.1)

for every stopping time τ . Therefore, it follows from Theorem 2.3 of Kazamaki [16] that
Et(−λ·M) is a true martingale. So, condition D) implies that the minimal martingale measure
exists (but Zmin is not necessarily square integrable).

For all unexplained notations concerning the martingale theory used below we refer the
reader to [6], [19], [15].

Let Π(F) be the space of all F-predictable S-integrable processes π such that the stochas-
tic integral

(π · S)t =
∫ t

0

πudSu, t ∈ [0, T ],

is in the S2 space of semimartingales , i.e.,

E

(∫ T

0

π2
sd〈M〉s

)
+ E

(∫ T

0

|πsλs|d〈M〉s
)2

< ∞.

Denote by Π(G) the subspace of Π(F) of G-predictable strategies.

Remark 2.3. Since λ ·M ∈ BMO (see Remark 2.2), it follows from the proof of Theorem
2.5 of Kazamaki [16]

E

(∫ T

0

|πuλu|d〈M〉u
)2

= E〈|π| ·M, |λ| ·M〉2T ≤ 2||λ ·M ||BMOE

∫ T

0

π2
ud〈M〉u < ∞.

Therefore, under condition D) the strategy π belongs to the class Π(G) if and only if
E
∫ T

0
π2
sd〈M〉s < ∞.

Define J2
T (F) and J2

T (G) as spaces of terminal values of stochastic integrals, i.e.,

J2
T (F) = {(π · S)T : π ∈ Π(F)}, J2

T (G) = {(π · S)T : π ∈ Π(G)}.
Let us make a comment on condition B).

Remark 2.4. Condition B) is satisfied if and only if the σ-algebras Ft and GT are condi-
tionally independent given Gt for all t ∈ [0, T ] (see Theorem 9.29 from Jacod 1978). Note
that one can weaken this condition imposing that any G-martingale is a A- local martingale,
where A is the augmented filtration generated by FS and G. This condition is automatically
satisfied if FS

t ⊆ Gt. In this case instead of (1.1) one should use the decomposition

St = S0 +

∫ t

0

pλud〈M〉u +Nt, (2.2)
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where

Nt = Mt +

∫ t

0

[λu − pλu]d〈N〉u (2.3)

is a A-local martingale and pλ is an A−predictable projection of λ.

Now we recall some known assertions from the filtering theory.
Let A = (At, t ∈ [0, T ]) be a RCLL process and there is a sequence (τn, n ≥ 1) of

G-stopping times such that E
∫ τn
0

|dAu| < ∞ for all n ≥ 1. Then there exists a unique
G-predictable process Ap of finite variation (see Jacod 1978), called a G-dual predictable
projection of A such that

E(At|Gt)−Ap
t is a G − local martingale.

Denote by M2
loc(G) the class of locally square integrable G-martingales.

For reader’s convenience, we give the proof of the following assertion, which is proved
similarly to [19].

Proposition 2.1. If conditions A) and B) are satisfied, then for any mG ∈ M2
loc(G)

M̂t = E(Mt|Gt) =

∫ t p

0

(
d〈M,mG〉
d〈mG〉

)

u

dmG
u +NG

t , (2.4)

where NG ∈ M2
loc(G) and is strongly orthogonal to mG .

Proof. Condition A) and the continuity of M imply that M̂ ∈ M2
loc(G). Therefore M̂

admits the GKW decomposition

M̂t = E(Mt|Gt) =

∫ t

0

fudm
G
u +NG

t , (2.5)

where fu = d〈M̂,mG〉u
d〈mG〉u . Thus, it is sufficient to show that d〈mG〉tdP -a.e.

d〈 M̂,mG〉u
d〈mG〉u

=
p
(
d〈M,mG〉
d〈mG〉

)

u

. (2.6)

By condition B) mG ∈ M2
loc(G) implies mG ∈ M2

loc(F) and the process Mtm
G
t −〈M,mG〉t

is a F-local martingale. It follows from condition A) that Mtm
G
t and 〈M,mG〉t are G-

locally integrable. Therefore the processes E(Mtm
G
t −〈M,mG〉t|Gt) and E(〈M,mG〉t|Gt)−

〈M,mG〉pt are G-local martingales and hence the process

E(Mtm
G
t |Gt)− 〈M,mG〉pt (2.7)

is also a G- local martingale.
On the other hand E(Mtm

G
t |Gt) = M̂tm

G
t and the process M̂tm

G
t − 〈 M̂,mG〉t is a

G-local martingale. Therefore the process

E(Mtm
G
t |Gt)− 〈M̂,mG〉t

is also a G- local martingale. This, together with (2.7), implies that

〈 M̂,mG〉t = 〈M,mG〉pt . (2.8)
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But

〈M,mG〉p =

(∫ t

0

d〈M,mG〉u
d〈mG〉u

d〈mG〉u
)p

=

∫ t p

0

(
d〈M,mG〉
d〈mG〉

)

u

d〈mG〉u,

which proves equality (2.6) and (2.4) holds. �

Corollary 2.1. For any π ∈ Π(G)

̂(π · S)t = E

(∫ t

0

πudSu|Gt

)
=

∫ t

0

πudŜu. (2.9)

Proof. It follows from Proposition 2.1 that for any G-predictable, M -integrable process π
and any mG ∈ M2

loc(G) that

〈 ̂(π ·M),mG〉 =
∫ t p

0

(
d〈M,mG〉
d〈mG〉

)

u

πud〈mG〉u =

∫ t

0

πud〈M̂,mG〉u = 〈π · M̂,mG〉t.

Hence, for any G-predictable, M -integrable process π

̂(π ·M)t = E

(∫ t

0

πsdMs|Gt

)
=

∫ t

0

πsdM̂s. (2.10)

Since π, λ and 〈M〉 are G-predictable, from (2.10) we obtain (2.9).

Remark 2.5. In particular, equality (2.8) implies that

〈M, M̂ 〉p = 〈 M̂ 〉 (2.11)

and
〈M,L〉p = 0 (2.12)

if L is a G-local martingale orthogonal to M̂ .

Lemma 2.1. Let conditions A), B) be satisfied and M̂t = E(Mt|Gt). Then 〈 M̂ 〉 is abso-
lutely continuous w.r.t 〈M〉 and

ρ2t =
d〈 M̂ 〉t
d〈M〉t

≤ 1.

Moreover, if A = {(ω, t) : ρ2t = 1} then a.s. for all t
∫ t

0

IA(u)dMu =

∫ t

0

IA(u)dM̂u. (2.13)

Proof. By (2.10) for any bounded G-predictable process f

E

∫ t

0

f2
s d〈 M̂ 〉s = E

(∫ t

0

fsdM̂s

)2

= E

(
E

(∫ t

0

fsdMs

∣∣Gt

))2

≤ EE

((∫ t

0

fsdMs

)2 ∣∣Gt

)

= E

(∫ t

0

fsdMs

)2

= E

∫ t

0

f2
s d〈M〉s (2.14)
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which implies that 〈M̂〉 is absolutely continuous w.r.t 〈M〉, i.e.,

〈 M̂ 〉t =
∫ t

0

ρ2sd〈M〉s

for a G-predictable process ρ. Moreover (2.14) implies that the process 〈M〉 − 〈 M̂ 〉 is
increasing and hence ρ2 ≤ 1 µ〈M〉 a.e.

Let us show now the equality (2.13). By definition of the set A,
∫ t

0
IA(u)d〈M〉u =∫ t

0
IA(u)d〈M̂〉u. Since the set A is G-predictable and 〈M, M̂〉p = 〈M̂〉, by Proposition 2.2

E

(∫ t

0

IA(u)dMu −
∫ t

0

IA(u)dM̂u

)2

= E

∫ t

0

IA(u)d〈M − M̂ 〉u

= E

∫ t

0

IA(u)d〈M − M̂ 〉pu = E

∫ t

0

IA(u)d〈M〉u − E

∫ t

0

IA(u)d〈 M̂ 〉u = 0.

�

Corollary 2.2. If ρ2t = 1 for all t, then M = M̂ and therefore M is a G-local martingale.

We shall use the following Lemma proved in [5].

Lemma 2.2. Let N = (Nt, t ∈ [0, T ]) be a square integrable martingale such that N0 > 0.
Let τ = inf{t : Nt ≤ 0} ∧ T 1) be a predictable stopping time announced by a sequence of
stopping times (τn;n ≥ 1). Then

E

(
N2

T

N2
τn

∣∣Gτn

)
→ ∞ on the set (Nτ = 0)

Proof.

1 = E

(
NT

Nτn

∣∣Gτn

)
= E

(
NT

Nτn

I(Nτ=0)

∣∣Gτn

)

≤ E
1
2

(
N2

T

N2
τn

∣∣Gτn

)
E

1
2

(
I(Nτ=0)|Gτn

)
. (2.15)

By the Levy theorem limn→∞ E
(
I(Nτ=0)|Gτn

)
= I(Nτ=0) is equal to 0 on the set (Nτ = 0).

Therefore it follows from (2.15) that E
(

N2
T

N2
τn

∣∣Gτn

)
→ ∞ on (Nτ = 0). �

3. MEAN-VARIANCE HEDGING AND FORWARD-BACKWARD EQUATION

Let Xx,π∗

t = x +
∫ t

0
πsdSs be the wealth process corresponding to the optimal strategy

π∗ and initial capital x. Without loss of generality we assume that x = 0 and denote by
X(π∗) ≡ X∗ = X0,π∗

. Let Ht = E[H|Ft], cH = E[H] and let

Ht = E(H|Ft) = cH +

∫ t

0

hudMu + LH
t (3.1)

be the Galtchouk-Kunita-Watanabe (GKW) decomposition of Ht, where LH is an F-martin-
gale orthogonal to M and h is F-predictable M -integrable process.

1It is assumed that inf ∅ = ∞ and a ∧ b denotes min{a, b}
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In the following proposition we don’t need the continuity of the process S which we
assumed throughout the paper.

Proposition 3.1. Let S be a special semimartingale satisfying the structure condition (1.1)
and M is a locally square integrable F-martingale. If π∗ ∈ Π(G) is the optimal strategy of
the problem (1.2), then d〈M〉tdP -a.e.

π∗
t =

d
(∫ t

0
[hu + ψu + λuHu + λuYu − λuX

∗
u]d〈M〉u

)p

d〈M〉pt
, (3.2)

where the triple (Y, ψ,N), 〈N,M〉 = 0 is a solution of BSDE

dYt = π∗
t λtd〈M〉t + ψtdMt + dNt, YT = 0. (3.3)

In particular, if 〈M〉 is G-predictable then d〈M〉tdP -a.e.

π∗
t = pht +

pψt +
p
(
λ(H. + Y −X∗)

)
t
. (3.4)

Proof. The variational principle gives that

E(H −XT (π
∗))XT (π) = 0, ∀π ∈ Π(G).

Since π∗ ∈ Π(G) we have that E
( ∫ T

0
π∗
uλud〈M〉u

)2
< ∞ and by the GKW decomposition

−
∫ T

0

π∗
uλud〈M〉u = c+

∫ T

0

ψudMu +NT , 〈M,N〉 = 0, (3.5)

where ψ · M and N are square integrable martingales. Using the martingale property, it
follows from (3.5) that the triple (Y, ψ,N), where

Yt = E

(∫ T

t

π∗
uλud〈M〉u|Ft

)

and ψ,N are defined by (3.5), satisfies the BSDE

Yt = Y0 +

∫ t

0

π∗
uλud〈M〉u +

∫ t

0

ψudMu +Nt, YT = 0. (3.6)

Note that Y0 = c = E
∫ T

0
π∗
uλud〈M〉u.

Therefore by (3.1) and (3.5) we have

E(H −XT (π
∗))XT (π)

= E

(
−
∫ T

0

π∗
t λtd〈M〉t −

∫ T

0

π∗
t dMt +H

)(∫ T

0

πtdSt

)

= E

(
Y0 +

∫ T

0

ψtdMt +NT −
∫ T

0

π∗
t dMt +H

)(∫ T

0

πtdSt

)

= E

(
Y0 +NT +

∫ T

0

(ψt − π∗
t ) dMt +H

)(∫ T

0

πtλtd〈M〉t
)

(3.7)

+ E

(
Y0 +NT +

∫ T

0

(ψt − π∗
t ) dMt + cH
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+

∫ T

0

htdMt + LH
T

)(∫ T

0

πtdMt

)
= 0. (3.8)

Using the formula of integration by parts in (3.7) and properties of mutual characteristics
of martingales in (3.8) we obtain the equality

E

∫ T

0

(
Y0 +Nt +

∫ t

0

(ψu − π∗
u) dMt +Ht

)
πtλtd〈M〉t

+ E

∫ T

0

(ψt + ht − π∗
t )πtd〈M〉t = 0.

Inserting the solution Y of BSDE (3.6) in the latter equality gives

E

∫ T

0

(
Y0 +Ht + Yt −

∫ t

0

λuπ
∗
ud〈M〉u −

∫ t

0

π∗
udMt

)
πtλtd〈M〉t

+E

∫ T

0

(ψt + ht − π∗
t )πtd〈M〉t

= E

∫ T

0

(
(Ht + Yt −X∗

t )λt + ψt + ht − π∗
t

)
πtd〈M〉t = 0.

It follows from the latter equality that

E

∫ T

0

πtd

(∫ t

0

π∗
ud〈M〉u

)

= E

∫ T

0

πtd

(∫ t

0

[hu + ψu + λuHu + λuYu − λuX
∗
u]d〈M〉u

)

and using the properties of G-dual projections

E

∫ T

0

πtπ
∗
ud〈M〉pu = E

∫ T

0

πtd
( ∫ t

0

[hu + ψu + λuHu + λuYu − λuX
∗
u]d〈M〉u

)p
.

By arbitrariness of π ∈ Π(G) we get
∫ t

0

π∗
ud〈M〉pu =

(∫ t

0

[hu + ψu + λuHu + λuYu − λuX
∗
u]d〈M〉u

)p

. (3.9)

It is evident that if A � B, then Ap � Bp. Therefore, taking the Radon-Nicodym derivatives
in (3.9) equality (3.2) follows. It is also evident that if 〈M〉 is G-predictable, then

d(
∫ t

0
[hu + ψu + λuHu + λuYu − λuX

∗
u]d〈M〉u)p

d〈M〉pt
= pht +

pψt +
p
(
λ(H. + Y −X∗)

)
t
,

which gives (3.4). �

Corollary 3.1 (Schweizer [28]). If the price process S is a locally square integrable martin-
gale, then the optimal strategy is of the form

π∗
t =

d
( ∫ t

0
hud〈M〉u

)p
d〈M〉pt

.

Proof. It follows from (3.2) and (3.3), since in this case λ = 0 and the triply (Y = 0, ψ = 0,
L = 0) satisfies the BSDE (3.3). �
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We shall use also the GKW decomposition of Ht = E(H|Ft) with respect to the local
martingale M̂

Ht = cH +

∫ t

0

hG
udM̂u + LH,G

t . (3.10)

Here hG is a F-predictable process and LH,G is a F- local martingale strongly orthogonal
to M̂ .

It follows from Proposition 2.1 (applied for mG = M̂ ) and Lemma 2.1 that

〈E(H|G.), M̂〉t =
∫ t

0

p(hG)ud〈M̂〉u =

∫ t

0

p(hG)uρ
2
ud〈M〉u. (3.11)

Corollary 3.2. Let conditions A) and B) be satisfied. Then (3.2), (3.3) is equivalent to the
system of Forward-Backward equations

dX̂∗
t =

(
pht +

d〈M̂,m〉t
d〈M〉t

+ λt(Ĥt− + Ŷt− − X̂∗
t−)

)
dŜt, X̂∗

0 = 0, (3.12)

dŶt = λt

(
pht +

d〈M̂,m〉t
d〈M〉t

+ λt(Ĥt− + Ŷt− − X̂∗
t−)

)
d〈M〉t + dmt, ŶT = 0. (3.13)

Proof. Since λ, π∗, 〈M〉 are G-adapted,

p(λH. + λY − λX∗)t = λt(Ĥt− + Ŷt− − X̂∗
t−)

and

mt ≡
∫ t

0

ψsdMs +Nt

is a G-martingale (this follows from (3.6) and condition B), since under this condition Yt is
also equal to E(

∫ T

t
π∗
uλud〈M〉u|Gt)). Therefore, by (2.6)

ψ̂t =
p
(
d〈M,m〉
d〈M〉

)

t

=
d〈M̂,m〉t
d〈M〉t

and it follows from (3.4) and (3.3) that the optimal strategy π∗ satisfies the system

π∗
t = pht +

d〈M̂,m〉t
d〈M〉t

+ λt(Ĥt− + Ŷt− − X̂∗
t−), (3.14)

dŶt = π∗
t λtd〈M〉t + dmt, ŶT = 0. (3.15)

If we insert the expression (3.14) for π∗ in (3.15) and then integrate both parts of equa-
tion (3.14) with respect to Ŝ, we obtain the system of Forward–Backward equations (3.12),
(3.13). �

Remark 3.1. If we use the GKW decomposition of m with respect to M̂ and filtration G

mt =

∫ t

0

ψ̃udM̂u + L̃t, 〈M̂, L̃〉 = 0,
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then by (2.6) ψ̂t = ρ2t ψ̃t and one can write the Forward-Backward equations (3.12), (3.13) in
the form

dX̂∗
t =

(
pht + ρ2t ψ̃t + λt(Ĥt− + Ŷt− − X̂∗

t−)
)
dŜt, X̂∗

0 = 0

dŶt = λt

(
pht + ρ2t ψ̃t + λt(Ĥt− + Ŷt− − X̂∗

t−)
)
d〈M〉t + ψ̃tdM̂t + dL̃t, ŶT = 0.

From now on we assume E) ρ2t < 1 for all t ∈ [0, T ].

Let us introduce the operator AY defined for any Y ∈ M2(G, P ) by

(AY )t = E

(∫ T

0

1

1− ρ2u

[
λuYu− + ρ2uψu

] (
λud〈M〉u + dM̂u

) ∣∣∣∣Gt

)
.

We shall use the following notations;

h̃t =
pht − phG

t ρ
2
t , H̃ = ĤT −

∫ T

0

h̃t

1− ρ2t
dŜt. (3.16)

Let us consider equation

ỸT = H̃ −
∫ T

0

1

1− ρ2t

[
λtỸt− + ρ2t ψ̃t

] (
λtd〈M〉t + dM̂t

)
, (3.17)

which can be written in the form ỸT = H̃ − (AỸ )T .

Theorem 3.1. Let conditions A), B) and E) be satisfied and let EH̃2 < ∞. Then the equation
(3.17) admits a unique solution Ỹ ∈ M2(G, P ) satisfying E|ỸT |2 ≤ E|H̃|2.
Proof. We need only to show that A is a non-negative operator. Indeed, for Yt = c +∫ t

0
ϕsdM̂s + Lt, 〈M̂, L〉 = 0 we have

(Y,AY ) = E

(
YT

∫ T

0

1

1− ρ2t
Yt−λ

2
td〈M〉t + YT

∫ T

0

1

1− ρ2t
Yt−λtdM̂t

+ YT

∫ T

0

ρ2t
1− ρ2t

ϕtλtd〈M〉t + YT

∫ T

0

ρ2t
1− ρ2t

ϕtdM̂t

)
.

Since 〈Y, M̂〉t =
∫ t

0
ϕuρ

2
ud〈M〉u and EYT

∫ T

0
gud〈M〉u = E

∫ T

0
Yugud〈M〉u for any G-

predictable process g, we obtain that

(Y,AY ) = E

(∫ T

0

1

1− ρ2t
Y 2
t−λ

2
td〈M〉t +

∫ T

0

1

1− ρ2t
Yt−λtϕtd〈M̂〉t

+

∫ T

0

ρ2t
1− ρ2t

Yt−ϕtλtd〈M〉t +
∫ T

0

ρ2t
1− ρ2t

ϕ2
td〈M̂〉t

)

= E

(∫ T

0

1

1− ρ2t
Y 2
t−λ

2
td〈M〉t +

∫ T

0

ρ2t
1− ρ2t

Yt−λtϕtd〈M〉t

+

∫ T

0

ρ2t
1− ρ2t

Yt−ϕtλtd〈M〉t +
∫ T

0

ρ4t
1− ρ2t

ϕ2
td〈M〉t

)

= E

∫ T

0

1

1− ρ2t

(
Yt−λt + ρ2tϕt

)2
d〈M〉t ≥ 0.
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Thus Y +AY is a strictly positive operator, (Id+A)−1 is bounded with the norm less than
one and Y = (Id+A)−1H̃ is a unique solution of (3.17). �

Remark 3.2. Condition EH̃2 < ∞ is satisfied if EH2 < ∞ and ρ2t ≤ 1−ε for all t ∈ [0, T ],
for some ε > 0.

Remark 3.3. If (Ỹ , ψ̃) is a solution of equation (3.17), then it follows from the proof of
Theorem 3.1 that

E

∫ T

0

1

1− ρ2t

(
Ỹt−λt + ρ2t ψ̃t

)2

d〈M〉t = (Ỹ , AỸ ) = EỸT H̃ − EỸ 2
T < ∞. (3.18)

Theorem 3.2. Let conditions A), B), D) and E) be satisfied, EH̃2 < ∞ and
E
∫ T

0
h̃2
u(1− ρ2u)

−1d〈M〉u < ∞. Then the strategy π∗ is optimal if and only if it admits the
representation

π∗
t =

1

1− ρ2t

(
h̃t + λtỸt− + ρ2t ψ̃t

)
, (3.19)

where the pair (Ỹ , ψ̃) satisfies equation (3.17).

Proof. Let us show that if the strategy π∗ is optimal, then it is of the form (3.19). By Propo-
sition 2.1 X̂t(π

∗) =
∫ t

0
π∗
sλsd〈M〉s +

∫ t

0
π∗
sdM̂s. Introducing notations

Ỹt = Ŷt + Ĥt − X̂t(π
∗), m̃t = mt + Ĥt −

∫ t

0

π∗
sdM̂s (3.20)

(note that Ỹ = m̃ by (3.15)) we have

π∗
t = pht +

d〈M̂, m̃〉t
d〈M〉t

+ π∗
t

d〈M̂〉t
d〈M〉t

− d〈M̂, Ĥ〉t
d〈M〉t

+ λtỸt−,

dỸt = dm̃t, ỸT = ĤT − X̂T (π
∗),

which gives (since ρ2t < 1 for all t)

π∗
t =

1

1− ρ2t

[
pht −

d〈M̂, Ĥ〉t
d〈M〉t

+
d〈M̂, Ỹ 〉t
d〈M〉t

+ λtỸt−

]
, (3.21)

ỸT = ĤT − X̂T (π
∗). (3.22)

Integrating (3.21) with respect to Ŝ

X̂T (π
∗) =

∫ T

0

1

1− ρ2t

[
pht −

d〈M̂, Ĥ〉t
d〈M〉t

+
d〈M̂, Ỹ 〉t
d〈M〉t

+ λtỸt−

]
dŜt.

Since d〈M̂,Ĥ〉t
d〈M〉t = phG

t ρ
2
t , inserting the latter equality into (3.22) and taking in mind (3.16),

we obtain the equation for the martingale Ỹ

ỸT = H̃ −
∫ T

0

1

1− ρ2t

[
d〈M̂, Ỹ 〉t
d〈M〉t

+ λtỸt−

](
λtd〈M〉t + dM̂t

)
. (3.23)
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We remark that if Ỹt = Ỹ0 +
∫ t

0
ψ̃sdM̂s + L̃t is the GKW decomposition of Ỹ then (3.23)

can be rewritten as (3.17). Thus, if the optimal strategy π∗ exists, then the pair (Ỹ , ψ̃), where
Ỹ is defined by (3.20), satisfies equation (3.17) and by (3.21) π∗ is of the form (3.19).

Let us show now that if the strategy π∗ is of the form (3.19), then it is optimal. Let first
verify that π∗ ∈ Π(G). Since by (3.17) and (3.16)

∫ T

0

π∗
udŜu =

∫ T

0

1

1− ρ2t

[
λtỸt− + ρ2t ψ̃t + h̃t

] (
λtd〈M〉t + dM̂t

)
= ĤT − ỸT ,

it follows from Theorem 3.1 that E
( ∫ T

0
π∗
udŜu

)2
< ∞. Therefore,

E

(∫ T

0

π∗
udSu

)2

= E

(∫ T

0

π∗
udŜu +

∫ T

0

π∗
ud(M̂u −Mu)

)2

≤ 2E

(∫ T

0

π∗
udŜu

)2

+ 2E

∫ T

0

(π∗
u)

2d〈M̂ −M〉u < ∞,

since it follows from (2.11) and (3.18) that

E

∫ T

0

(π∗
u)

2d〈M̂ −M〉u = E

∫ T

0

(π∗
u)

2d〈M̂ −M〉pu

= E

∫ T

0

(π∗
u)

2(1− ρ2u)d〈M〉u ≤ 2E

∫ T

0

h̃2
u

1− ρ2u
d〈M〉u

+2E

∫ T

0

1

1− ρ2u
(λuỸu− + ρ2uψ̃u)

2d〈M〉u < ∞.

Thus E
( ∫ T

0
π∗
udSu

)2
< ∞ and by condition D) and Theorem 4.9 from [2] (see also [4])

E

∫ T

0

(π∗
u)

2〈M〉u ≤ const E

(∫ T

0

π∗
udSu

)2

< ∞ (3.24)

and π∗ ∈ Π(G) by Remark 2.3.
By the variational principle it is sufficient to show that

E

(
H −

∫ T

0

π∗
udSu

)(∫ T

0

πudSu

)
= 0, ∀π ∈ Π(G). (3.25)

From equation (3.22) we have that

−
∫ T

0

π∗
uλud〈M〉u = ỸT − ĤT +

∫ T

0

π∗
udM̂u.

Therefore

E

(
H −

∫ T

0

π∗
udSu

)(∫ T

0

πudSu

)

= E

(
ỸT +H − ĤT +

∫ T

0

π∗
ud(M̂u −Mu)

)(∫ T

0

πuλud〈M〉u +

∫ T

0

πudMu

)
.
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Since λ and 〈M〉 are G-adapted

E
(
H − ĤT

)(∫ T

0

πuλud〈M〉u
)

= 0

and by Proposition 2.1

E

∫ T

0

π∗
ud(M̂u −Mu)

(∫ T

0

πuλud〈M〉u
)

= E

∫ T

0

πuλud〈M〉uE
(∫ T

0

π∗
ud(M̂u −Mu)|GT

)
= 0.

Since Ỹ is a martingale

EỸT

(∫ T

0

πuλud〈M〉u
)

= E

∫ T

0

πuλuỸud〈M〉u. (3.26)

Using the GKW decomposition for Ỹt and relations (2.11), (2.12)

EỸT

∫ T

0

πudMu = E

∫ T

0

πuψ̃ud〈M, M̂〉u = E

∫ T

0

πuψ̃uρ
2
ud〈M〉u. (3.27)

Using decompositions (3.1), (3.10) for H , projection theorem and again relations (2.11),
(2.12)

E(H − ĤT )

(∫ T

0

πudMu

)
= E

∫ T

0

πuhud〈M〉u − E

∫ T

0

πuh
G
ud〈M, M̂〉u

= E

∫ T

0

πuh̃ud〈M〉u. (3.28)

Taking the sum of right-hand sides of (3.26), (3.27) and (3.28) we obtain

E

∫ T

0

πuλuỸud〈M〉u + E

∫ T

0

πuψ̃uρ
2
ud〈M〉u + E

∫ T

0

πuh̃ud〈M〉u

= E

∫ T

0

πu(h̃u + λuỸu + ψ̃uρ
2
u)d〈M〉u

= E

∫ T

0

πuπ
∗
u(1− ρ2u)d〈M〉u, (3.29)

since π∗ is of the form (3.19). Finally,

E

∫ T

0

π∗
ud(M̂u −Mu)

∫ T

0

πudMu = E

∫ T

0

π∗
uπud〈M̂,M〉u − E

∫ T

0

π∗
uπud〈M〉u

= −E

∫ T

0

πuπ
∗
u(1− ρ2u)d〈M〉u,

which, together with (3.29), implies that (3.25) is fulfilled and hence π∗ is optimal. �
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Remark 3.4. Theorem 3.2 remains true if instead of condition D) we assume that: λ ·M ∈
BMO and ρ2t ≤ 1− ε for all t ∈ [0, T ], for some ε > 0. Indeed, in the proof of Theorem 3.2
condition D) is used only to show that E

∫ T

0
(π∗

u)
2〈M〉u < ∞. But if ρ2t ≤ 1− ε, then

E

∫ T

0

(π∗
u)

2〈M〉u = E

∫ T

0

1

(1− ρ2t )
2

(
h̃t + Ỹtλt + ρ2t ϕ̃t

)2

d〈M〉t

≤ 1

ε
E

∫ T

0

1

1− ρ2t

(
h̃t + Ỹtλt + ρ2t ϕ̃t

)2

d〈M〉t < ∞

according to Remarks 3.2 and 3.3.

4. RELATIONS TO BSDES FOR THE VALUE PROCESS

In this section we express the solution of equation (3.23) in terms of the value process of
the problem (1.2) and show that equation (3.23) is equivalent to the BSDE derived in [21].

To this end we consider equation

ỸT = ζ −
∫ T

τ

1

1− ρ2t

(
λtỸt + ρ2t ψ̃t

)
dŜt (4.1)

for any stopping time τ ≤ T . Similarly to Theorem 3.1 one can show that if Eζ2 < ∞,
then there exists a unique solution (Ỹ , ψ̃) of (4.1), where Ỹ is a square integrable martin-
gale. Throughout this section we assume that conditions A)-E) are fulfilled. Thus, unlike to
previous sections we also assume the continuity of the filtration G.

Lemma 4.1. Let (Ỹ τ , ψ̃τ ) and (Ỹ , ψ̃) be solutions of equations

ỸT = c−
∫ T

0

1

1− ρ2t

(
λtỸt + ρ2t ψ̃t

)
dŜt (4.2)

and

Ỹ τ
T = 1−

∫ T

τ

1

1− ρ2u
(λuỸ

τ
u + ρ2uψ̃

τ
u)dŜu, (4.3)

respectively. Let

π̃u =
1

1− ρ2u
(λuỸu + ρ2uψ̃u), π̃τ

u =
1

1− ρ2u
(λuỸ

τ
u + ρ2uψ̃

τ
u).

Then

Ỹt = Ỹ τ
t (c−

∫ τ

0

π̃udŜu), ψ̃t = ψ̃τ
t (c−

∫ τ

0

π̃udŜu),

π̃t = π̃τ
t (c−

∫ τ

0

π̃udŜu), t ≥ τ. (4.4)

Proof. Multiplying both parts of equation (4.3) by c−
∫ τ

0
π̃udŜu we get

Ỹ τ
T (c−

∫ τ

0

π̃udŜu) = c−
∫ τ

0

π̃udŜu

−
(
c−

∫ τ

0

π̃udŜu

)∫ T

τ

1

1− ρ2u
(λuỸ

τ
u + ρ2uψ̃

τ
u) dŜu.
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Since c−
∫ τ

0
π̃udŜu is Gτ -measurable, using properties of stochastic integrals we have

Ỹ τ
T (c−

∫ τ

0

π̃udŜu) = c−
∫ τ

0

π̃udŜu

−
∫ T

τ

1

1− ρ2u

(
λuỸ

τ
u (c−

∫ τ

0

π̃udŜu) + ρ2uψ̃
τ
u(c−

∫ τ

0

π̃udŜu)

)
dŜu.

On the other hand,

ỸT = c−
∫ τ

0

π̃udŜu −
∫ T

τ

1

1− ρ2t

(
λtỸt + ρ2t ψ̃t

)
dŜt

and relations (4.4) follow from the uniqueness of a solution of equation (4.1) with ζ = c −∫ τ

0
π̃udŜu. �

Let us define the process

Ṽt = E

[(
1−

∫ T

t

1

1− ρ2u
(λuỸ

t
u + ρ2uψ̃

t
u) dŜu

)2

+

∫ T

t

1

1− ρ2u
(λuỸ

t
u + ρ2uψ̃

t
u)

2 d〈M〉u|Gt

]
.

Lemma 4.2. Ṽt > 0, a.s. for all t ∈ [0, T ] and the process

Ṽt(c−
∫ t

0

π̃udSu)
2 +

∫ t

0

π̃2
u(1− ρ2u)d〈M〉u

is a martingale.

Proof. It is evident that Ṽt is non-negative. Let us show that it is strictly positive. Assume
that there exist t ∈ [0, T ], B ∈ Gt such that P (B) > 0 and

E

[(
1−

∫ T

t

1

1− ρ2u
(λuỸ

t
u + ρ2uψ̃

t
u) dŜu

)2

+

∫ T

t

1

1− ρ2u
(λuỸ

t
u + ρ2uψ̃

t
u)

2 d〈M〉u|Gt

]
IB = 0.

This implies that

IB −
∫ T

t

IBπ̃
t
udŜu = 0, (4.5)

∫ T

t

IBπ̃
t2
u (1− ρ2u)d〈M〉u = 0. (4.6)

Since ρu < 1, it follows from (4.6) that
∫ T

t
IBπ̃

t
udŜu = 0. Therefore, from (4.5) we obtain

IB = 0 a.s., which gives a contradiction. Thus P (B) = 0 and Ṽ is strictly positive. Let us
check now the martingale property. Using elementary properties of conditional expectations
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and stochastic integrals it follows from Lemma 4.1 that

Ṽt(c−
∫ t

0

π̃udŜu)
2 = E

[(
c−

∫ t

0

π̃udŜu − (c−
∫ t

0

π̃udŜu)

∫ T

t

π̃t
u dŜu

)2

+ (c−
∫ t

0

π̃udŜu)
2

∫ T

t

(1− ρ2u)|π̃t
u|2 d〈M〉u|Gt

]

= E

[(
c−

∫ t

0

π̃udŜu −
∫ T

t

(c−
∫ t

0

π̃udŜu)π̃
t
u dŜu

)2

+

∫ T

t

(1− ρ2u)|(c−
∫ t

0

π̃udŜu)π̃
t
u|2 d〈M〉u|Gt

]

= E

[(
c−

∫ t

0

π̃udŜu −
∫ T

t

π̃udŜu

)2

+

∫ T

t

(1− ρ2u)π̃
2
ud〈M〉u|Gt

]
.

Therefore, for any t ∈ [0, T ]

Ṽt(c−
∫ t

0

π̃udSu)
2 +

∫ t

0

π̃2
u(1− ρ2u)d〈M〉u

= E

[(
c−

∫ T

0

π̃udŜu

)2

+

∫ T

0

(1− ρ2u)π̃
2
ud〈M〉u|Gt

]
,

which proves that this process is a martingale. �

Proposition 4.1. The solution of (4.2) is strictly positive, i.e., Ỹt > 0 a.s. for all t ∈ [0, T ].

Proof. Let first show that EỸT > 0. Multiplying both parts of equation (4.2) by ỸT and
taking expectations (as in the proof of Theorem 3.1) we obtain that

EỸ 2
T = cEỸT −

∫ T

0

1

1− ρ2u
(Ỹuλu + ρ2uψ̃u)

2d〈M〉u.

Therefore cEỸT ≥ EỸ 2
T > 0, hence EỸT > 0.

Let us consider the process

Zt = Ỹt(c−
∫ t

0

π̃udŜu) +

∫ t

0

π̃2
u(1− ρ2u)d〈M〉u. (4.7)

It follows from the Ito formula that Z is a martingale and using the martingale property from
(4.2) we have

Ỹt

(
c−

∫ t

0

π̃udŜu

)
= E

(
Ỹ 2
T +

∫ T

t

π̃2
u(1− ρ2u)d〈M〉u|Gt

)
. (4.8)

Besides the process Z̃t = Ỹt(c−
∫ t

0
π̃udŜu) is a supermartingale and

Ỹt

(
c−

∫ t

0

π̃udŜu

)
≥ E(Ỹ 2

T |Gt). (4.9)

Let us define τ = inf{t : Ỹt = 0}∧T . Then τ is a predictable stopping time and there exists
a sequence of stopping times (τn;n ≥ 1) such that lim τn = τ and τn < τ for every n on
τ > 0. Note that Ỹτn > 0 by definition of τn, since Ỹ0 = EỸT > 0.
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Taking τn instead of t in (4.9) and dividing both parts of this inequality by Ỹτn , we obtain

E

(
Ỹ 2
T

Ỹ 2
τn

∣∣Gτn

)
≤

c−
∫ τn
0

π̃udŜu

Ỹτn

. (4.10)

It follows from the Lemma 2.2 (applied for the martingale Ỹt = E(ỸT |Gt)) that

E

(
Ỹ 2
T

Ỹ 2
τn

∣∣Gτn

)
→ ∞ on the set {Ỹτ = 0}. (4.11)

By Lemma 4.2 and (4.8) the processes Ṽt(c−
∫ t

0
π̃udŜu)

2+
∫ t

0
π̃2
u(1−ρ2u)d〈M〉u and Ỹt(c−∫ t

0
π̃udŜu)+

∫ t

0
π̃2
u(1−ρ2u)d〈M〉u are martingales and their values at time T coincide, hence

they are indistinguishable. Thus

Ṽt

(
c−

∫ t

0

π̃udŜu

)2

= Ỹt

(
c−

∫ t

0

π̃udŜu

)
(4.12)

which, together with (4.10), implies that

E

(
Ỹ 2
T

Ỹ 2
τn

∣∣Gτn

)
≤

c−
∫ τn
0

π̃udŜu

Ỹτn

=
1

Ṽτn

.

Since Ṽt > 0, it follows from the latter inequality that

lim
n→∞

E

(
Ỹ 2
T

Ỹ 2
τn

∣∣Gτn

)
< ∞ on the set {Ỹτ = 0},

which contradicts to (4.11). Therefore P (Ỹτ = 0) = 0 and hence Ỹt > 0 for all t ∈
[0, T ]. �

Corollary 4.1. For all t ∈ [0, T ]

c−
∫ t

0

π̃udŜu ≥ Ỹt (4.13)

and

Ṽt =
Ỹt

c−
∫ t

0
π̃udŜu

. (4.14)

Proof. By (4.9) and the Jensen inequality

Ỹt(c−
∫ t

0

π̃udŜu) ≥ E(Ỹ 2
T |Gt) ≥ Ỹ 2

t (4.15)

and since Ỹt > 0, we obtain inequality (4.13). Therefore the process c −
∫ t

0
π̃udŜu is also

strictly positive and equality (4.14) follows from (4.12). �

Remark 4.1. Ṽt coincides with the value process Vt of optimization problem

min
π∈Π(G)

E

(
1−

∫ T

0

πudSu

)2
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defined by

Vt = ess inf
π∈Π(G)

E

((
1−

∫ T

t

πudSu

)2

|Gt

)
.

This follows from Theorem 3.2 and from Theorem 3.1 of [21]. But we shall show this equal-
ity, proving that Ṽ satisfies the BSDE for the value process V , derived in [21].

Proposition 4.2. Let (Ỹt, ψ̃t) satisfies the equation

ỸT = c−
∫ T

0

1

1− ρ2t
(λtỸt + ρ2t ψ̃t) dŜt (4.16)

and π∗
t =

1

1− ρ2t
(λtỸt + ρ2t ψ̃t). Then c− (π∗ · Ŝ)t ≡ c− X̂π∗

t is strictly positive and

Ut =
Ỹt

c− X̂π∗
t

(4.17)

is a solution of BSDE

dUt =
(λtUt + ρ2tψ

U
t )

2

1− ρ2t + ρ2tUt
d〈M〉t + ψU

t dM̂t + dLU
t , UT = 1. (4.18)

Proof. By Corollary 4.1 and Lemma 4.1 c − X̂π∗

t > 0 P -a.s. for all t. Therefore Ut is a
G-semimartingale. This semimartingale admits the decomposition

Ut = At +

∫ t

0

ψU
s dM̂s + LU

t ,

where At is G-predictable process of finite variation and LU is a G-local martingale strongly
orthogonal to M̂ .

By the Itô formula
dỸt = d((c− X̂π∗

t )Ut)

= (c− X̂π∗

t )(dAt + ψU
t dM̂t + dLU

t )− Utπ
∗
t dŜt − π∗

tψ
U
t ρ

2
td〈M〉t

= ((c− X̂π∗

t )ψU
t − π∗

tUt)dM̂t + (c− X̂π∗

t )dLU
t

+(c− X̂π∗

t )dAt − (λtUtπ
∗
t + ρ2tψ

U
t π

∗
t )d〈M〉t. (4.19)

Since Ỹ is a martingale with the decomposition

Ỹt = Ỹ0 +

∫ t

0

ψ̃udM̂u + L̃t (4.20)

comparing the decomposition terms of (4.19) and (4.20) we have

ψ̃t = (c− X̂π∗

t )ψU
t − π∗

tUt, (4.21)

At =

∫ t

0

λsUs + ρ2sψ
U
s

c− X̂π∗
s

π∗
sd〈M〉s. (4.22)

From (4.17) and (4.21)

π∗
t =

1

1− ρ2t
(λtỸt + ρ2t ψ̃t) =

1

1− ρ2t

(
λtUt(c− X̂π∗

t )− ρ2tUtπ
∗
t − ρ2t (c− X̂π∗

t )ψU
t

)
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which gives

π∗
t =

λtUt + ρ2tψ
U
t

1− ρ2t + ρ2tUt
(c− X̂π∗

t ). (4.23)

Finally from (4.23) and (4.22) we obtain the equality

At =

∫ t

0

(λsUs + ρ2sψ
U
s )

2

1− ρ2s + ρ2sUs
d〈M〉s

which means that Ut satisfies (4.18). �

Proposition 4.3. Let the triple (Vt(1), Vt(2), X̂
π∗

t ) satisfies the Forward-Backward stochas-
tic differential equation

dVt(1) =
(λtVt(2) + ρ2tϕt(2))(λtVt(1) + ρ2tϕt(1))

1− ρ2t + ρ2tVt(2)
d〈M〉t

+ ϕt(1)dM̂t + dLt(1), VT (1) = H̃, (4.24)

dVt(2) =
(λtVt(2) + ρ2tϕt(2))

2

1− ρ2t + ρ2tVt(2)
d〈M〉t + ϕt(2) dM̂t + dLt(2), VT (2) = 1, (4.25)

π∗
t =

λtVt(1) + ρ2tϕt(1)− X̂π∗

t (λtVt(2) + ρ2tϕt(2))

1− ρ2t + ρ2tVt(2)
, X̂π∗

0 = 0, (4.26)

〈L(1), M̂〉 = 〈L(2), M̂〉 = 0. (4.27)

Then the pair (Ỹ , ψ̃), where

Ỹt = Vt(1)− X̂π∗

t Vt(2) and ψ̃t = ϕt(1)− Vt(2)π
∗
t − ϕt(2)X̂

π∗

t , (4.28)

is a solution of equation

ỸT = H̃ −
∫ T

0

1

1− ρ2t
(λtỸt + ρ2t ψ̃t) dŜt. (4.29)

Proof. By the Itô formula

dỸt = −
(
Vt(2)π

∗
t + X̂π∗

t ϕt(2)− ϕt(1)
)
dM̂t − X̂π∗

t dLt(2) + dLt(1)

−
(
Vt(2)λtπ

∗
t + X̂π∗

t

(λtVt(2) + ρ2tϕt(2))
2

1− ρ2t + ρ2tVt(2)
+ ρ2tϕt(2)π

∗
t

− (λtVt(1) + ρ2tϕt(1))(λtVt(2) + ρ2tϕt(2))

1− ρ2t + ρ2tVt(2)

)
d〈M〉t.

It follows from (4.26) that the expression in the latter bracket is equal to zero. Thus Ỹt is
martingale and ψ̃t = ϕt(1)− Vt(2)π

∗
t − ϕt(2)X̂

π∗

t . By (4.28)

ỸT = H̃ − X̂π∗

T

and inserting (Ỹ , ψ̃) in (4.29) we claim

X̂π∗

T =

∫ T

0

1

1− ρ2t
(λtVt(1)− λtVt(2)X̂

π∗

t + ρ2tϕt(1)− ρ2tVt(2)π
∗
t − ρ2t X̂

π∗

t ) dŜt.
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This means that

π∗
t =

1

1− ρ2t
(λtVt(1) + ρ2tϕt(1)− X̂π∗

t (λtVt(2) + ρ2tϕt(2))− ρ2tVt(2)π
∗
t )

and
(1− ρ2t + ρ2tVt(2))π

∗
t = λtVt(1) + ρ2tϕt(1)− X̂π∗

t (λtVt(2) + ρ2tϕt(2)).

Obviously this equality coincides with (4.26). Therefore (Ỹ , ψ̃) satisfies (4.29). �

5. DIFFUSION MARKET MODEL

Let us consider the financial market model

dSt = µt(η)dt+ σt(η)dw
0
t ,

dηt = at(η)dt+ bt(η)dwt,

subjected to initial conditions, where only the second component η is observed. Here w0 and
w are correlated Brownian motions with Edw0

t dwt = ρdt, ρ ∈ (−1, 1).
Let us write

wt = ρw0
t +

√
1− ρ2w1

t ,

where w0 and w1 are independent Brownian motions. It is evident that w⊥ = −
√
1− ρ2w0+

ρw1 is a Brownian motion independent of w and one can express Brownian motions w0, w1

in terms of w and w⊥ as

w0
t = ρwt −

√
1− ρ2w⊥

t , w1
t =

√
1− ρ2wt + ρw⊥

t . (5.1)

We assume that b2 > 0, σ2 > 0 and coefficients µ, σ, a and b are such that

FS,η = Fw0,w,Fη = Fw.

So the stochastic basis will be (Ω, F,F , P ), where F is the natural filtration of (w0, w) and
the flow of observable events is G = Fw.

We consider the mean variance hedging problem

to minimize E[(x+

∫ T

0

πtdSt −H)2] over all π ∈ Π(G),

where H ∈ L2(FT ) and πt is a dollar amount invested in the stock at time t.
Comparing with (1.1) we get that in this case

Mt =

∫ t

0

σsdw
0
s , 〈M〉t =

∫ t

0

σ2
sds, λt =

µt

σ2
t

.

It is evident that w is a Brownian motion also with respect to the filtration Fw0,w1

and con-
dition B) is satisfied. Therefore by Proposition 2.1

M̂t = ρ

∫ t

0

σsdws.

By the integral representation theorem the GKW decompositions (3.1), (3.10) take the fol-
lowing forms

Ht = cH +

∫ t

0

hsσsdw
0
s +

∫ t

0

h1
sdw

1
s , (5.2)
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Ht = cH + ρ

∫ t

0

hG
s σsdws +

∫ t

0

h⊥
s dw

⊥
s . (5.3)

Putting expressions for w,w⊥ in (5.3) and equalizing integrands of (5.2) and (5.3) we obtain
that

ht = hG
t ρ

2 −
√

1− ρ2
h⊥
t

σt

and hence
pht =

p(hG)tρ
2 −

√
1− ρ2

ph⊥
t

σt
.

Therefore by definition of h̃ (equation (3.16))

h̃t =
pht − p(hG)tρ

2 = −
√
1− ρ2

ph⊥
t

σt
. (5.4)

It is evident that d〈M̂〉t
d〈M〉t = ρ2 and (3.23) takes the form

ỸT = H̃ − 1

1− ρ2

∫ T

0

Ỹtθt (θtdt+ ρdwt)−
ρ

1− ρ2

∫ T

0

ϕ̃t (θtdt+ ρdwt) (5.5)

for Ỹt = c+
∫ t

0
ψ̃sρσsdws ≡ c+

∫ t

0
ϕ̃sdws, where θt =

µt

σt
.

Since H ∈ L2(FT ), it follows from (5.4) that

E

∫ T

0

h̃2
u

1− ρ2
d〈M〉u < ∞, EH̃2 < ∞

and all conditions of Theorems 3.1 and 3.2 are satisfied. Therefore, there exists a unique
solution (Ỹ , ϕ̃) of equation (5.5) and the optimal strategy in this case is

π∗
t =

1

1− ρ2

(
θtỸt + ρϕ̃t −

√
1− ρ2 ph⊥

t

)
σ−1
t . (5.6)

Note that one can write the equation (5.5) also in terms of a random variable ξ

ξ = H̃ − 1

1− ρ2

∫ T

0

E[ξ|Fw
t ]θt (θtdt+ ρdwt)

− ρ

1− ρ2

∫ T

0

E[Dtξ|Fw
t ] (θtdt+ ρdwt) , (5.7)

where D is the stochastic derivative.

Remark 5.1. Let ρ = 0 and let θ be deterministic. In this case w = w1, w⊥ = −w0, G =

Fw1

and

M̂t = E

(∫ t

0

σsdw
0
s

∣∣Fw1

t

)
= 0

Therefore equation (3.17) takes the form

ỸT = H̃ −
∫ T

0

Ỹtθ
2
t dt. (5.8)
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Since Ỹ is a G-martingale, by the integral representation theorem

Ỹt = Ỹ0 +

∫ t

0

lsdw
1
s .

Note that in the decomposition (1.5) for Ỹ
∫ t

0

ψ̃udM̂u = 0 and L̃t =

∫ t

0

lsdw
1
s .

Besides, in the decomposition (3.10) for Ht = E(H|Ft)
∫ t

0

hG
udM̂u = 0, LH,G

t =

∫ t

0

hsσsdw
0
s +

∫ t

0

h1
sdw

1
s .

Using the integral representation of H̃ = c̃H +
∫ T

0
h̃1
sdw

1
s and the formula of the integration

by parts we have

ỸT = c̃H +

∫ T

0

h̃1
tdw

1
t − ỸT

∫ T

0

θ2sds+

∫ T

0

∫ t

0

θ2ududỸt and

ỸT

(
1 +

∫ T

0

θ2sds

)
= c̃H +

∫ T

0

h̃1
tdw

1
t +

∫ T

0

lt

∫ t

0

θ2ududw
1
t .

On the other hand,

ỸT

(
1 +

∫ T

0

θ2sds

)
= Ỹ0

(
1 +

∫ T

0

θ2sds

)
+

∫ T

0

(
1 +

∫ T

0

θ2sds

)
ltdw

1
t .

Comparing the last two equalities we obtain

Ỹ0 =
c̃H

1 +
∫ T

0
θ2sds

, lt =
h̃1
t

1 +
∫ T

t
θ2sds

.

Therefore the solution of (5.8) is expressed as

Ỹt =
c̃H

1 +
∫ T

0
θ2sds

+

∫ t

0

h̃1
s

1 +
∫ T

s
θ2udu

dw1
s .

Since h̃ = ph, the optimal strategy is

π∗
t = pht +

c̃Hλt

1 +
∫ T

0
λ2
sσ

2
sds

+ λt

∫ t

0

h̃1
s

1 +
∫ T

s
λ2
uσ

2
udu

dw1
s .

Proposition 5.1. Suppose that H = cH , ηt = wt and µt

σt
= θ(t, wt) for some continuous

function θ, such that the nonlinear PDE

ut +
1

2
uxx =

(θ(t, x)u+ ρux)
2

1− ρ2 + ρ2u
, u(T, x) = 1 (5.9)

admits the sufficiently smooth solution u. Then the solution of (3.23) can be represented as

Ỹt = cHu(t, wt)Et
(
−
∫ ·

0

θ(s, ws)u(s, ws) + ρux(s, ws)

1− ρ2 + ρ2u(s, ws)
(θ(s, ws)ds+ ρdws)

)
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and the optimal strategy is

π∗
t = cHσ−1(t, wt)

θ(t, wt)u(t, wt) + ρux(t, wt)

1− ρ2 + ρ2u(t, wt)

× Et
(
−
∫ ·

0

θ(s, ws)u(s, ws) + ρux(s, ws)

1− ρ2 + ρ2u(s, ws)
(θ(s, ws)ds+ ρdws)

)
. (5.10)

Sketch of the proof. It is well known that if u(t, x) is the solution of (5.9), then Vt(2) =

u(t, wt) will be the solution of (4.25). On the other hand Vt(1) = cVt(2) and c − X̂π∗

t =

cEt
(
−

∫ ·
0

λsVs+φsρ
2
s

1−ρ2
s+ρ2

sVs
dŜs

)
. Moreover, similarly to Proposition 4.3 it can be verified that

Ỹt = (c − X̂π∗

t )Vt(2) satisfies equation (3.23) and it follows from (4.23) that π∗ is of the
form (5.10).

The detailed proof we shall give in Appendix A.

Example. If θ(t, x) = θ(t) then the solution of (5.9) is of the form u(t, x) = u(t), where u
satisfies

du(t)

dt
=

θ2(t)u2(t)

1− ρ2 + ρ2u(t)
, u(T ) = 1.

Thus

−1− ρ2

u(s)
+ ρ2 lnu(s)

∣∣T
t
=

∫ T

t

θ2(s)ds.

If we denote by ν(ρ, α) the unique solution of

1− ρ2

u
− ρ2 lnu = α,

then u(t) = ν(ρ, 1− ρ2 +
∫ T

t
θ2(s)ds) and the solution of (5.7) is explicitly given by

ξ = cHET

(
−
∫ ·

0

θ(s)ν(ρ, 1− ρ2 +
∫ T

s
θ2(u)du)

1− ρ2 + ρ2ν(ρ, 1− ρ2 +
∫ T

s
θ2(u)du)

(θ(s)ds+ ρdws)

)
.

APPENDIX A. APPENDIX

Proof of Proposition 5.1. It easy to see that (5.9) is equivalent to

ut − ρ
θ(t, x)uux + ρu2

x

1− ρ2 + ρ2u
+

1

2
uxx =

θ2(t, x)u2 + ρθ(t, x)uux

1− ρ2 + ρ2u
, u(T, x) = 1.

If u is a solution of (5.9) then using the notation g = − θ(t,x)u+ρux

1−ρ2+ρ2u , the Feynmann-Kac
formula and Girsanov’s theorem we can write

u(t, x) = E

(
EtT

(∫ ·

0

g(s, ws)(θ(s, ws)ds+ ρdws)

) ∣∣wt = x

)
.
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Hence the integrand ϕ̃ of the integral representation of the martingale
Ỹt = cHE

[
ET

(∫ ·
0
g(s, ws)(θ(s, ws)ds+ ρdws)

)
|Fw

t

]
can be calculated as follows

ϕ̃tdwt = dỸt

= cHd

(
Et

(∫ ·

0

g(s, ws)(θ(s, ws)ds+ ρdws)

)
u(t, wt)

)

= cHEt
(∫ ·

0

g(s, ws)(θ(s, ws)ds+ρdws)

)

× (ux(t, wt)dwt − g(t, wt) (θ(t, wt)u(t, wt)+ρux(t, wt)) dt)

+ cHu(t, wt)Et
(∫ ·

0

g(s, ws)(θ(s, ws)ds+ ρdws)

)
g(t, wt) (θ(t, wt)dt+ ρdwt)

+ cHEt
(∫ ·

0

g(s, ws)(θ(s, ws)ds+ ρdws)

)
ρg(t, wt)ux(t, wt)dt

= cHEt
(∫ ·

0

g(s, ws)(θ(s, ws)ds+ ρdws)

)
(ux(t, wt) + ρu(t, wt)g(t, wt))dwt.

Thus

1

1− ρ2

∫ T

0

Ỹtθ(t, wt)(θ(t, wt)dt+ ρdwt) +
ρ

1− ρ2

∫ T

0

ϕ̃t(θ(t, wt)dt+ ρdwt)

= cH
1

1− ρ2

∫ T

0

(
u(t, wt)θ(t, wt) + ρux(t, wt) + ρ2g(t, wt)u(t, wt)

)

×Et
(∫ ·

0

g(s, ws)(θ(s, ws)ds+ ρdws)

)
(θ(t, wt)dt+ ρdwt).

Since uθ + ρux + ρ2gu = (ρ2 − 1)g, then

1

1− ρ2

∫ T

0

Ỹtθ(t, wt)(θ(t, wt)dt+ ρdwt) +
ρ

1− ρ2

∫ T

0

ϕ̃t(θ(t, wt)dt+ ρdwt)

= −cH

∫ T

0

g(t, wt)Et
(∫ ·

0

g(s, ws)(θ(s, ws)ds+ ρdws)

)
(θ(t, wt)dt+ ρdwt) .

On the other hand,

ỸT = cHET
(∫ ·

0

g(s, ws)(θ(s, ws)ds+ ρdws)

)

= cH +

∫ T

0

cHg(t, wt)Et
(∫ ·

0

g(s, ws)(θ(s, ws)ds+ ρdws)

)
(θ(t, wt)dt+ ρdwt).

Hence (5.5) is satisfied. The expression for π∗ is obtained from the representation

ỸT =cHET
(
−
∫ ·

0

θ(s, ws)u(s, ws) + ρux(s, ws)

1− ρ2 + ρ2u(s, ws)
(θ(s, ws)ds+ ρdws)

)

=− cH

∫ T

0

θ(s, ws)u(s, ws) + ρux(s, ws)

1− ρ2 + ρ2u(s, ws)



Stochastic Analysis: Applications to Statistics and Finance 99

× Es
(
−
∫ ·

0

θu+ ρux

1− ρ2 + ρ2u
(θdu+ ρdwu)

)
(θ(s, ws)ds+ ρdws)

and equations (5.5) and (5.6). �
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THE ROBBINS–MONRO TYPE STOCHASTIC DIFFERENTIAL EQUATIONS.
III. POLYAK’S AVERAGING

N. LAZRIEVA AND T. TORONJADZE

Abstract. General results concerning the asymptotic behaviour of the Polyak averaging z =
(zt)t≥0 of the solution of the Robbins–Monro type stochastic differential equation are pre-
sented. It is shown that the suitable normed process z admits an asymptotic expansion which
enables one to obtain its asymptotic distribution from a Central Limit Theorem for martin-
gales.

Key words and phrases: Stochastic approximation; Robbins–Monro type SDE; Recursive
estimation; Polyak’s averaging

MSC 2010: 62L20; 60H10

INTRODUCTION

In recent years the interest to stochastic approximation and its applications substantially
increased including such fields of applications as statistics [5], medicine and engineering [17],
adaptive control, signal processing, weirless communication [4], [1] and even mathematical
finance [19].

An important approach to stochastic approximation problems has been proposed by Polyak
[13] and Ruppert [15]. The main idea of this approach is the use of averaging iterates ob-
tained from primary schemes. In [14], [18], [3], [8] and [9] it was proved that such algorithms
can provide strongly consistent estimates which are asymptotically efficient. In several cases
the averaging can provide the rate of convergence higher than the rate of the primary process.
Le Breton and Novikov [10], [11] concentrate their attention on a general multidimensional
linear regression model with Gaussian errors. They demonstrate that averaging can also pro-
vide consistent estimates for asymptotic covariances of estimates. Melnikov and Valkeila
[16] consider the averaging procedure both for the so-called standard RM procedure and for
procedures with slowly varying gains. They have proved the convergence of averaging pro-
cedures and studies the asymptotic properties of these procedures.

In the present paper we study the asymptotic behaviour of the Polyak averaging procedure
for the Robbins–Monro type (RM type) SDE introduced in [6]

zt = z0 +

∫ t

0

H(s, zs−) dKs +

∫ t

0

M(ds, zs−), (0.1)

where K = {Kt, t ≥ 0} is an increasing predictable process, H(t, u) and M(t, u), t ≥ 0,
u ∈ R1, are random fields given on some stochastic basis. We assume that for each t ≥ 0

H(t, 0) = 0, H(t, u)u < 0 for u �= 0 P -a.s.,

Published in Stochastics 82 (2010), no. 1-3, 165–188.
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for each u ∈ R1, M(u) = {M(t, u), t ≥ 0} ∈ M2
loc, the symbol

∫ t

0
M(ds, zs−) is used for

the stochastic line integral (see [6] for more details).
Equation (0.1) naturally includes both generalized RM stochastic approximation algorithm

with martingale noises [16] and recursive estimation procedures for parametric semimartin-
gale statistical models, and enables one to study them by a common approach.

The present work is the final part of series of papers [6], [7] concerning the asymptotic
behaviour of solution z = (zt)t≥0 of equation (0.1).

We define the Polyak averaging procedure for the process z = (zt)t≥0 by the formula

zt =
1

E−1
t (−g ◦K)

∫ t

0

zsdE−1
s (−g ◦K), (0.2)

where gt ≥ 0, gt∆Kt < 1, g ◦ Kt < ∞ for all t ≥ 0, g ◦ K∞ = ∞ P -a.s. Here
g ◦Kt =

∫ t

0
gs dKs, E(X) is the Dolean exponential of X . Denote E−1

t := E−1
t (−g ◦K).

The aim of the present paper is to study the asymptotic properties of process z = (zt)t≥0

defined by (0.2).
First note that if

zt → 0 as t → ∞ P -a.s.,

then since (E−1
t )t≥0 is an increasing process, E−1

∞ = ∞ the Toeplitz lemma (see Appendix
A) yields

zt → 0 as t → ∞ P -a.s.

We show that under sufficiently mild conditions the normed process z = (zt)t≥0 admits
the following representation

E−1
t B̃

1/2
t zt =

∫ t

0
(Bt −Bs−)dLs

B̃
1/2
t

+Rt, Rt
P→ 0, as t → ∞, (0.3)

where

Bt :=

∫ t

0

Γ−1
s dE−1

s , B̃t :=

∫ t

0

(Bt −Bs−)
2d〈L〉s (0.4)

and objects (Γt)t≥0, (Lt)t≥0 and (〈L〉t)t≥0 are defined by Eq. (1.1) below.
For instance, if we choose E−1

t := 1 +
∫ t

0
Γ2
s〈L〉−1

s βsdKs, then E−1B̃ ∼ E−1/2 (see
Appendix A, Definition A.1) and the asymptotic distribution of process E−1/2z coincides
with the asymptotic distribution of B̃−1/2

t

∫ t

0
(Bt − Bs−)dLs (up to the constant factor) as

t → ∞. As a special cases we obtain the results of [16] concerning the asymptotics of
averaging procedure for standard RM stochastic approximation algorithm, as well as for RM
algorithms with slowly varying gains.

The paper is organized as follows: In Section 1 the main objects and assumptions are
introduced. In Section 2 we study the asymptotic properties of averaging procedure z in the
linear case. The general case we consider in Section 3. In Section 4 the special cases are
considered. Section 5 is devoted to proof of results. In Appendix A some definitions and
technical results are given and in Appendix B we collect necessary results from [6] and [7]
for convenience of readers.

All notation and facts concerning martingale theory can be found in [12].
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1. PRELIMINARIES

Let on a filtered probability space (Ω,F , F = (Ft)t≥0, P ) satisfying the usual conditions
the following objects be defined:

(1) A predictable increasing process K = (Kt)t≥0.
(2) A random field {H(t, u), t ≥ 0, u ∈ R1} such that (H(t, u))t≥0 is a predictable

process for each u ∈ R1 and

(A)
H(t, 0) = 0,

H(t, u)u < 0, u �= 0,

for all t ≥ 0 P -a.s.
(3) A random field {M(t, u), t ≥ 0, u ∈ R1} such that for each u ∈ R1

M(u) = (M(t, u))t≥0 ∈ M2
loc(P ), M(t, 0) �= 0, t ≥ 0, P -a.s.,

〈M(u),M(v)〉t = h(u, v) ◦Kt, h(0, 0) ◦K∞ < ∞.

Denote �2t := ht(0, 0), Mt := M(t, 0). Evidently, 〈M〉∞ < ∞.
Assume that there exists an unique strong solution z = (zt)t≥0 of Eq. (0.1) on the whole

time interval [0,∞) such that (see [6])

(M̃t)t≥0 :=

(∫ t

0

M(ds, zs−)

)

t≥0

∈ M2
loc(P ).

Let us denote

βt := − lim
u→0

H(t, u)

u
assuming that this limit exists for each t ≥ 0 P -a.s. and define

βt(u) =

{
−H(t,u)

u if u �= 0,

βt if u = 0.

It follows from (A) that for all t ≥ 0 and u ∈ R1

βt ≥ 0 and βt(u) ≥ 0 P -a.s.

Throughout of this paper we are working under the following assumptions:
Assumption 1 : For all t ≥ 0 βt∆Kt �= 1, βt∆Kt < 1 eventually, lim

t→∞
βt∆Kt = m,

0 ≤ m ≤ 1, β ◦Kt < ∞, β ◦K∞ = ∞ P -a.s.
Define further the objects: for all t ≥ 0

Γt := E−1
t (−β ◦K), Lt :=

∫ t

0

Γs dMs, 〈L〉t := 1 +

∫ t

0

Γ2
s�

2
s dKs. (1.1)

Assumption 2 : 〈L〉∞ = ∞ P -a.s.

Assumption 3 : There exists a predictable increasing process γ = (γt)t≥0 equivalent to(
Γ2
t 〈L〉−1

t

)
t≥0

with

lim
t→∞

Γ2
t 〈L〉−1

t

γt
= γ̃−1, 0 < γ̃ < ∞ P -a.s.
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Besides, we assume that γ0 = 1, γ∞ = ∞, ∆γt

γt
< 1 for all t ≥ 0 P -a.s., also γt =

1 +
∫ t

0
g̃s dKs,for some appropriate g̃.

Remark 1. From Assumption 1 it directly follows that (Γt)t≥0 is an increasing process
eventually, Γ0 = 1, Γ∞ = ∞ with lim

t→∞
Γ2
t 〈L〉−1

t = ∞ P -a.s.

It is not hard to show (see [7]) that the process z = (zt)t≥0 can be written as

zt = Γ−1
t

(
z0 + Lt +

∫ t

0

Γs dRs

)
, (1.2)

where

Rt := R 1
t +R 2

t ,

R 1
t :=

∫ t

0

(βs − βs(zs−)) zs− dKs, (1.3)

R 2
t :=

∫ t

0

(M(ds, zs−)−M(ds, 0)) . (1.4)

Moreover, the normed process (zt)t≥0 admits the following asymptotic expansion:

Γt〈L〉−1/2
t zt =

Lt

〈L〉1/2t

+Rt, (1.5)

where

Rt :=
z0

〈L〉1/2t

+
1

〈L〉1/2t

∫ t

0

Γs dRs .

The conditions sufficient for the convergence

Rt
P→ 0 as t → ∞, (1.6)

were studied in [7].
From Assumptions 1, 2 and 3, Eqs. (1.5) and (1.6) we obtain

lim
t→∞

L(γ1/2
t zt) = lim

t→∞
L

(
γ̃

Lt

〈L〉1/2t

)

in the sense of weak convergence.

2. ASYMPTOTIC PROPERTIES OF PROCESS z IN THE LINEAR CASE

In this section we consider the following linear equation

dzt = −βtzt− dKt + dMt, z0. (2.1)

Solving this equation we have

zt = Γ−1
t

(
z0 +

∫ t

0

Γs dMs

)
. (2.2)
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Since (Γt)t≥0 is an increasing process, Γ∞ = ∞ (see Remark 1 of Section 1), 〈M〉∞ < ∞
it follows from the stochastic version of Kronecker lemma (see [12, Ch. 2, § 6, Lemma 3])
that

zt → 0 as t → ∞ P -a.s.

Multiplying both sides of Eq. (2.2) by Γt〈L〉−1/2
t yields

Γt〈L〉−1/2
t zt = z0〈L〉−1/2

t + Lt

/
〈L〉1/2t (2.3)

and hence (by Assumption 2)

lim
t→∞

L
(
Γt〈L〉−1/2

t zt

)
= lim

t→∞
L
(
Lt

/
〈L〉1/2t

)
(2.4)

in the sense of a weak convergence.
Further, substituting (2.2) in (0.2) we get

zt = z0
Bt

E−1
t

+
L ◦Bt

E−1
t

. (2.5)

To continue we need additional
Assumption 4 : The processes (βt)t≥0, (�2t )t≥0, (gt)t≥0, (Kt)t≥0 are deterministic.

Since (Bt)t≥0 is deterministic, then applying the Itô formula we get L ◦ Bt =
∫ t

0
(Bt −

Bs) dLs. Multiplying Eq. (2.5) by E−1
t (B̃t)

−1/2 we obtain

E−1
t (B̃t)

−1/2zt = z0
Bt

B̃
1/2
t

+

∫ t

0
(Bt −Bs−) dLs

B̃
1/2
t

, (2.6)

where (Bt)t≥0, (B̃t)t≥0 are defined by (0.4).
The main result of this section is

Proposition 2.1. Let the following conditions be satisfied:
(1) 〈L〉 ◦B∞ = ∞,
(2) (〈L〉 ◦B) ◦B∞ = ∞,

(3) lim
t→∞

〈L〉t∆Bt

〈L〉 ◦Bt
= c, 0 ≤ c < 2.

Then
Bt

B̃
1/2
t

→ 0 as t → ∞,

and

lim
t→∞

L
(
E−1
t (B̃t)

−1/2zt

)
= lim

t→∞
L
(∫ t

0
(Bt −Bs−) dLs

B̃
1/2
t

)
. (2.7)

Proposition 2.2. Let

E−1
t = 1 +

∫ t

0

Γ2
s〈L〉−1

s βs dKs. (2.8)

Then conditions (1)–(3) of Proposition 2.1 are satisfied. Moreover,

lim
t→∞

B̃t

E−1
t

= 2−m (2.9)
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and

lim
t→∞

L(E−1/2
t zt) = lim

t→∞
L
(√

2−m

∫ t

0
(Bt −Bs−) dLs

B̃
1/2
t

)
. (2.10)

Remark 2. Eq. (2.8) gives the natural choice of E−1
t which becomes clear from the proof of

this proposition, see Eqs. (5.3) and (5.4).

From now we define averaging procedure (0.2) with E−1
t given by (2.8).

3. THE ASYMPTOTIC PROPERTIES OF PROCESS z IN GENERAL CASE

In this section we study asymptotic properties of z = (z)t≥0 defined by Eq. (0.2) with
E−1
t given by (2.8).

Substituting (1.2) in (0.2) and multiplying both sides of resulting equation by E−1
t B̃

−1/2
t

we obtain

E−1
t B̃

−1/2
t zt = z0

Bt

B̃
1/2
t

+

∫ t

0
(Bt −Bs−) dLs

B̃
1/2
t

+ rt , (3.1)

where

rt =
1

B̃
1/2
t

(∫ t

0

R1
s dBs +

∫ t

0

R2
s dBs

)

and Ri
t :=

∫ t

0
Γs dR

i
s, R i

s, i = 1, 2, are defined by (1.3) and (1.4), respectively.
Denote

rit :=
1

B̃
1/2
t

∫ t

0

Ri
s dBs, i = 1, 2.

As is seen, the first two terms in the right-hand side of Eq. (3.1) coincides with those in
Eq. (2.6). Hence, our problem is to prove that

rt
P→ 0 as t → ∞.

Since B̃ ∼ E−1, it is sufficient to establish conditions under which

r̃it :=
1

E−1/2
t

∫ t

0

Ri
s dBs

P→ 0 as t → ∞, i = 1, 2.

First we consider the case i = 1.

Lemma 3.1. Suppose that the following conditions are satisfied:

(i)
Γ2
t 〈L〉−1

t

1 +
∫ t

0
Γ2
s〈L〉−1

s βs dKs

< 1 eventually,

(ii)

∫ ∞

0

E−1/2
s |βs − βs(zs−)| |zs−| dKs < ∞ P -a.s. 0 ≤ c < 1,

Then
r̃1t → 0 as t → ∞, P -a.s. (3.2)
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Suppose that the following assumption holds.

Assumption 5 : (1) zt → 0 as t → ∞ P -a.s.,
(2) For each δ, 0 < δ < δ0, 0 < δ0 ≤ 1,

γδ
t z

2
t → 0 as t → ∞ P -a.s.,

where γ = (γt)t≥0 is an increasing predictable process presented in Assumption 3 with
γ0 = 0, γ∞ = ∞ P -a.s.

Remark 3. The conditions sufficient for (1) and (2) were studied in [6] and [7], respectively.

Corollary 3.2. (1) Let the following condition be satisfied:
(ii)′ There exists δ, 0 < δ < δ0

2 , such that
∫ ∞

0

E−1/2
t |βt − βt(zt−)|γ−δ

t− dKt < ∞. (3.3)

Then (3.2) holds.
(2) Assume in addition that

H(t, u) = −βtu+ v(t, u)

lim
u→0

v(t, u)

u2
= vt,

where (vt)t≥0 some predictable process.
Suppose that the following condition (ii)′′ is satisfied.
(ii)′′ There exists δ, 0 < δ < δ0

2 , such that
∫ ∞

0

E−1/2
t |vt|γ−2δ

t− dKt < ∞ P -a.s.

Then (ii)′′⇒(ii)′⇒(ii).

Let us consider the case i = 2. Denote Nt =
∫ t

0
Γs[M(ds, zs−)−M(ds, 0)]. Then

r̃2t =
1

E−1/2
t

∫ t

0

Ns dBs.

Lemma 3.3. Let the condition

〈N〉t
〈L〉t

P→ 0 as t → ∞, (3.4)

be satisfied. Then

r̃2t
P→ 0 as t → ∞.

All above-given results we summarize in the following

Theorem 3.4. Let conditions of Lemmas 3.1 and 3.3 be satisfied. Then (2.10) holds true.
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4. SPECIAL CASES

Case 1. This case illustrate that the rate of convergence of z is higher than of z.
In Eq. (2.1) let Kt = t, βt = β(1 + t)−( 1

2+α), �2t = σ2
t (1 + t)−( 3

2+α), where α, β are
some constants, β > 0, 0 < α < 1

2 , 0 < σ2
t < c, lim

t→∞
σ2
t = σ2, σ2 > 0.

It is not hard to observe that 〈L〉∞ = ∞.
Put γt = 1+t. Then since ∆Kt = 0, γ−1

t
βt

�2t
= β

σ2
t
→ β

σ2 , and γ−1
t

λt

�2t
= 1

σ2
t
(1+t)α−

1
2 →

0 as t → ∞, conditions (a), (b) and (c) of Proposition A.3 are satisfied with c1 = c3 = 0,
c2 = β

σ2 . Thus

lim
t→∞

Γ2
t 〈L〉−1

t

1 + t
= 2

β

σ2
.

Then from Eqs. (2.3) and (2.4) follows

(1 + t)1/2zt
d→ N

(
0,

σ2

2β

)
,

where N(a, σ2) stands for normal distribution with parameters a and σ2.
Obviously in (2.9) m = 0 and hence

lim
t→∞

L(E−1/2
t zt) = lim

t→∞
L
(√

2

∫ t

0
(Bt −Bs) dLs

B̃1/2

)
. (4.1)

On the other hand, it is not hard to check that

E−1
t

(1 + t)(
3
2−α)

→ 4β2

σ2(3− 2α)
as t → ∞. (4.2)

Hence, from (4.1) and (4.2) using the usual technique developed in the proof of Lemma 3.3
we obtain

(1 + t)
1
2 (

3
2−α)zt

d→ N

(
0,

(
3

2
− α

)
σ2

β2

)
.

Note that 1
2 (

3
2 − α) > 1

2 .

Case 2. Standard Linear Procedure. Let γ = (γt)t≥0 be an increasing predictable process,
γ0 = 1, γt = 1 +

∫ t

0
g̃ dKs, g̃t ≥ 0, g̃ ◦ K∞ = ∞ P -a.s. Obviously, γt can be written as

γt = Et(λ ◦K), where λt =
g̃t
γt−

.

Put in (2.1) βt = β
γt−

, Mt =
∫ t

0
σs

γs−
dms, 〈m〉t = Kt, where (σt)t≥0 has the same

properties as in the previous case 1.
Thus, we consider the following SDE

dzt = − β

γt−
zt− dKt +

σt

γt−
dmt, z0.

Proposition 4.1. Assume that the following conditions are satisfied: P -a.s.

(i)

∫ ∞

0

dKt

γt−
= ∞, (ii)

∫ ∞

0

dKt

γ2
t−

< ∞, (iii)
∑
t≥0

(
∆Kt

γt−

)2

< ∞,

(iv) lim
t→∞

g̃t = g̃, g̃ ≥ 0, g̃ is a constant, (v) 2β > g̃.
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Then the following assertions are true:

(1) 〈L〉∞ = ∞ P -a.s.;

(2) lim
t→∞

Γ2
t 〈L〉−1

t

γt
=

2β − g̃

σ2
P -a.s.;

(3) lim
t→∞

L(γ1/2
t zt) = lim

t→∞
L
(

σ√
2β − g̃

Lt

〈L〉1/2t

)
;

(4) if (Kt)t≥0 and (γt)t≥0 are deterministic, then

lim
t→∞

L((1 +Kt)
1/2zt) = lim

t→∞
L
( √

2σ√
β(2β − g̃)

∫ t

0
(Bt −Bs−) dLs

B̃
1/2
t

)
.

Note that the primary process z has the rate of convergence γ1/2
t , while averaging process

z has the rate (1 +Kt)
1/2 in all cases. For instance, if γt = (1 +Kt), then since g̃t = 1, we

obtain

lim
t→∞

L((1 +Kt)
1/2zt) = lim

t→∞
L
(

σ√
2β − 1

Lt

〈L〉1/2t

)

and

lim
t→∞

L((1 +Kt)
1/2zt) = lim

t→∞
L
(

σ√
β(2β − 1)

∫ t

0
(Bt −Bs−) dLs

B̃
1/2
t

)
.

If γt = (1 +Kt)
r, 1

2 < r < 1, then, since g̃t → 0 as t → ∞ (see (A.3)) we get

lim
t→∞

L((1 +Kt)
r/2zt) = lim

t→∞
L
(

σ√
2β

Lt

〈L〉1/2t

)

and

lim
t→∞

L((1 +Kt)
1/2zt) = lim

t→∞
L
(
σ

β

∫ t

0
(Bt −Bs−) dLs

B̃
1/2
t

)
.

Case 3. RM stochastic approximation algorithm with slowly varying gains. This case
may be considered as a summurized example, where we demonstrate our methodology de-
veloped in [6], [7] and in the present paper in full capacity and details.

Consider the following SDE

dzt =
R(zt−)

(1 +Kt−)r
dKt +

σt

(1 +Kt−)r
dmt, z0, (4.3)

where K = (Kt)t≥0 is an increasing predictable process, K∞ = ∞ P -a.s., such that

∑
t

(
∆Kt

(1 +Kt−)r

)2

< ∞ P -a.s., (4.4)

the process (σt)t≥0 is predictable with 0 < σ2
t ≤ c, lim

t→∞
σ2
t = σ2, m = (mt)t≥0 ∈

M2
loc, d〈m〉t = dKt, R(u), u ∈ R1, is some deterministic function satisfying the following

condition:
(A) R(0) = 0, R(u)u < 0, u �= 0,

R(u) = −βu+ v(u) with v(u) = O(u2) when u → 0, (4.5)
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β is a positive constant, 1
2 < r < 1.

In our notation

H(t, u) =
R(u)

(1 +Kt−)r
, M(t, u) ≡ Mt :=

∫ t

0

σs

(1 +Ks−)r
dms.

We demonstrate our approach step by step.
Suppose, as usual, that equation (4.3) admits unique strong solution z = (zt)t≥0 on the

whole time interval [0,∞).

Step 1. Convergence zt → 0 as t → ∞ P -a.s. We refer to Proposition B.1 of Appendix B.
Introduce the following objects

at(u) := 2H(t, u)u = 2
R(u)u

(1 +Kt−)r
< 0, u �= 0, at(0) = 0,

bt(u) := H2(t, u)∆Kt =
R2(u)

(1 +Kt−)2r
∆Kt.

Proposition 4.2. Let the following conditions be satisfied:

(i)
|R(u)| |u|
(1 +Kt−)r

[
−2 +

|R(u)|
|u|

∆Kt

(1 +Kt−)r

]+
≤ Dt(1 + u2), Dt ≥ 0, D ◦K∞ < ∞,

(ii) inf
ε≤|u|< 1

ε

|R(u)| |u|
(1 +Kt−)r

{
2I{∆Kt=0} +

[
− 2

+
|R(u)|
|u|

∆Kt

(1 +Kt−)r

]−
I{∆Kt �=0}

}
◦K∞ = ∞, P -a.s.

Then
zt → 0 as t → ∞ P -a.s.

Remark 4. Suppose that the function R(u) satisfies the following condition: there exist some
positive constants G, G̃, G < G̃, such that

G|u| ≤ |R(u)| < G̃|u|.

Then conditions (i) and (ii) are satisfied. Indeed, if we put

Dt =
G̃

(1 +Kt−)r

[
−2 + G̃

∆Kt

(1 +Kt−)r

]+
,

then since according to (4.4) ∆Kt

(1+Kt−)r → 0 as t → ∞, we may conclude that D = (Dt)t≥0

is equal to zero eventually. Thus (i) follows.
As for condition (ii) we have

|R(u)| |u|
(1 +Kt−)r

{
2I{∆Kt=0} +

[
−2I{∆Kt �=0} +

|R(u)|
|u|

∆Kt

(1 +Kt−)r

]−}

≥ 2G|u|2

(1 +Kt−)r
eventually.
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Now (ii) follows from (see Proposition A.4 (1))
∫ ∞

0

dKt

(1 +Kt−)r
= ∞.

Step 2. Rate of convergence of z = (zt)t≥0. In this subsection we assume that zt → 0 as
t → ∞ P -a.s.

Since the process Γ2〈L〉−1 = (Γ2
t 〈L〉−1

t )t≥0 is equivalent to the process ((1 +Kt)
r)t≥0

(see Proposition A.4, (4)) the natural choice of normalizing process γt is γt = (1 + Kt)
r,

t ≥ 0.
Thus we have to prove that conditions imposed on function R(u), u ∈ R1 and process

K = (Kt)t≥0 together with zt → 0 as t → ∞, P -a.s. ensure the following asymptotic
property of (zt)t≥0: for all δ, 0 < δ < δ0

2 , 0 < δ0 < 1,

(1 +Kt)
rδzt → 0 as t → ∞ P -a.s. (4.6)

For this aim we refer to Proposition B.2 of Appendix B. First we focus our attention on
condition (6), which allows us to obtain the value of δ0 such that for all δ < δ0 the following
condition is satisfied: ∫ ∞

0

(1 +Kt)
rδ 1

(1 +Kt−)2r
< ∞, P -a.s. (4.7)

But (4.7) holds true if 2r−rδ > 1 (see (A.1) and (A.2)). Hence, δ < 2− 1
r := δ0, 0 < δ0 < 1.

Condition (1) is trivially satisfied. Indeed, since ∆Kt/(1 +Kt−) → 0 as t → ∞,

γt
γt−

=

(
1 +

∆Kt

(1 +Kt−)

)r

→ 1 as t → ∞, P -a.s.

As for condition (2), we have from (4.5)

βt(zt−)∆Kt = β
∆Kt

(1 +Kt−)r
+

v(zt−)

z2t−
zt− I(zt− �= 0)

∆Kt

(1 +Kt−)r
→ 0

as t → ∞, P -a.s.

Let us check condition (3). Note that

(1 +Kt)
r = 1 +

∫ t

0

g̃s dKs,

where

g̃t = r(1 +Kt)
r−1I{∆Kt=0} +

(1−Kt)
r − (1 +Kt−)

r

∆Kt
I{∆Kt �=0} .

Therefore
∫ ∞

0

[
δ
g̃t
γt

− βt(zt−)

]+
dKc

t

=

∫ ∞

0

[
rδ

(1 +Kt)
r−1

(1 +Kt)r
− β

(1 +Kt)r
+

v(zt−)

z2t−
zt−

1

(1 +Kt)r
I{zt− �=0}

]+
dKc

t <∞,
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since the integrand in the last expression equals zero eventually. Indeed, the integrand is
equal to

1

(1 +Kt)r

[
rδ

1

(1 +Kt)1−r
− β +

v(zt−)

z2t−
zt−I{zt− �=0}

]+
= 0 eventually

because (1 +Kt)
r−1 → 0, also v(zt−)

z2
t−

zt− → 0 as t → ∞ (see (4.5)).

Further, since βt(zt−)∆Kt → 0 as t → ∞, condition (5) is trivially satisfied.
Thus to finish the proof of (4.6) we have to check condition (4).
We have, for any δ, 0 < δ < 1,

1−
(
1− ∆γt

γt

)δ

= 1−
(
1− ∆Kt

1 +Kt

)rδ

≤ rδ
∆Kt

1 +Kt
+ (1− rδ)

(
∆Kt

1 +Kt

)2

.

Therefore
[
1− βt(zt−)−

(
1− ∆γt

γt

)δ]+
≤ ∆Kt

(1 +Kt−)r

[
rδ(1 +Kt−)

r−1

+ (1− rδ)
∆Kt

(1 +Kt−)2−r
− β +

v(zt−)

z2t−
zt−I{zt− �=0}

]+
= 0 eventually.

Step 3. Asymptotic expansion for z = (zt)t≥0. In this subsection we assume that γδ
t zt → 0

as t → ∞ P -a.s., for all 0 < δ < δ0
2 , 0 < δ0 < 1. Recall that γt = (1+Kt)

r and δ0 = 2− 1
r .

Assume that r > 4
5 .

According to Remark 6 to Proposition B.3 if we prove that
∫ ∞

0

|βt − βt(zt−)|γε
t− dKt < ∞ P -a.s. (4.8)

for some ε, 1
2−

δ0
2 < ε < 1

2 , then the normed process (Γt〈L〉−1/2
t zt)t≥0 admits the following

asymptotic expansion

Γt〈L〉−1/2
t zt =

z0
〈L〉t

+
Lt

〈L〉1/2t

+Rt (4.9)

with Rt → 0 as t → ∞ P -a.s.
Let is check condition (4.8). For each δ, 0 < δ < δ0

2 , we have
∫ ∞

0

|βt − βt(zt−)|γε
t−dKt =

∫ ∞

0

|v(zt−)|
z2t−

|zt−|(1 +Kt−)
−r−rεdKt

≤ const(ω)

∫ ∞

0

(1 +Kt−)
−r(1+δ−ε) dKt.

Therefore for given r, 1
2 < r < 1, if there exists the pair (ε, δ) such that

1

2r
− 1

2
< ε <

1

2
, 0 < δ < 1− 1

2r
, r(1 + δ − ε) > 1,

then condition (4.8) will be satisfied. But such a pair (ε, δ) exists only if r > 4
5 .
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Note that from Eq. (4.9) follows that

lim
t→∞

L(Γt〈L〉−1/2
t zt) = lim

t→∞
L
(

Lt

〈L〉1/2t

)
.

Thus, one can obtain the asymptotic distribution of the process ((1 +Kt)
1/2zt)t>0 using

the appropriate form of Central Limit Theorem for locally square integrable martingales.
Namely, since lim

t→∞
Γ2
t 〈L〉−1

t

(1+Kt)r
= 2 β

σ2 (see Proposition A.4 (4)), then

lim
t→∞

L
(
(1 +Kt)

r/2zt

)
= lim

t→∞
L
(√

σ2

2β

Lt

〈L〉1/2t

)
. (4.10)

For instance, consider the case when all processes under consideration are continuous.
Define for any sequence (tn)n≥1 of positive numbers with lim

n→∞
tn = ∞, the sequence

Y n = (Y n
u ,Fn

u )u∈[0,1] ∈ M2
loc(P ), where for u ∈ [0, 1]

Y n
u =

Ltnu

〈L〉1/2tn

, Fn
u = Ftnu.

Then 〈Y n〉1 = 1 and hence Y n
1

d→ N(0, 1) as n → ∞. But, Y n
1 =

Ltn

〈L〉1/2tn

and therefore

Lt

〈L〉1/2t

d→ N(0, 1) as t → ∞. (4.11)

Finally, from (4.10) we obtain

(1 +Kt)
1/2zt

d→ N

(
0,

σ2

2β

)
.

In the case when K = (Kt)t≥0 and (mt)t≥0 are discontinuous the following Lindeberg
condition (L2) (see [12]) ensures (4.11):

(L2) x2I{|x|>δ} ∗ νn1
P→ 0, δ ∈ (0, 1],

where νn is the compensator of jump measure of (Y n
u )u∈[0,1].

Note that (L2) can be expressed in terms of the jump measure of m = (mt)≥0.

Step 4. Asymptotic properties of z = (zt)t≥0. First we study the asymptotic properties of
z = (zt)t≥0 in linear case, when in (2.1) βt =

β
(1+Kt−)r . Then if we put in Proposition 4.1

γt = (1 +Kt)
r, all conditions of this proposition are satisfies with g̃ = 0 (see Eq. (4.4) and

Proposition A.4). Further, by virtue of the Toeplitz lemma,

lim
t→∞

E−1
t

1 +Kt
= lim

t→∞

1 +
∫ t

0
Γ2
s〈L〉−1

s β(1 +Ks−)
−rdKs

1 +Kt
= lim

t→∞

βΓ2
t 〈L〉−1

t

(1 +Kt−)r
=

2β2

σ2
,

since 1+Kt

1+Kt−
→ 1 as t → ∞. Finally, from assertion (4) of Proposition 4.1 we obtain

lim
t→∞

L
(
(1 +Kt)

1/2zt

)
= lim

t→∞
L
(
σ

β

∫ t

0
(Bt −Bs−)dLs

B̃
1/2
t

)
.
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Let us return to the general case. Assume now r > 5
6 (in Step 3 r > 4

5 ). First note that in
(3.1) r2t ≡ 0.

Now because the difference between the representations of (2.5) and (3.3) for linear and
general cases, respectively consists only in the remainder term rt, to obtain the asymptotic
distribution of z in general case it is enough to prove

r1t → 0 as t → ∞ P -a.s. (4.12)

For this aim let us refer to Corollary 3.2, (2), and note that in the considered case

v(t, u) =
v(u)

(1 +Kt−)r
,

|vt| = lim
u→0

|v(t, u)|
u2

= lim
u→0

|v(u)|
u2

1

(1 +Kt−)r
≤ const

1

(1 +Kt−)r
.

Thus to prove (4.12) we have to check that condition (ii)′′ of Corollary 3.2 is satisfied.
But condition (ii)′′ will be satisfied if there exists δ, 0 < δ < δ0

2 , δ0
2 = 1− 1

2r , such that
∫ ∞

0

(1 +Kt−)
1/2(1 +Kt−)

−r(1 +Kt−)
−2rδ dKt < ∞.

Such a δ exists only if r > 5
6 .

Thus we obtain

lim
t→∞

L((1 +Kt)
−1/2zt) = lim

t→∞
L
(
σ2

β2

∫ t

0
(Bt −Bs−)dLs

B̃
1/2
t

)
.

5. PROOF OF RESULTS

Proof of Proposition 2.1: Applying the Itô formula to the process B̃t after simple calcula-
tions it is easy to check that

B̃t = 2 (〈L〉 ◦B) ◦Bt − (〈L〉∆B) ◦Bt. (5.1)

From conditions (2) and (3) applying the Toeplitz lemma we obtain

lim
t→∞

B̃t

(〈L〉 ◦B) ◦Bt
= 2− lim

t→∞

(〈L〉∆B) ◦Bt

(〈L〉 ◦B) ◦Bt
= 2− lim

t→∞

〈L〉∆B
〈L〉◦B (〈L〉 ◦B) ◦Bt

(〈L〉 ◦B) ◦Bt

= 2− lim
t→∞

〈L〉t∆Bt

〈L〉 ◦Bt
= 2− c.

Further,

lim
t→∞

B2
t

B̃t

= lim
t→∞

B2
t

(〈L〉 ◦B) ◦Bt

(〈L〉 ◦B) ◦Bt

B̃t

=
1

2− c
lim
t→∞

B2
t

(〈L〉 ◦B) ◦Bt
.

Therefore, it remains to show that

lim
t→∞

B2
t

(〈L〉 ◦B) ◦Bt
= 0. (5.2)
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We have

B2
t

(〈L〉 ◦B) ◦Bt
=

∫ t

0
(Bs− +Bs) dBs

(〈L〉 ◦B) ◦Bt
≤

2
∫ t

0
Bs dBs

(〈L〉 ◦B) ◦Bt

=
2
∫ t

0
Bs(〈L〉 ◦B)−1

s (〈L〉 ◦B)s dBs

(〈L〉 ◦B) ◦Bt
.

Now, applying once again the Toeplitz lemma to the last term of this inequality and using
condition (2) we obtain

lim
t→∞

2
∫ t

0
Bs dBs

(〈L〉 ◦B) ◦Bt
= 2 lim

t→∞

Bt

〈L〉 ◦Bt
= 2 lim

t→∞

∫ t

0
〈L〉−1

s 〈L〉s dBs

〈L〉 ◦Bt
= 2 lim

t→∞

1

〈L〉t
= 0 .

Therefore

lim
t→∞

B2
t

(〈L〉 ◦B) ◦Bt
≤ 2 lim

t→∞

2
∫ t

0
Bs dBs

(〈L〉 ◦B) ◦Bt
= 0

from which (5.2) follows. Eq. (2.7) directly follows from Eq. (2.6). �

Proof of Proposition 2.2: First, show that conditions (1) and (2) of Proposition 2.1 are
satisfied. We have

〈L〉 ◦Bt = 〈L〉Γ−1 ◦ E−1
t =

∫ t

0

〈Ls〉Γ−1
s Γ2

s〈Ls〉−1βs dKs

=

∫ t

0

dΓs = Γt − 1 → ∞ as t → ∞.

Thus, condition (1) is satisfied.
Further, since E−1

∞ = ∞ and

(〈L〉 ◦B) ◦Bt

E−1
t

=
(〈L〉 ◦B)Γ−1 ◦ E−1

t

E−1
t

,

one can apply the Toeplitz lemma to obtain

lim
t→∞

(〈L〉 ◦B) ◦Bt

E−1
t

= lim
t→∞

∫ t

0
dΓs

Γt
= 1,

from which condition (2) follows.
Condition (3) immediately follows from Assumption 1. Indeed,

Lt∆Bt

〈L〉 ◦Bt
=

∆Γt

Γt − 1
= βt∆Kt

1

(1− 1
Γt
)
→ m as t → ∞.

To prove (2.9) rewrite B̃t in the following form

B̃t = (2〈L〉 ◦B − 〈L〉∆B) ◦Bt = (2〈L〉 ◦B − 〈L〉∆B) Γ−1 ◦ E−1
t .

Applying the Toeplitz lemma we have

lim
t→∞

B̃t

E−1
t

= lim
t→∞

2〈L〉 ◦Bt − 〈L〉t∆Bt

Γt
= lim

t→∞

2(〈L〉Γ−1) ◦ E−1 − 〈L〉tΓ−1
t ∆E−1

t

Γt

= lim
t→∞

2〈L〉Γ−2β−1gE−1 ◦ Γt − 〈L〉tΓ−2
t β−1

t gtE−1
t ∆Γt

Γt
.
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Then, since Γ∞ = ∞, applying the Toeplitz lemma again we obtain

lim
t→∞

B̃t

E−1
t

= 2 lim
t→∞

〈L〉tΓ−2
t β−1

t gtE−1
t − lim

t→∞
〈L〉tΓ−2

t β−1
t gtE−1

t

∆Γt

Γt
(5.3)

if these limits exist. Now note that

gtE−1
t = Γ2

t 〈L〉−1
t βt, (5.4)

therefore from (5.3) we get (2.9). Now Eq. (2.10) is a direct consequence of Eq. (2.7). �

Proof of Lemma 3.1: Since

dE−1
t = (E−1/2

t + E−1/2
t− ) dE−1/2

t ,

we can write r̃it as follows:

r̃1t =
1

E−1/2
t

∫ t

0

R1
sΓ

−1
s (E−1/2

s + E−1/2
s− ) dE−1/2

s .

Let us show first that

lim
t→∞

|R1
t |(E

−1/2
t + E−1/2

t− )

Γt
= 0.

Indeed, using (1.3) we get

|R1
t |(E

−1/2
t + E−1/2

t− )

Γt
≤ 2

|R1
t |

ΓtE1/2
t

=

∫ t

0
(ΓsE−1/2

s )E−1/2
s |βs − βs(zs−)| |zs−| dKs

ΓtE1/2
t

. (5.5)

Show that the limit of the last expression equals zero. For this aim establish first that

lim
t→∞

ΓtE1/2
t = ∞. (5.6)

We have

Γ−2
t E−1

t =
1 +

∫ t

0
Γ2
s〈L〉−1

s βs dKs

Γ2
t

=
1 +

∫ t

0
Γ2
s〈L〉−1

s Γ−2
s

(
2− ∆Γs

Γs

)−1

dΓ2
s

Γ2
t

. (5.7)

Applying the Toeplitz lemma to the last term of Eq. (5.7), we get

lim
t→∞

Γ−2
t E−1

t = lim
t→∞

〈L〉−1
t

(
2− ∆Γt

Γt

)−1

= 0.

Further, show that condition (i) implies that (ΓtE1/2
t )t≥0 is an increasing process eventu-

ally.
Using the Itô formula to the process (Γ2

tEt)t≥0 we have

d(Γ2
tEt) = d

(
Γ2
t

E−1
t

)
=

1

E−1
t−

(Γt + Γt−) dΓt − Γ2
t

1

E−1
t E−1

t−
d(E−1

t )

=
1

E−1
t−

Γ2
t

[(
2− ∆Γt

Γt

)
− 1

E−1
t

Γ2
t 〈L〉−1

t

]
βt dKt > 0 eventually.



Stochastic Analysis: Applications to Statistics and Finance 117

Hence (Γ2
tE

1/2
t )t≥0 is an increasing process eventually. This fact together with (5.6) allows

one to apply the Kronecker lemma to observe that condition (ii) ensures that the limit of the
last term of Eq. (5.5) equals zero. Now assertion of the lemma follows from the Toeplitz
lemma. �

Proof of Corollary 3.2: (1) As γδ
t zt → 0 as t → ∞, P -a.s. for all δ, 0 < δ < δ0

2 , then
|γδ

t zt(ω)| is bounded by some constant (depending on ω) for all δ, 0 < δ < δ0
2 , P -a.s.

Therefore, for all δ, 0 < δ < δ0
2 ,

∫ ∞

0

E−1/2
t |βt − βt(zt−)| |zt−| dKt =

∫ ∞

0

E−1/2
t |βt − βt(zt−)|γ−δ

t− |γδ
t− zt−| dKt

≤ const(ω)

∫ ∞

0

E−1/2
t |βt − βt(zt−)|γ−δ

t− dKt P -a.s.

Thus, (ii)′⇒(ii).
(2)The arguments are clear. �

Proof of Lemma 3.3: Show that

r̃2t =
1

E−1/2
t

∫ t

0

R2
s dBs =

1

E−1/2
t

∫ t

0

Ns dBs
P→ 0 as t → ∞.

Since B = (Bt)t≥0 is deterministic, we have

r̃2t =
1

E−1/2
t

∫ t

0

Ns dBs =
1

E−1/2
t

∫ t

0

(Bt −Bs−) dNs.

Further, for any sequence (tn)n≥1, tn → ∞ as n → ∞, let us consider a sequence of
martingales Y n = (Y n

u ,Fn
u )u∈[0,1] ∈ M2

loc(P ), n ≥ 1, where Fn
u = Ftnu,

Y n
u =

1

E−1/2
tn

∫ tnu

0

(Btn −Bs−) dNs.

Now, if we show that 〈Y n〉1
P→ 0 as n → ∞, then from the well-known fact that 〈Y n〉1

P→
0 ⇒ Y n

1
P→ 0 (see, e.g., [12]) we will get r̃2tn → 0 as n → ∞, and hence r̃2t → 0 as t → ∞.

Thus we have to show that 〈Y n〉1
P→ 0 as n → ∞. Since

〈Y n〉1 =
1

E−1
tn

∫ tn

0

(Btn −Bs−)
2d〈N〉s,

we have to show
1

E−1
t

∫ t

0

(Bt −Bs−)
2d〈N〉s

P→ 0 as t → ∞.

We use (5.1) with 〈N〉 instead of 〈L〉 to obtain
∫ t

0

(Bt −Bs−)
2d〈N〉s ≤ 2(〈N〉 ◦B) ◦Bt.

Hence, it is enough to prove that (3.4) implies

(〈N〉 ◦B) ◦Bt

E−1
t

→ 0 as t → ∞.
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Since E−1
∞ = ∞ and

(〈N〉 ◦B) ◦Bt

E−1
t

=

∫ t

0

∫ s

0
〈N〉udBu Γ−1

s dE−1
s

E−1
t

,

applying the Toeplitz lemma yields

lim
t→∞

(〈N〉 ◦B) ◦Bt

E−1
t

= lim
t→∞

1

Γt

∫ t

0

〈N〉s dBs

= lim
t→∞

1

Γt

∫ t

0

〈N〉sΓ−1
s dE−1

s = lim
t→∞

1

Γt

∫ t

0

〈N〉s〈L〉−1
s dΓs = lim

t→∞

〈N〉t
〈L〉t

= 0,

which completes the proof. �

Proof of Proposition 4.1 : (1) By the definition

〈L〉t = 1 +

∫ t

0

Γ2
s�

2
s dKs = 1 +

∫ t

0

Γ2
s

σ2
s

γ2
s−

dKs

= 1 +

∫ t

0

Γ2
sγ

−1
s−σ2

s

dKs

γs−
≥ 1 +

∫ t

0

Γ2
sγ

−1
s σ2

s

dKs

γs−
.

Now consider the process (Γ−2
t γt)t≥0. Using the Yor formula Et(X)Et(Y ) = Et(X +

Y + [X,Y ]), we have

Γ−2
t γt = E2

t

(
− β

γ−
◦K

)
Et(λ ◦K)

= Et
(∫ ·

0

[2β − g̃s]
dKs

γs−
+
∑
s≤·

[
β2
s − 2βg̃s + β2g̃s

∆Ks

γs−

](
∆Ks

γs−

)2 )
. (5.8)

Further, note that by virtue of conditions (i), (iii), (iv) and (v)
∫ ∞

0

[2β − g̃s]
dKs

γs−
= ∞ P -a.s.

and

∑
t≥0

[
β2 − 2βg̃t + β2g̃t

∆Kt

γt−

](
∆Kt

γt−

)2

≤
∑
t≥0

β2

[
1 + g̃t

∆Kt

γt−

](
∆Kt

γt−

)2

< ∞ P -a.s.

These relations together with (5.8) imply

lim
t→∞

Γ2
tγ

−1
t = ∞

which in turn provides 〈L〉∞ = ∞ P -a.s.
(2) Let us note that conditions (a), (b) and (c) of Proposition A.3 are satisfied with c1 = 0

(see (iii)), c2 = β
σ2 , c3 = g̃

σ2 (see (iv)).
Assertion (3) follows from (2.4).
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On the other hand, applying the Toeplitz lemma and assertion (2) we obtain

lim
t→∞

E−1
t

1 +Kt
= lim

t→∞
Γ2
t 〈L〉−1

t

β

γt−
=

β(2β − g̃)

σ2
.

Now the last assertion (4) follows from (2.9) with m = 0 since ∆Γt

Γt
= βt∆Kt = β ∆Kt

γt−
→

0. �

Proof of Proposition 4.2: Conditions (i) and (ii) of this proposition are the same as the
corresponding conditions in Proposition B.1 written for the considered case. Condition (B)
of Proposition B.1 follow from Eq. (4.4). �
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APPENDIX A

Here we collect some necessary definitions and technical results concerning main objects
of this paper.

Definition A.1. We say that two processes ξ = (ξt)t≥0 and η = (ηt)t≥0 are equivalent and
write ξ ∼ η if there exists some constant c, 0 < c < ∞, such that

lim
t→∞

ξt
ηt

= c P -a.s.

Definition A.2. We say that the process ξ = (ξt)t≥0 has some property eventually if for every
ω in a set Ω0 of P probability 1, the trajectory (ξt(ω))t≥0 of the process has this property on
the set [t0(ω),∞) for some t0(ω) < ∞.

Toeplitz’s lemma: Let L = (Lt)t≥0 be a predictable increasing process with L∞ = ∞
P -a.s., Y = (Yt)t≥0 ∈ D be some process such that Y ◦ Lt < ∞ P -a.s. for all t ≥ 0 and
lim
t→∞

Y∞ < ∞ P -a.s. Then

lim
t→∞

∫ t

0
Ys dLs

1 + Lt
= lim

t→∞
Yt = Y∞ P -a.s.

Assume that the following objects are given: K = (Kt)t≥0 – predictable increasing pro-
cess with K∞ = ∞ P -a.s. Γ = (Γt)t≥0, Γt = E−1

t (−β ◦ K), where (βt)t≥0 is a positive
predictable process such that βt∆Kt < 1, β ◦Kt < ∞ for all t ≥ 0 and β ◦K∞ = ∞ P -a.s.
L = (Lt)t≥0, Lt =

∫ t

0
Γs dms, where (mt)t≥0 ∈ M2

loc(P ), d〈m〉t = �2t dKt, �2 ◦K∞ < ∞
P -a.s.

Let γ = (γt)t≥0 be some increasing predictable process such that γt = 1+ g̃ ◦Kt, g̃t ≥ 0,
g̃ ◦Kt < ∞ for all t ≥ 0 and g̃ ◦K∞ = ∞ P -a.s. Obviously process (γt)t≥0 can be written
as follows: γt = Et(λ ◦K), where λt = g̃t/γt.

Everywhere below we assume that 〈L〉∞ = ∞ P -a.s.

Proposition A.3. Let the following conditions be satisfied: P -a.s.

(a) βt∆Kt → c1 as t → ∞, 0 ≤ c1 < 1,

(b) γ−1
t−

βt

�2t
→ c2 as t → ∞, 0 < c2 < ∞,

(c) γ−1
t

λt

�2t
→ c3 as t → ∞, 0 ≤ c3 < c2(2− c1).

Then

lim
t→∞

Γ2
t 〈L〉−1

t

γt
= c2(2− c1)− c3 P -a.s.

Proof. Applying the Itô formula to the process (Γ2
tγ

−1
t )t≥0 and having in mind that dΓ2

t =

(Γt + Γt−) dΓt, dΓt = Γtβt dKt, d〈L〉t = Γ2
t �

2
t dKt and dγ−1

t = −γ−1
t λt dKt we obtain

Γ2
t 〈L〉−1

t

γt
=

Γ2
tγ

−1
t

〈L〉t
=

∫ t

0
γ−1
s−

(
2− ∆Γs

Γs

)
βs

�2s
d〈L〉s −

∫ t

0
γ−1
s �−2

s λsd〈L〉s
〈L〉t

.
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Since 〈L〉∞ = ∞ using the Toeplitz lemma and conditions (a), (b) and (c) we have

lim
t→∞

Γ2
t 〈L〉−1

t

γt
= lim

t→∞

Γ2
tγ

−1
t

〈L〉t

= lim
t→∞

γ−1
t−

(
2− ∆Γt

Γt

)
βt

�2t
− lim

t→∞
γ−1
t �−2

t λt = c2(2− c1)− c3. �

Remark 5. Under condition (b) the condition (c) is equivalent to

(c)′ γ−1
t g̃t/βt → c3

c2
as t → ∞, P -a.s.

This fact immediately follows from the relation

γ−1
t λt/�

2
t = (γ−1

t g̃t/βt)(γ
−1
t− βt/�

2
t ).

Proposition A.4. Let K = (Kt) be an increasing predictable process, K∞ = ∞ P -a.s.,
satisfying (4.4) with 1

2 < r < 1.

Put βt =
β

(1+K−)r , �2t =
σ2
t

(1+Kt−)2r , lim
t→∞

σ2
t = σ2.

In this case the following assertions hold true: P -a.s.

(1) (1 +K−)
−r ◦K∞ = ∞; moreover, lim

t→∞
(1+K−)−r◦Kt

(1+Kt)1−r = 1
1−r ;

(2) (1 +K−)
2r ◦K∞ < ∞;

(3) 〈L〉∞ = ∞;

(4) lim
t→∞

Γ2
t 〈L〉−1

t

(1+Kt)r
= 2 β

σ2 .

Proof. Assertion (1) immediately follows from the following time change formula (see,
e.g., [2])

∫ ∞

0

dKt

(1 +Kt−)r
=

∫ K∞

0

dt

(1 +Kc(t)−)r
≥

∫ K∞

0

dt

(1 + t)r
= ∞,

where c(t) = inf{s > 0 : Ks > t}. Note that Kc(t)− ≤ t.
(2) We will prove more general result. Let α > 0. Then the condition

∑
t

(∆Kt)
2

(1 +Kt−)2+α
< ∞ (A.1)

is sufficient for

(1 +K−)
−(1+α) ◦K∞ < ∞. (A.2)

Using the Itô formula to the process (1 +Kt)
−α one easily obtain

(1 +K−)
−(1+α) ◦K∞ =

1

α
(1− (1 +Kt)

−α)

+
1

α

∑
t

[
(1 +Kt)

−α − (1 +Kt−)
−α + α(1 +Kt−)

−(1+α)∆Kt

]
.
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But
∑
t

∣∣∣(1 +Kt)
−α − (1 +Kt−)

−α + α(1 +Kt−)
−(1+α)∆Kt

∣∣∣

≤ α(1 + α)
∑
t

(∆Kt)
2

(1 +Kt−)2+α
< ∞.

In the case when 1+α = 2r, for the convergence (1+K−)
−2r ◦K∞ < ∞ it is sufficient

the following condition
∑
t

(∆Kt)
2

(1 +Kt−)2r+1
< ∞

which in turn follows from (4.4).
Note that (3) follows from Proposition 4.2 with γt = (1 +Kt)

r.
(4) Put γ(t) = (1 +Kt)

r and let us check conditions (a), (b) and (c) of Proposition A.3.
From the condition (4.4) directly follows that condition (a) is satisfied with c1 = 0. Condition
(b) is trivially satisfied with c2 = β

σ2 . As for condition (c), it is not hard to check that

γt = 1 +

∫ t

0

g̃s dKs, (A.3)

where

g̃t = r(1 +Kt−)
r−1I{∆Kt=0} +

(1 +Kt)
r − (1 +Kt−)

r

∆Kt
I{∆Kt �=0}

≤ r(1 +Kt)
r−1 → 0 as t → ∞. �

APPENDIX B

In this section for convenience of readers we formulate some results from [6], [7].
The following proposition is the second part of Theorem 3.1 from [7].

Proposition B.1. Let the following conditions be satisfied:

(i) [at(u)I{∆Kt �=0} + bt(u)]
+ ≤ Dt(1 + u2), Dt ≥ 0, D ◦K∞ < ∞, (B.1)

(ii) For each ε > 0

inf
ε≤|u|≤ 1

ε

{
|a(u)I{∆Kt=0} + [a(u)I{∆Kt �=0} + b(u)]−

}
◦K∞ = ∞ P -a.s.

(B) 〈M〉∞ < ∞ P -a.s.

Then zt → 0 as t → ∞ P -a.s.

Combining the results of Theorem 2.1 and Corollary 2.1 from [7] we obtain

Proposition B.2. Let the following conditions be satisfied:

(1)
γ

γ−
is eventually bounded,

(2) (βt(zt−)∆Kt)t≥0 is eventually bounded,

for all δ, 0 < δ < δ0
2 , P -a.s.
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(3)
[
δ
g̃

γ
− β(z−)

]+
◦Kc

∞ < ∞, where g̃t =
dγt

dKt
,

(4)
∑
t≥0

[
1− βt(zt−)∆Kt −

(
1− ∆γt

γt

)δ ]+
I{βt(zt−)∆Kt≤1} < ∞,

(5)
∑
t≥0

[
βt(zt−)∆Kt − 1−

(
1− ∆γt

γt

)δ ]+
I{βt(zt−)∆Kt≥1} < ∞,

(6)
∫ ∞

0

γ2δ
t �2t dKt < ∞.

Then for all δ, 0 < δ < δ0
2

γδ
t zt → 0 as t → ∞ P -a.s.

Proposition B.3 below is the repetition of Theorem 3.1 from [7] for the case when 〈L〉t,
t ≥ 0, is deterministic, βt∆Kt < 1 eventually, M(t, u) ≡ M(t, 0) := Mt.

Proposition B.3. Let the following condition be satisfied: there exists ε, 1
2 − δ0 < ε < 1

2
such that

1

〈L〉t

∫ t

0

|βs − βs(zs−)|γε
s−〈L〉s dKs → 0 as t → ∞ P -a.s. (B.2)

Then
Γt〈L〉−1/2

t zt =
z0

〈L〉1/2t

+
Lt

〈L〉1/2t

+Rt

with Rt
P→ 0 as t → ∞.

Remark 6. The condition: there exists ε, 1
2 − δ0 < ε < 1

2 such that
∫ ∞

0

|βt − βt(zt−)|γε
t− dKt < ∞ P -a.s.

is sufficient for (B.2).





RECURSIVE PARAMETER ESTIMATION IN THE TREND COEFFICIENT OF
A DIFFUSION PROCESS

N. LAZRIEVA AND T. TORONJADZE

Abstract. The recursive estimation problem of a one-dimensional parameter in the trend
coefficient of a diffusion process is considered. The asymptotic properties of recursive es-
timators are derived, based on the results on the asymptotic behaviour of a Robbins–Monro
type SDE. Various special cases are considered.

Key words and phrases: Diffusion, recursive parameter estimation, stochastic approxima-
tion, Robbins–Monro type SDE
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Dedicated to Professor Yu. V. Prokhorov on the occasion of his 80th birthday

0. INTRODUCTION

The asymptotic theory of maximum likelihood estimation of an unknown parameter in
the trend coefficient of diffusion processes was developed (in some generality) in a series
of works ([2], [3], [12] and others) in the context of Hajek–Le Cam theory. In particular, it
was shown that under some regularity conditions the maximum likelihood estimator (MLE)
is asymptotically normal and efficient.

As is well known, the maximum likelihood estimator can be constructed solving the MLE
equation ∫ t

0

ȧ(Xs, θ)

(σ(Xs))2
(dXs − a(Xs, θ)ds) = 0

which is nonlinear (in general) w.r.t. the parameter θ, and, in addition, requires repeated
calculations of a stochastic integral.

On the other hand, to avoid these difficulties Nevelson and Khas’minskiı̆ (1972) [11], Al-
bert and Gardner (1967) [1] and others ([9], [10], [14], [15]) introduced recursive procedures
of constructing estimators that are asymptotically equivalent to a MLE for special cases of
statistical models (i.i.d., diffusion processes, etc.). They also suggested to study the asymp-
totic properties of recursive procedures by the methods of stochastic approximation.

In [6], [7], the authors proposed the method of constructing recursive estimation proce-
dures for semimartingale statistical models. Later, in [4], [5] they introduced the Robbins–
Monro type stochastic differential equation (RM type SDE) and studied the asymptotic prop-
erties of solutions (convergence, rate of convergence, asymptotic expansion) based on a gen-
eral theory of martingales and stochastic calculus.

Published in Georgian Math. J. 17 (2010), no. 4, 683–704.
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It should be noticed that an RM type SDE covers both general stochastic approximation
algorithms with martingale noises and recursive estimation procedures for semimartingale
statistical models.

In the present paper we study the problem of recursive estimation of a one-dimensional
parameter in the trend coefficient of a homogeneous diffusion process, embedding the recur-
sive estimation procedures (SDEs) in the RM type SDE, and derive the asymptotic properties
of recursive estimators based on the results of [4], [5].

In Section 1, we study the general case.
In Section 2, we consider the special cases of ergodic diffusion with the trend coefficient

of a separated parameter and phase variables, Ornstein–Uhlenbeck process and ergodic dif-
fusion.

1. GENERAL CASE

We consider the problem of recursive estimation of the one-dimensional parameter in the
trend coefficient of a diffusion process ξ = {ξt, t ≥ 0} with

dξt = a(ξt, θ) dt+ σ(ξt) dwt, ξ0, (1.1)

where w = {wt, t ≥ 0} is a standard Wiener process, a(·, θ) is the known function, θ ∈ Θ ⊆
R is a parameter to be estimated, Θ is some open subset of R, σ2(·) is the known diffusion
coefficient.

We assume that there exists a unique strong solution of equation (1.1).
For each θ ∈ Θ denote by P θ the distribution of the process ξ on (C[0,∞),B).
Let X = {Xt, t ≥ 0} be the coordinate process, that is, for each x = {xt, t ≥ 0} ∈

C[0,∞), Xt(x) = xt, t ≥ 0.

Fix some θ′ ∈ Θ and assume that for each θ ∈ Θ, P θ (loc)∼ P θ′
. Then the density process

ρt(X, θ) can be written as

ρt(X, θ) :=
dP θ

t

dP θ′
t

(X) = exp

{∫ t

0

a(Xs, θ)− a(Xs, θ
′)

σ(Xs)

(dXs− a(Xs, θ
′)ds)

σ(Xs)

− 1

2

∫ t

0

(
a(Xs, θ)− a(Xs, θ

′)

σ(Xs)

)2

ds.

Recall that if for all t ≥ 0 P θ-a.s.
∫ 1

0

σ2(Xs) ds < ∞, (1.2)

then the process Xc :=
{
Xt−

t∫
0

a(Xs, θ) ds, t ≥ 0
}
∈ M2

loc(P
θ) with 〈Xc〉t =

t∫
0

σ2(Xs) ds.

Under suitable regularity conditions if we assume that for all t ≥ 0 P θ-a.s.
∫ t

0

(
ȧ(Xs, θ)

σ(Xs)

)2

ds < ∞, (1.3)
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we will have
{

∂

∂θ
ln ρt(X, θ) =

∫ t

0

(
ȧ(Xs, θ)

σ(Xs)

)2

dXc
s , t ≥ 0

}
∈ M2

loc(P
θ),

where ȧ(·, θ) denotes the derivative of a(·, θ) w.r.t θ.
Below we assume that conditions (1.2) and (1.3) are satisfied.
Introduce the Fisher information process

Ît(θ) =

∫ t

0

(
ȧ(Xs, θ)

σ(Xs)

)2

ds.

Suppose that for each θ, Ît(θ) → ∞ as t → ∞ P θ-a.s. and there exists some positive
predictable non-increasing process {It(θ), t ≥ 0} such that

Ît(θ)It(θ) → 1 as t → ∞ P θ-a.s.

Then, according to equation (1.4.11) from [6], the SDE for constructing the recursive estima-
tor (θt, t ≥ 0) has the form

dθt = It(θt)

[
ȧ(Xt, θt)

σ2(Xs)
dXc

t +
ȧ(Xt, θt)

σ2(Xt)
(a(Xt, θ)− a(Xt, θt)) dt

]
. (1.4)

Fix some θ ∈ Θ. To study the asymptotic properties of the recursive estimator {θt, t ≥ 0}
as t → ∞ under measure P θ let us denote zt = θt − θ and rewrite (1.4) in the following
form:

dzt = It(θ + zt)

[
ȧ(Xt, θ + zt)

σ2(Xs)
dXc

t

+
ȧ(Xt, θ + zt)

σ2(Xt)
(a(Xt, θ)− a(Xt, θ + zt)) dt

]
. (1.5)

In the sequel we assume that there exists a unique strong solution of equation (1.5) such
that {∫ t

0

Is(θ + zs)
ȧ(Xs, θ + zs)

σ2(Xs)
dXc

s , t ≥ 0

}
∈ M2

loc(Pθ),

that is, for each t ≥ 0 P θ-a.s.
∫ t

0

I2s (θ + zs)

(
ȧ(Xs, θ + zs)

σ(Xs)

)2

ds < ∞.

We will study the asymptotic properties of the process z = {zt, t ≥ 0} as t → ∞ (under
the measure P θ) using the results of [4], [5] concerning the asymptotic behaviour of solutions
of the Robbins–Monro type SDE

zt = z0 +

∫ t

0

Hs(zs−) dKs +

∫ t

0

M(ds, zs−). (1.6)
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Note that equation (1.6) covers equation (1.5) with Kt = t,

Ht(u) := Hθ
t (u) = It(θ + u)

ȧ(Xt, θ + u)

σ2(Xt)

× (a(Xt, θ)− a(Xt, θ + u)) , Hθ
t (0) = 0, (1.7)

M(u) := Mθ(u) =

{
Mθ(t, u) =

∫ t

0

Is(θ + u)
ȧ(Xt, θ + u)

σ2(Xt)
dXc

s , t ≥ 0

}
. (1.8)

Let for each u ∈ R the process Mθ(u) ∈ M2
loc(P

θ). Then

〈Mθ(u),Mθ(v)〉t =
∫ t

0

hs(u, v) ds,

where

ht(u, v) = hθ
t (u, v) = It(θ + u)It(θ + v)

ȧ(Xt, θ + u)ȧ(Xt, θ + v)

σ2(Xt)
. (1.9)

Let us introduce the following objects:

βθ
t = − lim

u→0

Hθ
t (u)

u
= It(θ)

(
ȧ(Xt, θ)

σ(Xt)

)2

, (1.10)

βθ
t (u) =



−Hθ

t (u)

u
, u �= 0,

βθ
t , u = 0,

(1.11)

Γθ
t = exp

{∫ t

0

βθ
s ds

}
, (1.12)

Lθ
t =

∫ t

0

Γθ
s dMθ

s (0). (1.13)

Suppose Γθ
t → ∞ as t → ∞ P θ-a.s. and

Lθ = {Lθ
t , t ≥ 0} ∈ M2

loc(P
θ).

Below to simplify the notation we omit θ in some formulas.

Theorem 1.1. (I) Convergence. Let the following conditions be satisfied:

(A) for each t ≥ 0 P θ-a.s.

Hθ
t (u)u < 0 for all u �= 0, θ + u ∈ Θ;

(i) for all u, θ + u ∈ Θ and t ≥ 0 P θ-a.s.

I2t (θ + u)

(
ȧ(Xt, θ + u)

σ2(Xt)

)2

≤ Bt(1 + |u|2),

where B = {Bt, t ≥ 0} is a predictable positive process (maybe depending on θ)
such that ∫ ∞

0

Bsds < ∞, P θ-a.s.;
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(ii) for each ε, 0 < ε < 1,
∫ ∞

0

inf
ε≤|u|≤ 1

ε

∣∣∣∣It(θ + u)
ȧ(Xt, θ + u)

σ2(Xt)
(a(Xt, θ)− a(Xt, θ + u))u

∣∣∣∣ dt=∞ P θ-a.s.

Then for any initial value z0

zt → 0 as t → ∞ P θ-a.s. (1.14)

(II) Rate of convergence. Assume that (1.14) holds true.
Let γ = {γt, t ≥ 0} be an increasing process such that γt = 1 +

∫ t

0
gsds, γ∞ = ∞,

P θ-a.s.
Suppose the following conditions are satisfied:

(i) for all δ, 0 < δ < 1, P θ-a.s.
∫ ∞

0

γδ
t I

2
t (θ + zt)

(
ȧ(Xt, θ + zt)

σ(Xt)

)2

dt < ∞;

(ii) for all δ, 0 < δ < 1
2 , P θ-a.s.

∫ ∞

0

[
δ
gt
γt

− It(θ)

(
ȧ(Xt, θ)

σ(Xt)

)2(
I{zt=0}

+
It(θ + zt)

It(θ)

ȧ(Xt, θ + zt)

ȧ(Xt, θ)

a(Xt, θ + zt)− a(Xt, θ)

ȧ(Xt, θ)zt
I{zt �=0}

)]+
dt < ∞,

where a+ = max[0, a].

Then for all δ, 0 < δ < 1
2 ,

γδ
t zt → 0 as t → ∞ P θ-a.s., (1.15)

for any initial value z0.

(III) Asymptotic expansion. Assume that (1.15) holds true and the following conditions
are fulfilled:

(i) 〈L〉∞ =

∫ ∞

0

Γ2
t d〈Mθ(0)〉t = ∞ P θ-a.s.;

(ii) Γ2〈L〉−1 � γ∗ (i.e. these two processes are asymptotically equivalent);
(iii) 〈L〉 = {〈L〉t, t ≥ 0} is a deterministic process or 〈L〉 � 〈L̃〉, where 〈L̃〉 is a

deterministic process;
(iv) there exists ε, ε > 0, such that P θ-a.s.

1

〈L〉t

∫ t

0

Is(θ)

(
ȧ(Xs, θ)

σ(Xs)

)2∣∣∣∣1−
Is(θ + zs)

Is(θ)

ȧ(Xs, θ + zs)

ȧ(Xs, θ)

× a(Xs, θ + zs)− a(Xs, θ)

ȧ(Xs, θ)zs

∣∣∣∣ |zs|−ε I{zs �=0}〈L〉sds → 0 as t → ∞;

∗For the exact definition of “�” see Definition 2.2 from [5],
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(v)
1

〈L〉t

∫ t

0

Γ2
sIs(θ)

(
ȧ(Xs, θ)

σ(Xs)

)2[
1− Is(θ + zs)

Is(θ)

× ȧ(Xs, θ + zs)

ȧ(Xs, θ)

]2
ds

P θ

−→ 0 as t → ∞.

Then process z = {zt, t ≥ 0} admits the following representation

Γt〈L〉−1/2
t zt =

Lt

〈L〉1/2t

+Rt

with Rt
P θ

−→ 0 as t → ∞.

Proof. (I) It is enough to note that conditions (A), (I)(i) and (I)(ii) of the theorem ensure that
the conditions (A), (B) and (I) of Theorem 3.1 from [4] are satisfied with

ht(u) = I2t (θ + u)

(
ȧ(Xt, θ + u)

σ(Xt)

)2

and

αt(u) = It(θ + u)
ȧ(Xt, θ + u)

σ2(Xt)
(a(Xt, θ)− a(Xt, θ + u))u.

Thus (1.14) holds true.

(II) Condition (II)(i) of the theorem is the same as condition (2.4) of Theorem 2.1 from
[5] with ht(u) defined as above.

After a simple calculation one can check that condition (II)(ii) is the same as condition
(2.6) from [5], taking into account that

βt(u) := βθ
t (u) = − It(θ + u)

ȧ(Xt, θ + u)

σ2(Xt)

a(Xt, θ)− a(Xt, θ + u)

u
I{u �=0}

+ It(θ)

(
ȧ(Xt, θ)

σ(Xt)

)2

I{u=0} .

Then (1.15) directly follows from Corollary 2.1 and Theorem 2.1 from [5], noting that all
conditions of Corollary 2.1 are satisfied because {Kt, t ≥ 0} and {γt, t ≥ 0} are continu-
ous.

(III) One can easily check that conditions (III) (i)–(v) imply all conditions of Theorem 3.1
from [5]. �

2. SPECIAL CASES

Case 2.1. Ergodic process with separated phase and parameter variables in the trend
coefficient. Let in equation (1.1) the trend coefficient a(x, θ) = a(θ)ϕ(x). Suppose that
conditions (1.2) and (1.3) are satisfied. Assume also that for any θ ∈ Θ ⊆ R the process ξ
has the ergodic property, that is, the functions a(·, θ) and σ2(·) satisfy conditions (1.44) and
(1.45) from [3] with the density of invariant distribution

f(x, θ) =
1

G(θ)σ2(x)
exp

{
2

∫ x

0

a(v, θ)

σ2(v)
dv

}
,
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where

G(θ) =

∫ ∞

−∞
σ−2(y) exp

{
2

∫ y

0

a(v, θ)

σ2(v)
dv

}
dy < ∞.

Assume that a(θ) is continuously differentiable with ȧ(θ) �= 0 for all θ ∈ Θ.
In this case

Ît(θ) = (ȧ(θ))2Φt(X),

where

Φt(X) =

∫ t

0

(
ϕ(Xs)

σ(Xs)

)2

ds

with the assumption Φt(X) → ∞ as t → ∞ P θ-a.s.
Put in (1.5)

It(θ) =
[
(ȧ(θ))

2
(1 + Φt(X))

]−1

.

Proposition 2.1. (I) Convergence. Suppose that for each u �= 0 , u + θ ∈ Θ, the following
conditions are satisfied:

(a) ȧ(θ + u) (a(θ)− a(θ + u))u < 0;

(b) [ȧ(θ + u)]−2 ≤ c(θ)(1 + |u|2);
(c) for each ε, 0 < ε < 1,

inf
ε≤|u|≤ 1

ε

∣∣∣∣
ȧ(θ + u)

ȧ(θ)

a(θ)− a(θ + u)

ȧ(θ)u

∣∣∣∣ > 0.

Then
zt → 0 as t → +∞ P θ-a.s. (2.1.1)

(II) Rate of convergence. Put γt = 1 + (ȧ(θ))2Φt(X). Then for all δ, 0 < δ < 1,

γδ
t zt → 0 as t → ∞, P θ-a.s. (2.1.2)

(III) Asymptotic expansion. Let the following condition be fulfilled: there exist some
ε > 0, γ > 0 and c(θ) such that

|ȧ(θ + u)− ȧ(θ + v)| ≤ c|u− v|γ

for all u, v ∈ Oε(θ) (here Oε(θ) is some ε-neighbourhood of θ). Then the process z =
{zt, t ≥ 0} admits the following asymptotic expansion

γ
1/2
t zt =

Lt(θ)

〈L〉1/2t

+Rt with Rt
P θ

−→ 0 as t → ∞. (2.1.3)

Proof. (I) Condition (I) (A), of Theorem 1.1 directly follows from condition (I) (a) of Propo-
sition 2.1.

Condition (I) (i) of Theorem 1.1 also directly follows from condition (I) (b) of Proposition
2.1 with

Bt =

(
ϕ(Xt)

σ(Xt)

)2

(1 + Φt(X))
−2

,
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Indeed,

ht(u) : = ht(u, u) = I2t (θ + u)

(
ȧ(Xt, θ + u)

σ(Xt)

)2

= [ȧ(θ + u)]
−2

Bt ≤ c(θ)Bt(1 + |u|2)

with ∫ ∞

0

Bt dt =

∫ ∞

0

(1 + Φt(X))
−2

dΦt(X) < ∞ P θ-a.s.

(II) We will check conditions (II)(i) and (ii) of Theorem 1.1.
Condition (II)(i) for the considered case is of the following form: for all δ, 0 < δ < 1

∫ ∞

0

(
1 + (ȧ(θ))2Φt(X)

)δ [
(ȧ(θ + zt))

2
(1 + Φt(X))

]−2

(ȧ(θ + zt))
2
dΦt(X)

=

∫ ∞

0

(
1 + (ȧ(θ))2Φt(X)

1 + Φt(X)

)δ

(ȧ(θ + zt))
−2

(1 + Φt(X))
δ−2

dΦt(X) < ∞ P θ-a.s.

But the last integral is finite since
∫ ∞

0

dΦt(X)

(1 + Φt(X))2−δ
< ∞ P θ-a.s.

and
(
1 + (ȧ(θ))2Φt(X)

1 + Φt(X)

)δ

[ȧ(θ + zt)]
−2 → (ȧ(θ))

2(δ−1) as t → ∞ P θ-a.s.

Further condition (II) (ii) of Theorem 1.1 for the considered case means that for all δ, 0 <
δ < 1, P θ-a.s.

(ȧ(θ))
2
∫ ∞

0

[
δ − 1 + (ȧ(θ))2Φt(X)

(ȧ(θ))2(1 + Φt(X))

(
I{zt=0}

+
ȧ(θ)

ȧ(θ + zt)

a(θ + zt)− a(θ)

ȧ(θ)zt
I{zt �=0}

)]+
dΦt(X)

1 + (ȧ(θ))2Φt(X)
< ∞

and is fulfilled since
[
δ − 1 + (ȧ(θ))2Φt(X)

(ȧ(θ))2(1 + Φt(X))

(
I{zt=0}

+
ȧ(θ)

ȧ(θ + zt)

a(θ + zt)− a(θ)

ȧ(θ)zt
I{zt �=0}

)]+
= 0 eventually.

Indeed,

I{zt=0} +
ȧ(θ)

ȧ(θ + zt)

a(θ + zt)− a(θ)

ȧ(θ)zt
I{zt �=0} → 1 as t → ∞ P θ-a.s.

and also
1 + (ȧ(θ))2Φt(X)

ȧ(θ)2(1 + Φt(X))
→ 1 as t → ∞ P θ-a.s.
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(III) Using (1.11), (1.12) and (1.13) we have

Γt := Γθ
t = 1 + Φt(X) → ∞ as t → ∞ P θ-a.s.,

〈Lθ〉t (ȧ(θ))2 Φt(X) → ∞ as t → ∞ P θ-a.s.,

lim
t→∞

Γ2
t 〈Lθ〉−1

t

γt
= 1

and, moreover, if we denote

i(θ) =

∫

R

(
ϕ(x)

σ(x)

)2

f(x, θ) dx, (2.1.4)

then
〈Lθ〉t

(1 + t)i(θ)
→ 1 as t → ∞ P θ-a.s.

Hence conditions (III) (i)–(iii) of Theorem 1.1 are satisfied.
Further, according to condition (III) (iv) of Theorem 1.1 we have to show that there exists

ε, ε > 0, such that P θ-a.s.

1

〈L〉t

∫ t

0

∣∣∣∣∣1−
a(θ + zs)− a(θ)

ȧ(θ + zs)zs

∣∣∣∣∣ |zs|
−ε I{zs �=0}〈Lθ〉s

dΦs(X)

1 + Φs(X)
→ 0 as t → ∞.

But according the the stochastic version of the Kronecker lemma it is enough to show that
P θ-a.s. ∫ ∞

0

∣∣∣∣∣1−
a(θ + zs)− a(θ)

ȧ(θ + zs)zs

∣∣∣∣∣ |zs|
−ε I{zs �=0}

dΦs(X)

1 + Φs(X)
< ∞.

On the other hand,∣∣∣∣∣1−
a(θ + zs)− a(θ)

ȧ(θ + zs)zs

∣∣∣∣∣ =
|ȧ(θ + zs)− ȧ(θ + z̃s)|

|ȧ(θ + zs)|
≤ const(θ)|zs − z̃s|γ ,

where 0 < |z̃s| < |zs|. Therefore for all δ, 0 < δ < 1, ε < γ
∫ ∞

0

∣∣∣∣∣1−
a(θ + zs)− a(θ)

ȧ(θ + zs)zs

∣∣∣∣∣ |zs|
−ε I{zs �=0}

dΦs(X)

1 + Φs(X)

≤ const(θ)

∫ ∞

0

|ȧ(θ + zs)|−1 |zs − z̃s|γ |zs|−εI{zs �=0}
dΦs(X)

1 + Φs(X)

≤ const(θ)

∫ ∞

0

|zs|γ−εI{zs �=0} dΦs(X)

≤ const(θ)

∫ ∞

0

|γδ
szs|γ−εγ−δ(γ−ε)

s

dΦs(X)

1 + Φs(X)

≤ const(θ)

∫ ∞

0

dΦs(X)

(1 + Φs(X))1+δ(γ−ε)
< ∞ P θ-a.s.

It remains to check condition (III)(v) which for the considered case becomes

1

1 + (ȧ(θ))2Φt(X)

∫ t

0

(ȧ(θ))
−2

[
1− ȧ(θ)

ȧ(θ + zs)

]2
dΦs(X)

P θ

−→ 0 as t → ∞,
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and is satisfied by virtue of the Toeplitz lemma and since Φ∞(X) = ∞, 1− ȧ(θ)
ȧ(θ+zs)

→ 0 as
t → ∞ P θ-a.s. �

Remark 2.1. 1. Conditions (I) (a) and (c) of Proposition 2.1 are satisfied if ȧ(·) is a strongly
monotone function.

2. If a(θ) = θ, all conditions of Proposition 2.1 will be fulfilled if the process is ergodic
and ∫

R

(
ϕ(x)

σ(x)

)2

f(x, θ) dx < ∞,

where f(x, θ) is the density of an invariant distribution.
3. From equation (2.1.3) it directly follows that

Lθ

{√
t zt

}
⇒ N

(
0,
(
(ȧ(θ))2i(θ)

)−1
)
,

where i(θ) is defined by (2.1.4), Lθ denotes the probability distribution of process z =
(zt)t≥0 under the measure P θ, and the symbol “⇒” is used to denote weak convergence
of distributions. Indeed, from (2.1.3) it is evident that the weak limits of Lθ(γ

1/2
t zt) and

Lθ

{
Lt(θ)

〈Lt〉1/2

}
coincide and according to the Central Limit Theorem for martingales one ob-

tains

Lθ

(
γ
1/2
t zt

)
⇒ N(0, 1).

It remains to note that

lim
t→∞

γt
t

= (ȧ(θ))
2
i(θ).

Example 2.1. The Ornstein–Uhlenbeck process: a(x, θ) = −θx, θ > 0, that is, Θ =
{θ, θ > 0}, σ(x) ≡ 1 (for simplicity).

As is well known, the MLE of θ is

θ̂t = θ +

∫ t

0
Xsdws∫ t

0
X2

s ds
,

where dwt = dXt + θXt dt is a Wiener process. The asymptotic behaviour of the normed
process

√
t(θ̂t − θ) =

√
t zt directly can be obtain using martingale limit theorems, namely,

Lθ(
√
t zt) ⇒ N(0, 2θ).

The same result can be obtained if we rewrite the process z = (zt)t≥0 in the recurrent
form

dzt = −zt
X2

t∫ t

0
X2

s ds
dt+

Xt∫ t

0
X2

sds
dwt

and study its asymptotic behaviour using the results of Proposition 2.1. Since the Ornstein–
Uhlenbeck process has the ergodic property as it has been mentioned in Remark 2.1, all
conditions of this proposition are satisfied and we obtain the same results since lim

t→∞
γt

t = 2θ.
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Case 2.2. Ergodic diffusion. We consider the diffusion process ξ = {ξt, t ≥ 0} defined by
(1.1) and assume that for any θ ∈ Θ ⊂ R the process ξ has the ergodic property. Besides, the
law of large numbers is fulfilled: for any measurable function ϕ(·, θ) with

∫

R

|ϕ(x, θ)| f(x, θ) dx < ∞

we have the convergence

lim
t→∞

1

t

∫ t

0

ϕ(Ss, θ)ds =

∫

R

ϕ(x, θ)f(x, θ) dx

(see, e.g., [3], [13]).
According to this law,

lim
t→∞

1

1 + t
Ît(θ) =

∫

R

(
ȧ(x, θ)

σ(x)

)2

f(x, θ) dx := I(θ).

Below we assume that for each θ ∈ Θ 0 < I(θ) < ∞. Hence one can put

It(θ) = [(1 + t)I(θ)]−1. (2.2.1)

We will study the asymptotic properties of the solution z = {zt, t ≥ 0} of the recursive
SDE (1.5) with It(θ) defined by (2.2.1) based on the results of Theorem 1.1.

For this purpose define the following objects:

γt = 1 +

∫ t

0

(
ȧ(Xs, θ)

σ(Xs)

)2

ds,

Γt = exp

{∫ t

0

Is(θ)

(
ȧ(Xs, θ)

σ(Xs)

)2

ds

}
= exp

{∫ t

0

Is(θ) dγs
}
,

Lt =

∫ t

0

Γs dM
θ(s, 0),

where

Mθ(t, 0) =

∫ t

0

Is(θ)
ȧ(Xs, θ)

σ2(Xs)
d(Xs − a(Xs, θ)ds).

Lemma 2.1. (1) Γt → ∞ as t → ∞ P θ-a.s.
(2) If ∫ ∞

0

|It(θ)γt − 1| d ln γt < ∞ P θ-a.s., (2.2.2)

then Γt � γt.
(3) 〈L〉∞ = ∞ P θ-a.s.

(4) lim
t→∞

Γ2
t 〈L〉−1

t

γt
= 1 P θ-a.s.

Proof. (1) Since γt → ∞ as t → ∞ P θ-a.s. and

ln Γt =

∫ t

0

Is(θ)γs d ln γs,
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one can apply the Toeplitz lemma to obtain

lim
t→∞

ln Γt

ln γt
= lim

t→∞
It(θ)γt = 1 P θ-a.s. (2.2.3)

Moreover, equation (2.2.3) allows one to conclude that

lim
t→∞

Γ2
tγ

−1
t = ∞ P θ-a.s. (2.2.4)

Indeed,

lim
t→∞

ln
(
Γ2
tγ

−1
s

)
= lim

t→∞
ln γt

(
2
ln Γt

ln γt
− 1

)
= ∞ P θ-a.s.

Assertion (2) directly follows from the equality

Γt

γt
= exp

∫ t
0
(Is(θ)γs−1)d ln γs .

(3) We have

〈L〉t =
∫ t

0

Γ2
sI

2
s (θ) dγs =

∫ t

0

Γ2
sγ

−1
s (γsIs(θ))

2 d ln γs → ∞ as t → ∞

since Γ2
tγ

−1
t → ∞, γsIs(θ) → 1 as t → ∞ P θ-a.s.

(4) We will check conditions (a), (b) and (c) of Proposition A3 from [8].
Condition (a) is trivially satisfied because Kt = t, so c1 = 0.
As for condition (b), note that

〈Mθ(0)〉t =
∫ t

0

�2sds,

where

�2t = I2t (θ)

(
ȧ(Xt, θ)

σ(Xt)

)2

.

Hence
1

γt

βt

�2t
=

1

γtIt(θ)
→ 1 as t → ∞ P θ-a.s.

Thus c2 = 1.
It is not difficult to show (in the same way as above) that condition (c) is also satisfied with

c3 = 1. Therefore according to Proposition A3 from [8]

lim
t→∞

Γ2
t 〈L〉−1

t

γt
= 2(c2 − c1)− c3 = 1. �

Remark 2.2. (I) Suppose that the process ξ = {ξt, t ≥ 0} defined by (1.1) is stationary and
the following conditions are satisfied:

a) there exist some constants c1 and p1 (not depending on θ) such that for all θ ∈ Θ
(
ȧ(x, θ)

σ(x)

)2

≤ c1 (1 + |x|p1) ;

b) there exist the constants c2 and p2 such that∣∣σ−1(x)
∣∣ ≤ c2 (1 + |x|p2) ;
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c) for each θ

lim
|x|→∞

sgn(x)
a(x, θ)

σ2(x)
< 0.

If there exists some ε > 0 such that∫ (
ȧ(x, θ)

σ(x)

)2+ε

f(x, θ) dx < ∞, (2.2.5)

then condition (2.2.2) of Lemma 2.1 is satisfied.

Indeed, we have
∫ ∞

0

|It(θ)γt − 1| d ln γt =
∫ ∞

0

|It(θ)γt − 1|
(
ȧ(Xt, θ)

σ(Xt)

)2

γ−1
t dt

=

∫ ∞

0

|It(θ)γt − 1| It(θ)
(
ȧ(Xt, θ)

σ(Xt)

)2

αt dt,

where αt = (γtIt(θ))
−1 → 1 as t → ∞ P θ-a.s. Therefore it is enough to show that

∫ ∞

0

|It(θ)γt − 1| It(θ)
(
ȧ(Xt, θ)

σ(Xt)

)2

dt < ∞ P θ-a.s. (2.2.6)

Further, we have (using the Hölder inequality with p = 1 + 2
ε and q = 1 + ε

2 , ε > 0)

Eθ

∫ ∞

0

|It(θ)γt − 1| It(θ)
(
ȧ(Xt, θ)

σ(Xt)

)2

dt

≤
∫ ∞

0

1

(1 + t)I(θ)

(
Eθ |It(θ)γt − 1|1+

2
ε

) ε
2+ε


Eθ

[(
ȧ(ξ, θ)

σ(ξ)

)2
]1+ ε

2




ε
2+ε

dt

≤

(
Eθ

(
ȧ(ξ, θ)

σ(ξ)

)2+ε
) ε

2+ε

×
∫ ∞

0

1

(1 + t)I(θ)

(
Eθ |It(θ)γt − 1|1+

2
ε

) ε
2+ε

dt, (2.2.7)

where ξ is a random variable with a distribution density f(x, θ).
On the other hand, under conditions a), b) and c) we have for all p > 0 (see Proposition

1.18 from [3])

Eθ

∣∣∣∣
1

1 + t

∫ 1+t

0

(
ȧ(Xs, θ)

σ(Xs)

)2

ds− I(θ)

∣∣∣∣
p

≤ cp

(1 + t)
p
2

.

Using the last inequality with p = 2
ε + 1 we obtain

(
Eθ |It(θ)γt − 1|1+

2
ε

) ε
2+ε ≤ const

(
1

(1 + t)
1
2+

1
ε

) ε
2+ε

= const
1

(1 + t)
1
2

.

Substituting this inequality in (2.2.7) we obtain

Eθ

∫ ∞

0

|It(θ)γt − 1| It(θ)
(
ȧ(Xt, θ)

σ(Xt)

)2

dt ≤ const

∫ ∞

0

(1 + t)−
3
2 dt < ∞.
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Theorem 2.1. (I) Convergence. Let the following conditions be fulfilled:

(A) for each x ∈ R

ȧ(x, θ + u)(a(x, θ)− a(x, θ + u))u < 0 for all u �= 0

(for instance, this condition is satisfied if for each x ∈ R the function a(x, θ) is
strongly monotone in θ).

(i) for each x [
ȧ(x, θ + u)I(θ)

ȧ(x, θ)I(θ + u)

]2
≤ c(1 + |u|2),

where c is a constant;
(ii) for each ε, 0 < ε < 1,

inf
ε≤|u|≤ 1

ε

inf
x

∣∣∣∣
I(θ)

I(θ + u)

ȧ(x, θ + u)

ȧ(x, θ)

a(x, θ)− a(x, θ + u)

ȧ(x, θ)u

∣∣∣∣ > 0.

Then
zt → 0 as t → ∞ P θ-a.s.

(II) Rate of convergence. Suppose that the following conditions are satisfied:

(i) sup
x

∣∣∣∣
I(θ)

I(θ + u)

ȧ(x, θ + u)

ȧ(x, θ)
− 1

∣∣∣∣ → 0 as u → 0,

(ii) sup
x

∣∣∣∣
a(x, θ + u)− a(x, θ)

ȧ(x, θ)u
− 1

∣∣∣∣ → 0 as u → 0.

Then for each δ, 0 < δ < 1
2 ,

γδ
t zt → 0 as t → ∞ P θ-a.s.

(III) Asymptotic expansion. Let the following conditions be satisfied:

(i) there exists some γ > 0 such that

sup
x

∣∣∣∣
I(θ)

I(θ + u)

ȧ(x, θ + u)

ȧ(x, θ)

a(x, θ + u)− a(x, θ)

ȧ(x, θ)u
− 1

∣∣∣∣ = O(|u|γ) as u → 0;

(ii) sup
x

∣∣∣∣1−
I(θ)

I(θ + u)

ȧ(x, θ + u)

ȧ(x, θ)

∣∣∣∣ → 0 as u → 0.

Then if condition (2) of Lemma 2.1 is fulfilled, the process z = {zt, t ≥ 0} admits the
following asymptotic expansion

Γt〈L〉−1/2
t zt =

Lt

〈L〉1/2t

+Rt

with Rt
P θ

−→ 0 as t → 0.

Proof. (I) We have to check conditions (I) (A), (i) and (ii) of Theorem 1.1. Condition (I) (A)
is satisfied.
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As for condition (i) we have

I2t (θ + u)

(
ȧ(Xt, θ + u)

σ(Xt)

)2

=
1

[(1 + t)I(θ)]2

[
ȧ(Xt, θ + u)I(θ)

ȧ(Xt, θ)I(θ + u)

][
ȧ(Xt, θ)

σ(Xt)

]2

≤ c

(
ȧ(Xt, θ)

σ(Xt)

)2

(1 + |u|2).

Put

Bt =

(
ȧ(Xt, θ)

σ(Xt)

)2

I2t (θ).

Then ∫ ∞

0

Bt dt < ∞ P θ-a.s.

Indeed, we have, recalling the definition of It(θ) and γt,
∫ ∞

0

Bt dt =

∫ ∞

0

γ2
t I

2
t (θ)

dγt
γ2
t

< ∞

since γ2
t It(θ) → 1 as t → ∞, and

∞∫
0

dγt

γ2
t
< ∞ P θ-a.s.

According to (I) (iii) of Theorem 1.1 we have to show

∫ ∞

0

1

1 + t
inf

ε≤|u|≤ 1
ε

∣∣∣∣
u

I(θ + u)

ȧ(Xt, θ + u)

σ2(Xt)
(a(Xt, θ)− a(Xt, θ + u))

∣∣∣∣dt

< ∞ P θ-a.s. (2.2.8)

But the integral of the last expression can be written as

∫ ∞

0

γtIt(θ) inf
ε≤|u|≤ 1

ε

|u|2
∣∣∣∣

I(θ)

I(θ + u)

ȧ(Xt, θ + u)

ȧ(Xt, θ)

a(Xt, θ)− a(Xt, θ + u)

ȧ(Xt, θ)u

∣∣∣∣
dγt
γt

≥ ε2 inf
ε≤|u|≤ 1

ε

inf
x

∣∣∣∣
I(θ)

I(θ + u)

ȧ(Xt, θ + u)

ȧ(Xt, θ)

a(Xt, θ)− a(Xt, θ + u)

ȧ(Xt, θ)u

∣∣∣∣

×
∫ ∞

0

γtIt(θ)
dγt
γt

= ∞,

this follows from condition (I) (ii) of Theorem 2.1, and from facts that γtIt(θ)→1 as t → ∞

and
∞∫
0

dγt

γt
= ∞ P θ-a.s.

(II) (i) We will check condition (II)(i) of Theorem 1.1, which in the case under considera-
tion takes the form: for each δ, 0 < δ < 1,

∫ ∞

0

γδ
t I

2
t (θ + zt)

(
ȧ(Xt, θ + zt)

σ(Xt)

)2

dt < ∞ P θ-a.s. (2.2.9)
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But

∫ ∞

0

γδ
t I

2
t (θ + zt)

(
ȧ(Xt, θ + zt)

σ(Xt)

)2

dt

=

∫ ∞

0

γδ
t I

2
t (θ)

(
I(θ)

I(θ + zt)

ȧ(Xt, θ + zt)

ȧ(Xt, θ)

)2

γ2
t dγt

≤
∫ ∞

0

I2t (θ)γ
2
t sup

x

(
I(θ)

I(θ + zt)

ȧ(Xt, θ + zt)

ȧ(Xt, θ)

)2
dγt

γ2−δ
t

< ∞,

which directly follows from the relation It(θ)γt → 1 as t → ∞, condition (II)(i) of Theo-
rem 2.1 and the inequality ∫ ∞

0

dγt

γ2−δ
t

< ∞ P θ-a.s.

(ii) We have, after simple calculations (recall that gt =
( ȧ(Xt,θ)

σ(Xt)

)2
):

[
δ
gt
γt

− βt(zt)

]+
=

gt
γt

[
δ − γtIt(θ) + γtIt(θ)

(
1− I(θ)

I(θ + zt)

ȧ(Xt, θ + zt)

ȧ(Xt, θ)

× ȧ(Xt, θ + zt)− a(Xt, θ)

a(Xt, θ)zt

)
I{zt �=0}

]+
= 0 eventually. (2.2.10)

Indeed, from conditions (II) (i), (ii) of Theorem 2.1 it directly follows that

sup
x

∣∣∣∣
I(θ)

I(θ + zt)

ȧ(x, θ + zt)

ȧ(x, θ)

a(x, θ + zt)− a(x, θ)

ȧ(x, θ)zt
− 1

∣∣∣∣ → 0 as t → ∞ P θ-a.s.

and (2.2.10) can be derived using the same arguments as in the proof of (II)(ii) of Case 2.1.

(III) By virtue of Lemma 2.1, conditions (III) (i)–(iii) of Theorem 1.1 are satisfied.
Let us check condition (iv) which for the considered case is formulated as follows: there

exists ε, ε > 0, such that

1

〈L〉t

∫ t

0

[(1 + s)I(θ)]−1

∣∣∣∣1−
I(θ + zt)

I(θ)

ȧ(Xs, θ + zs)

ȧ(Xs, θ)

× a(Xs, θ + zs)− a(Xs, θ)

ȧ(Xs, θ)zs

∣∣∣∣|zs|−ε〈L〉s ds → 0 as t → ∞ P θ-a.s.

Since 〈L〉∞ = ∞, P θ-a.s. according to the Kronecker lemma it is enough to show that there
exists ε > 0 such that

∫ ∞

0

[(1 + s)I(θ)]−1

(
ȧ(Xs, θ)

σ(Xs)

)2∣∣∣∣1−
I(θ + zt)

I(θ)

ȧ(Xs, θ + zs)

ȧ(Xs, θ)

× a(Xs, θ + zs)− a(Xs, θ)

ȧ(Xs, θ)zs
I{zt �=0}

∣∣∣∣ |zs|−ε ds < ∞ P θ-a.s.
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Further, using condition (III)(i) the last integral is less than

const

∫ ∞

0

γ−1
t |zt|γ−εdγt = const

∫ ∞

0

γ−1
t |γδ

t zt|γ−εγ
−δ(γ−ε)
t dγt

≤ const

∫ ∞

0

γ
−(1+δ(γ−ε))
t dγt < ∞

for ε < γ.
It remains to check condition (v) of Theorem 1.1. For this purpose rewrite it as

1

〈L〉t

∫ t

0

[
1− I(θ)

I(θ + zs)

ȧ(Xs, θ + zs)

ȧ(Xs, θ)

]2
d〈L〉s

Pθ−→ 0. (2.2.11)

Now, applying the Toeplitz lemma and taking into account (III)(ii) of Theorem 2.1 we
obtain the desired result (2.2.11). �
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ROBUST UTILITY MAXIMIZATION FOR A DIFFUSION MARKET MODEL
WITH MISSPECIFIED COEFFICIENTS

R. TEVZADZE, T. TORONJADZE AND T. UZUNASHVILI

Abstract. The paper studies the robust maximization of terminal wealth utility in a diffusion
financial market model. The underlying model consists of a risky tradable asset whose price
is described by the diffusion process with misspecified trend and volatility coefficients, and
a non-tradable asset with the known parameter. The robust functional is defined in terms
of a utility function. An explicit characterization of the problem solution is given using the
solution of the Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation.

Key words and phrases: Maximin problem, saddle point, Hamilton-Jacobi-Bellman-Isaacs
equation, robust utility maximization, generalized control.

MSC 2010: 60H10, 60H30, 90C47.

1. INTRODUCTION

The purpose of the present paper is to study the robust maximization of terminal wealth
utility in a diffusion financial market model where the trend and volatility of an asset price
are uncertain.

The concept of robustness was introduced by P. Huber (see [19]) in the context of sta-
tistical estimation of an unknown distribution parameter. The essence of our approach is as
follows. Suppose we need to estimate the mean of some symmetric distribution. If the esti-
mation is based on “pure” observations, then the effective estimate is the sample mean. But
if observations are contaminated by outliers, then the situation completely changes. Huber
introduced the so-called gross error model (the contaminated neighborhood of a true distri-
bution) and showed that an optimal estimate is a maximum likelihood estimate constructed
for the so-called least favorable distribution. Analytically, this means that we need to solve
a minimax problem analogous to the problem given by formula (2.4) below with the asymp-
totic mean square error as a risk function. In some limiting cases, an optimal estimate is a
median,but not a sample mean. In mathematical finance, for most approaches and settings
it is implicitly supposed that the underlying asset model is fully specified: the parameters
(trend and volatility) of the model are known.Actually, we have all the same to estimate these
parameters and construct, say, confidence intervals for them. Hence we only know that a
pair (µ, σ) belongs with high probability to the rectangle [µ−, µ+] × [σ−, σ+]. In that case
there arises a problem of construction of robust trading strategies where an optimal strategy
is the best strategy against the worst state of Nature. If the risk function of the problem is the
expected terminal wealth utility, then our definition of the optimization problem (2.4) is an
exact one.

Published in Finance Stoch. 17 (2013), no. 3, 535–563.
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144 Robust Utility Maximization for a Diffusion Market Model

In 1999, Chen and Epstein introduced a continuous time intertemporal version of a multiple-
priors utility function for Brownian filtration. In that case, beliefs are represented by a set P
of probability measures and the utility is defined as a minimum of the expected utilities over
the set P . Independently, Cvitanic and Karatzas [7] studied, for a given option, the hedging
strategies which minimize the expected “shortfall”, i.e. the difference between the payoff and
the terminal wealth. They considered the problem of determining the “worst-case” model Q̃,
i.e. the model which maximizes a minimal shortfall risk over all possible priors Q ∈ P . It was
shown that under certain assumptions their maximin problem could be written as a minimax
problem. In 2004, Quenez [30] studied the problem of utility maximization in an incomplete
multiple-priors model, where asset prices are semimartingales. This problem corresponds to
a maximin problem where the maximum is taken over the set of feasible wealth X (or port-
folios) and where the minimum is taken over the set of priors P . The author showed that,
under suitable conditions, there exists a saddle point for this problem. Moreover, Quenez
developed the dual approach which consists in solving a dual minimization problem over the
set of priors and supermartingale measures and showed how the solution of the dual problem
leads to a solution of the primal problem.

The above maximin problems can also be called robust optimization problems since op-
timization involves an entire class P of possible probabilistic models and thus takes into
account the model risk. Optimal investment problems for such robust utility functionals
were considered in particular by Talay and Zheng [33], Quenez [30], Schied [31], Korn
and Menkens [23], Gundel [15], Bordigoni [5], Föllmer and Gundel [13], Dokuchaev [12],
Hernández-Hernández and Schied [16, 17].

The majority of the relevant published works are concerned with the case where one of
the parameters is known exactly. For the unknown drift coefficient, the existence of a saddle
point of the corresponding minimax problem was established and the characterization of an
optimal strategy obtained in [7, 16, 15]. For the unknown volatility coefficients, the hedging
strategy was constructed in [2, 4, 3, 6, 25, 10, 35].

The most difficult case is to characterize the optimal strategy of the maximin problem
under the uncertainty of both drift and volatility terms.

Talay and Zheng [33] applied the PDE-based approach to the minimax problem and char-
acterized the value as a viscosity solution of the corresponding Hamilton-Jacobi-Bellman-
Isaacs (HJBI) equation. In general, such a problem does not contain a saddle point. More-
over, in robust maximization problems, the maximin should be taken instead of the minimax
used by Talay and Zheng. Recently in the work of Denis and Kervarec [11] the general prob-
lem of the utility maximization encompassing the case of the uncertain volatility was studied
and a duality theory for robust utility maximization in this framework was established.

During the referring process we have found the preprint of Matoussi, Possamai and Zhou
[28] which is also devoted to the robust utility maximization problem. To study the expo-
nential, power, and logarithmic utility maximization, the authors use the 2BSDE theory (this
theory was thoroughly developed by Cheridito, Soner, Touzi, Victoir and Zhang in works
[8, 32]). They obtained explicit solutions in some particular cases, which is one of the tasks
of our paper too. Despite some advantages of their approach (non-Markovian models, the
existence of a saddle point, a general contingent claim), we should say that that approach is
not sufficiently general for our model. Namely
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a) only the volatility matrix is misspecified in their model. In our case both coefficients
(drift and volatility) are misspecified,

b) the volatility matrix
√
at satisfies the condition a ≤ at ≤ a, where a and a are given ma-

trices, which does not cover our “partially misspecified volatility” case since in our paper ma-

trices at =
(
σ2
t ρσt

ρσt 1

)
, a =

(
σ2
− ρσ−

ρσ− 1

)
and a =

(
σ2
+ ρσ+

ρσ+ 1

)
are non-comparable

to each other.
Moreover in the non-Markovian case the BSDE corresponding to our problem won’t be

2BSDE (see Remark 3.2). And, besides, we cannot even get our BSDE as a particular case of
the 2BSDE given in [28]. So we can conclude that [28] has little in common with our paper.

In this paper, we consider the incomplete diffusion financial market model which resem-
bles the model considered by Schied [31], Hernández-Hernández and Schied [16, 17]. We
suppose that the market consists of a risk-free asset, a risky tradable asset with misspecified
trend and volatility and a non-tradable asset with known parameters. As different from the
approach of Quenez [30] and Schied [31], we solve the maximin problem using the HJBI
equation which corresponds to the primal problem. When the trend and volatility coefficients
are uncertain, such a maximin problem has no saddle point in general. We extend the set
of model coefficients, i.e. carry out some “randomization” and obtain as a result a minimax
problem with a saddle point. This makes it possible to replace the maximin problem by a
minimax problem which is easier to study using the HJBI equation properties. In partic-
ular, we have found such a form of this equation that coincides with the equation derived
by Hernández-Hernández and Schied [16] when the volatility is assumed to be known. We
establish the solvability of the obtained equation in the classical sense and solve the HJBI
equation explicitly for the specific drift coefficient. The saddle point (an optimal portfolio
and optimal coefficients) of the considered maximin problem has been found as well. An ex-
plicit characterization of the optimal strategies of the maximin problem for the case of power
and exponential utilities in terms of the solution of the HJBI equation is the main result of the
paper.

To illustrate our approach, we present a simple quadratic hedging problem. Let (B,B⊥)

be the 2-dimensional Brownian motion and FB = (FB
t )t∈[0,T ], F

B,B⊥
= (FB,B⊥

t )t∈[0,T ]

denote the augmented filtrations generated by B and (B,B⊥), respectively. We consider the
filtration F = (Ft)t∈[0,T ] satisfying the usual conditions and FB ⊂ F ⊂ FB,B⊥

. Let H
be a square integrable FB

T -measurable random variable. Denote by Π2 the set of square-
integrable predictable processes with respect to the filtration F . Let P([σ−, σ+]) be the set
of probability measures on [σ−, σ+] and U , Ũ denote the set of predictable processes with
respect to the filtration F with values in [σ−, σ+] and P ,respectively. We use the notation f ·ν
for

∫ σ+

σ−
f(σ)dν(σ), f ∈ C[σ−, σ+], ν ∈ P([σ−, σ+]). The wealth process corresponding

to a portfolio process π ∈ Π2 and volatility σ ∈ U is defined as

Xt(π, σ) = c+

∫ t

0

πsσsdBs. (1.1)

The problem is to find π∗ ∈ Π2 minimizing the worst case mean-variance hedging error

max
σ∈U

E|H −XT (π
∗, σ)|2 = min

π∈Π2
max
σ∈U

E|H −XT (π, σ)|2, (1.2)
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Such π∗ is called a robust hedging strategy.
Let us extend problem (1.2) as follows. For each ν ∈ Ũ we define the processes

W ν
t =

∫ t

0

p · νs√
p2 · νs

dBs +

∫ t

0

√
1− (p · νs)2

p2 · νs
dB⊥

s ,

W ν,⊥
t =

∫ t

0

√
1− (p · νs)2

p2 · νs
dBs −

∫ t

0

p · νs√
p2 · νs

dB⊥
s ,

where p, p2 are the functions p(σ) = σ, p2(σ) = σ2 respectively. One can easily check that
(W ν ,W ν,⊥) is also 2-dimensional Brownian motion and the equation

Bt =

∫ t

0

p · νs√
p2 · νs

dW ν
s +

∫ t

0

√
1− (p · νs)2

p2 · νs
dW ν,⊥

s (1.3)

is satisfied.
For each π ∈ Π2, ν ∈ Ũ we define

Xt(π, ν) = c+

∫ t

0

πs

√
p2 · νsdW ν

s . (1.4)

It is clear that U ⊂ Ũ and for ν ∈ U , W ν = B and (1.1) coincides with (1.4). Hence we can
consider the minimax problem

min
π∈Π2

max
ν∈Ũ

E|H −XT (π, ν)|2, (1.5)

which is the extension of problem (1.2).
For the sake of simplicity, it is assumed that c = EH and, using the stochastic integral

representation

H = EH +

∫ T

0

htdBt

= EH +

∫ T

0

ht
p · νt√
p2 · νt

dW ν
t +

∫ T

0

ht

√
1− (p · νt)2

p2 · νt
dW ν,⊥

t ,

(1.5) is rewritten as

min
π∈Π2

max
ν∈Ũ

[
E

∫ T

0

|ht
p · νt√
p2 · νt

− πt

√
p2 · νt|2dt+ E

∫ T

0

h2
t

(
1− (p · νt)2

p2 · νt

)
dt

]

= min
π∈Π2

max
ν∈Ũ

E

∫ T

0

[π2
t (p

2 · νt)− 2htπt(p · νt) + h2
t ]dt.

Since for each π ∈ Π2

max
ν∈Ũ

E

∫ T

0

[π2
t (p

2 · νt)− 2htπt(p · νt) + h2
t ]dt = max

σ∈U
E

∫ T

0

[π2
t σ

2
t − 2htπtσt + h2

t ]dt,

we have
min
π∈Π2

max
σ∈U

E|H −XT (π, σ)|2 = min
π∈Π2

max
ν∈Ũ

E|H −XT (π, ν)|2.
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We will see below that this expression is positive. Moreover,

max
σ∈U

min
π∈Π2

E|H −XT (π, σ)|2 = max
σ∈U

min
π∈Π2

E

∫ T

0

|ht − πtσt|2dt = 0.

This means that the saddle point does not exist for the problem (1.2).
On the other hand, the function G defined on Π2 × Ũ by

G(π, ν) = E

∫ T

0

[π2
t (p

2 · νt)− 2htπt(p · νt) + h2
t ]dt.

is convex in π and linear in ν. Then by the Neumann theorem (see Theorem 8 of [1], Chapt.
6) there exists a saddle point (π∗, σ∗) ∈ Π2 × Ũ . Therefore we have

0 = max
σ∈U

min
π∈Π2

E|H −XT (π, σ)|2

< min
π∈Π2

max
σ∈U

E|H −XT (π, σ)|2 = min
π∈Π2

max
ν∈Ũ

E|H −XT (π, ν)|2

= G(π∗, ν∗) = max
ν∈Ũ

min
π∈Π2

E|H −XT (π, ν)|2

= max
ν∈Ũ

min
π∈Π2

[
E

∫ T

0

∣∣ht
p · νt√
p2 · νt

− πt

√
p2 · νt

∣∣2dt+ E

∫ T

0

h2
t

(
1− (p · νt)2

p2 · νt

)
dt

]

= max
ν∈Ũ

E

∫ T

0

h2
t

(
1− (p · νt)2

p2 · νt

)
dt.

It is easy to see that the saddle point is 1)

ν∗t =
σ−

σ+ + σ−
δσ+

+
σ+

σ+ + σ−
δσ− , π∗

t = ht
p · ν∗t
p2 · ν∗t

=
2ht

σ− + σ+
.

Thus

min
π∈Π2

max
σ∈U

E|H −XT (π, σ)|2 = F (π∗, ν∗) =

(
σ− − σ+

σ− + σ+

)2

E

∫ T

0

h2
tdt.

As we see, the extension of the problem allows us to find the robust strategy and the worst
case mean-variance hedging error for the original problem (1.2). In Section 2, we will obtain
this result by means of the HJBI equation in the case of a terminal contingent claim H(BT ).

Notice, that the problem (1.2) can be solved also directly, but in more general cases (e.g.
for the models with nonzero drift) such “explicit computations” are complicated and in our
knowledge does not exist in the literature. The aim of this work is to show that the existence
of a saddle point in the extended problem simplifies solving the original problem and enables
us to find “explicit solutions”.

The paper is organized as follows. In Section 2, we describe the model and consider the
misspecified coefficients as generalized controls. Furthermore, we show the existence of a
saddle point of the generalized maximin problem and derive the HJBI equation for the value
function. Some examples are also discussed. In Section 3, we prove the solvability in the
classical sense of obtained PDE in the case of power and exponential utility and give an
explicit PDE-characterization of the robust maximization problem.

1) δa denotes the measure with support at a point a
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2. GENERALIZED COEFFICIENTS AND THE EXISTENCE OF A SADDLE POINT

Suppose that the financial market consists of a risk-free asset

dS0
t = r(Yt)S

0
t dt (2.1)

with r(y) ≥ 0 and a risky financial assets whose prices are defined through the stochastic
differential equation (SDE)

dSt

St
= (b̃(Yt) + µt)dt+ σtdWt. (2.2)

Here Wt is a standard Brownian motion and Yt denotes an economical factor process modeled
by the SDE

dYt = β(Yt)dt+
(
ρdWt +

√
1− ρ2dW⊥

t

)
, (2.3)

for some correlation factor ρ ∈ [0, 1] and standard Brownian motion W⊥ which is indepen-
dent of W . Let (Ft)t∈[0,T ] denote the augmented filtration generated by W,W⊥. Denote
b = b̃− r and assume that

A1) b(y), β(y), r(y) belong to C1
b (R),

A2) b′(y), r′(y) belong to C0(R),

where C1
b (R) is the class of bounded continuous functions with bounded derivatives and

C0(R) denotes the class of continuous functions with compact support.
Introduce the set P(K) of probability distributions with support on K =

×[σ−, σ+] (P(K) is a compact metric space in a weak topology), where 0 ≤ µ− ≤ µ+, 0 <

σ− ≤ σ+. Let ŨK be the set of predictable P(K)-valued processes with respect to filtration
(Ft)t∈[0,T ]. Such type process usually called the generalized control in control theory [36].
We identify the set of predictable K-valued processes UK to the subset of ŨK assigning to
each (µt, σt) from UK the P(K)-valued process δ(µt,σt).

By Π2 we denote the set of predictable processes with finite L2([0, T ] × Ω)-norm. The
objective of economic agent is to find the optimal robust strategy of the problem

max
π∈Π2

min
(µ,σ)∈UK

EU(Xµ,σ
T (π), YT ), (2.4)

with

dXt = r(Yt)Xtdt+ πt(b(Yt) + µt)dt+ πtσtdWt, X0 = x,

dYt = β(Yt)dt+ ρdWt +
√
1− ρ2dW⊥

t , Y0 = y,
(2.5)

where U(x, y) is a continuous function defined on R2 satisfying the quadratic growth condi-
tion.

If we denote by f · νt the integral
∫
K
f(µ, σ)νt(dµdσ), where f(µ, σ) is an arbitrary

continuous function, and by pµ, pσ the functions pµ(µ, σ) = µ, pσ(µ, σ) = σ, respectively,
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we can consider the following extended maximin problem

max
π∈Π2

min
ν∈ŨK

EU(Xν
T (π), Y

ν
T ), (2.6)

dXt = r(Yt)Xtdt+ πt(b(Yt) + pµ · νt)dt+ πt

√
p2σ · νtdWt, X0 = x,

dYt = β(Yt)dt+ ρ
pσ · νt√
p2σ · νt

dWt +

√
1− ρ2

(pσ · νt)2
p2σ · νt

dW⊥
t , Y0 = y.

(2.7)

As follows from results of [14] there exists the strong solution of (2.7) with
E(supt≤T |Xt|2 + supt≤T |Yt|2) < ∞ for each (π, ν) ∈ Π2 × ŨK . Notice that for (µ, σ) ∈
UK the equation (2.7) coincides with (2.5). Our aim is to show that

max
π∈Π2

min
(µ,σ)∈UK

EU(Xµ,σ
T (π), YT ) = max

π∈Π2
min
ν∈ŨK

EU(Xν
T (π), Y

ν
T ) (2.8)

and the latter problem admits a saddle point (π∗, ν∗). It is clear that then π∗ will be an
optimal robust strategy of the initial problem (2.4),(2.5).

The link between problems (2.4),(2.5) and (2.6),(2.7) will be discussed in Theorem 1
below.

Remark 2.1. Let B[0, T ] be the Borel σ−algebra on [0, T ] and F̃ be some σ−algebra with
FT ⊂ F̃ . Then the B[0, T ]

⊗
F̃-measurable process (µt, σt) (not necessarily adapted

to (Ft)t∈[0,T ] ) with values in the set K, defines the element ν ∈ ŨK by the formula
P ((µt, σt) ∈ B|Ft) = νt(B). More precisely, denoting pY the predictable projection of
a process Y (see [26]), we have the equalities pµt =

∫
K
µνt(dµdσ), pσt =

∫
K
σνt(dµdσ).

Hence instead of (2.7) we can write

dXt = r(Yt)Xtdt+ πt(b(Yt) +
pµt)dt+ πt

√
pσ2

t dWt, X0 = x,

dYt = β(Yt)dt+ ρ
pσt√
pσ2

t

dWt +

√
1− ρ2

(pσt)
2

pσ2
t

dW⊥
t , Y0 = y.

(2.9)

Remark 2.2. The main Theorems of the paper is valid if instead of Π2 × ŨK will be con-
sidered the set of Markovian strategies and coefficients, i.e. the set of Borel measurable
R×P(K)-valued function (π(t, x, y), ν(t, x, y)) such that there exist weak solution (X,Y )

of (2.9) satisfying condition E
∫ T

0
π2
t (Xt, Yt)dt < ∞.

Since 

πt

√
p2σ · νt 0

ρ pσ·νt√
p2
σ·νt

√
1− ρ2 (pσ·νt)2

p2
σ·νt






πt

√
p2σ · νt ρ pσ·νt√

p2
σ·νt

0
√
1− ρ2 (pσ·νt)2

p2
σ·νt




=

(
(p2σ · νt)π2

t ρ(pσ · νt)πt

ρ(pσ · νt)πt 1

)
(2.10)

the generator of the process (Xt, Yt) can be given by the function
1

2
π2(p2σ · ν)q11 + ρπ(pσ · ν)q12 +

1

2
q22 + xr(y)p1 + πb(y)p1 + π(pµ · ν)p1 + β(y)p2.
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For all ν ∈ P(K), π ∈ R, (µ, σ) ∈ K and (x, y, p, q) ∈ R× R× R2 × R3 we set

Hπ,µ,σ(x, y, p, q) =
1

2
π2σ2q11 + ρπσq12

+
1

2
q22 + xr(y)p1 + πb(y)p1 + πµp1 + β(y)p2, (2.11)

Hπ,ν(x, y, p, q) = Hπ,·,·(x, y, p, q) · ν (2.12)

and

H(x, y, p, q) = max
π∈R

min
ν∈P(K)

Hπ,ν(x, y, p, q). (2.13)

Proposition 2.1. For each fixed (x, y, p, q) ∈ R × R × R2 × R3, with q11 < 0 the function
(π, ν) → Hπ,ν(x, y, p, q) admits a saddle point (π∗, ν∗), i.e.

Hπ∗,ν∗
(x, y, p, q) = max

π∈R
min

ν∈P(K)
Hπ,ν(x, y, p, q) = min

ν∈P(K)
max
π∈R

Hπ,ν(x, y, p, q). (2.14)

Moreover,

max
π∈R

min
ν∈P(K)

Hπ,ν(x, y, p, q) = max
π∈R

min
(µ,σ)∈K

Hπ,µ,σ(x, y, p, q). (2.15)

Proof. By the Neumann theorem (see Theorem 8 of [1], Chapt.6) for each fixed point (x, y, p, q)
the function of π ∈ R and ν ∈ P(K)

(π, ν) → Hπ,ν(x, y, p, q)

admits a saddle point (π∗, ν∗), i.e.

max
π∈R

min
ν∈P(K)

Hπ,ν(x, y, p, q) = min
ν∈P(K)

max
π∈R

Hπ,ν(x, y, p, q) = Hπ∗,ν∗
(x, y, p, q). (2.16)

It is obvious that

π∗ = −b(y)p1 + (pµ · ν∗)p1 + (pσ · ν∗)ρq12
(p2σ · ν)q11

.

Moreover, for each continuous function f on K

min
ν∈P(K)

f · ν = min
(µ,σ)∈K

f(µ, σ),

since for ν∗=argminν f · ν we have supp ν∗ ⊆{(µ∗, σ∗)|f(µ∗, σ∗)=min f(µ, σ)}. Hence

min
ν∈P(K)

Hπ,ν(x, y, p, q) = min
(µ,σ)∈K

Hπ,µ,σ(x, y, p, q)

and equality (2.15) is satisfied. �

Now we define the value functions

v−(t, x, y) = max
π∈Π2

min
(µ,σ)∈UK

EU(Xt,x,y
T , Y t,x,y

T ),

v+(t, x, y) = min
(µ,σ)∈ŨK

max
π∈Π2

EU(Xt,x,y
T , Y t,x,y

T ).
(2.17)
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Since the Isaacs condition is satisfied (by virtue of Proposition 2.1), there exists, as we will
see below, a value of the differential game v ≡ v+ = v−, which will be a solution of the
HJBI equation

∂

∂t
v(t, x, y)

+H(x, y, vx(t, x, y), vy(t, x, y), vxx(t, x, y), vxy(t, x, y), vyy(t, x, y)) = 0, (2.18)

v(T, x, y) = U(x, y). (2.19)

The latter equation can be rewritten as

∂

∂t
v(t, x, y) +

1

2
vyy(t, x, y) + β(y)vy(t, x, y) + xr(y)vx(t, x, y)

+ min
ν∈P(K)

max
π∈R

[1
2
(p2σ · ν)vxx(t, x, y)π2 + (pσ · ν)ρvxy(t, x, y)π

+ (b(y) + pµ · ν)vx(t, x, y)π
]
= 0, (2.20)

v(T, x, y) = U(x, y). (2.21)

Simplifying (2.15) we get

min
ν∈P(K)

max
π∈R

[
1

2
(p2σ · ν)q11π2 + (pσ · ν)ρq12π + b(y)p1π + (pµ · ν)p1π

]

= min
ν∈P(K)

[
((pσ · ν)ρq12 + (b(y) + pµ · ν)p1)2

−2(p2σ · ν)q11

]

=




− p21
2q11

min
ν∈P(K)

[
((pσ · ν)κ+ b(y) + pµ · ν)2

p2σ · ν

]
if p1 �= 0,

− ρ2q212
2σMq11

if p1 = 0,

(2.22)

where we suppose that q11 < 0 and use the notation κ = ρq12
p1

, σM = σ−+σ+

2 .
For the sake of simplicity we assume in addition that
A3) b(y) + µ− ≥ 0, for all y ∈ R.
By ϕ(z) we denote the linear function of z ∈

[
−µ+

σ−
,−µ−

σ+

]
with ϕ(−µ+

σ−
) = σ−, ϕ(−µ−

σ+
) =

σ+. Then the pair

(l(z),m(z)) =




(µ+,
µ+

z + σ−σ+

σM
) if z ∈

(
−∞,

µ+σM

σMσ− − σ+σ−

]
,

(µ+, σ−) if z ∈
(

µ+σM

σMσ− − σ+σ−
,−µ+

σ−

]
,

(−zϕ(z), ϕ(z)) if z ∈
(
−µ+

σ−
,−µ−

σ+

]
,

(µ−, σ+) if z ∈
(
−µ−

σ+
,

µ−σM

σMσ+ − σ+σ−

]
,

(µ−,
µ−
z + σ−σ+

σM
) if z ∈

(
µ−σM

σMσ+ − σ+σ−
,∞

)

(2.23)
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is a continuous, piecewise smooth function of z ∈ (−∞,∞).

Proposition 2.2. There exists ν∗ ∈ P(K) of the form ν∗ = αδµa,σ− + (1− α)δµa,σ+ , with
some (α, a) ∈ [0, 1]× {−,+}, such that

min
ν∈P(K)

[
(b(y) + pµ · ν + κpσ · ν)2

p2σ · ν

]
=

(b(y) + pµ · ν∗ + κpσ · ν∗)2

p2σ · ν∗

=




κ(2(b(y)+µ+)σM+κσ−σ+)

σ2
M

if κ ∈
(
−∞,

µ+σM

σMσ− − σ+σ−

]
,

(b(y) + µ+ + κσ−)
2

σ2
−

if κ ∈
(

µ+σM

σMσ−−σ+σ−
,−µ+

σ−

]
,

0 if κ ∈
(
−µ+

σ−
,−µ−

σ+

]
,

(b(y) + µ− + κσ+)
2

σ2
+

if κ ∈
(
−µ−

σ+
,

µ−σM

σMσ+−σ+σ−

]
,

κ(2(b(y)+µ−)σM+κσ−σ+)

σ2
M

if κ ∈
(

µ−σM

σMσ+ − σ+σ−
,∞

)

(2.24)

and (pµ · ν∗, pσ · ν∗) = (l(κ),m(κ)), where (l,m) is defined by (2.23).

The proof is given in Appendix.

Corollary 1.

min
ν∈P(K)

[
(b(y) + pµ · ν)p1 + (pσ · ν)ρq12)2

−2p2σ · νq11

]
= min

(µ,σ)∈K

[
(b(y)p1 + µp1 + σρq12)

2

−2(2σMσ − σ−σ+)q11

]

= −ρq12(2p1(b(y) + µ+)σM + ρq12σ−σ+)

2q11σ2
M

χ

(
ρq12
p1

∈
(
−∞,

µ+σM

σMσ− − σ+σ−

])

− (p1(b(y) + µ+) + ρq12σ−)
2

2q11σ2
−

χ

(
ρq12
p1

∈
(

µ+σM

σMσ− − σ+σ−
,−µ+

σ−

])

− (p1(b(y) + µ−) + ρq12σ+)
2

2q11σ2
+

χ

(
ρq12
p1

∈
(
−µ−

σ+
,

µ−σM

σMσ+ − σ+σ−

])

− ρq12(2p1(b(y) + µ−)σM + ρq12σ−σ+)

2q11σ2
M

χ

(
ρq12
p1

∈
(

µ−σM

σMσ+ − σ+σ−
,∞

))

− ρ2q212
2σM

χ(p1 = 0), (2.25)

where χ(A) denotes the indicator of a set A.

Proof. It is sufficient to verify that for ν∗± = αδµ±,σ− + (1− α)δµ±,σ+ , 0 ≤ α ≤ 1, we get
p2σ · ν∗± = 2σM (pσ · ν∗±)− σ−σ+. �

From this Corollary we obtain that the HJBI equation has the form

∂

∂t
v(t, x, y) +

1

2
vyy(t, x, y) + β(y)vy(t, x, y) + xr(y)vx(t, x, y)
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+ min
(µ,σ)∈K

(b(y)vx(t, x, y) + µvx(t, x, y) + ρσvxy(t, x, y))
2

−2(2σMσ − σ−σ+)vxx(t, x, y)
= 0, (2.26)

v(T, x, y) = U(x, y). (2.27)

A classical solution v(t, x, y) of this equation defines the pair of continuous, piecewise
smooth functions of (t, x, y)

(l̄(t, x, y), m̄(t, x, y)) =

(
l

(
ρvxy(t, x, y)

vx(t, x, y)

)
,m

(
ρvxy(t, x, y)

vx(t, x, y)

))
(2.28)

by the formula (2.23).
The following Theorem is the Verification Theorem of [29] adapted to our setting.

Theorem 1 (Verification Theorem). Let v(t, x, y) be a classical solution of (2.20), (2.21)
such that vxx(t, x, y) < 0 and

|v(t, x, y)| ≤L(1 + |x|+ |y|)p,
∣∣∣∣
vx(t, x, y)

vxx(t, x, y)

∣∣∣∣ ≤ L(1 + |x|+ |y|),
∣∣∣∣
vxy(t, x, y)

vxx(t, x, y)

∣∣∣∣ ≤ L(1 + |x|+ |y|),
(2.29)

holds for some constants L > 0, p ≥ 1. Suppose also that the triplet (π∗(t, x, y), pµ ·
ν∗(t, x, y), pσ·ν∗(t, x, y)) satisfies the Lipschitz condition on each compact subsets of [0, T ]×
R× R, where

π∗(t, x, y) = − (b(y) + pµ · ν∗(t, x, y))vx(t, x, y) + pσ · ν∗(t, x, y)ρvxy(t, x, y)
(2σMpσ · ν∗(t, x, y)− σ−σ+)vxx(t, x, y)

, (2.30)

and (pµ · ν∗(t, x, y), pσ · ν∗(t, x, y)) coincides with (l̄(t, x, y), m̄(t, x, y)) defined by (2.28).
Then (π∗, ν∗) is saddle point of the problem (2.6), (2.7) and

max
π∈Π2

min
(µ,σ)∈UK

EU(Xµ,σ
T (π), YT )

= max
π∈Π2

min
ν∈ŨK

EU(Xν
T (π), Y

ν
T ) = min

ν∈ŨK

max
π∈Π2

EU(Xν
T (π), Y

ν
T ).

Proof. By the definition of (2.30),(2.28) the pair (π∗(t, x, y), ν∗(t, x, y)) is a saddle point of
the function

f(t, x, y, π, ν) =
1

2
(p2σ · ν)vxx(t, x, y)π2 + (pσ · ν)ρvxy(t, x, y)π

+ (b(y) + pµ · ν)vx(t, x, y)π

for each (t, x, y). It is easy to see that this pair is a continuous, piecewise-smooth function of
variables (t, x, y) ∈ [0, T ]×R×R. By the definition, the triplet of functions (π∗(t, x, y), pµ ·
ν∗(t, x, y), pσ · ν∗(t, x, y)) consists of Lipschitz functions on the each compact subset. Since
p2σ · ν∗(t, x, y) = 2σM (pσ · ν∗(t, x, y)) − σ−σ+ ≥ σ2

− is satisfied, 1
p2
σ·ν∗(t,x,y) is also the

Lipschitz function on the each compact subset. The linear growth condition for the triplet is
also satisfied since |pµ · ν∗(t, x, y)| ≤ µ+, σ− ≤ |pσ · ν∗(t, x, y)| ≤ σ+ and inequalities

|π∗(t, x, y)| =
∣∣∣∣
(b(y) + pµ · ν∗(t, x, y))vx(t, x, y) + pσ · ν∗(t, x, y)ρvxy(t, x, y)

(2σMpσ · ν∗(t, x, y)− σ−σ+)vxx(t, x, y)

∣∣∣∣
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≤ maxy(b(y) + µ+)

σ2
−

∣∣∣∣
vx(t, x, y)

vxx(t, x, y)

∣∣∣∣+
ρσ+

σ2
−

∣∣∣∣
vxy(t, x, y)

vxx(t, x, y)

∣∣∣∣
≤ L̄(1 + |x|+ |y|)

hold for some constant L̄ thanks to condition (2.29).
Thus SDE

dX∗
t = r(Y ∗

t )X
∗
t dt+ π∗(t,X∗

t , Y
∗
t )(b(Y

∗
t ) + pµ · ν∗(t,X∗, Y ∗))dt

+ π∗(t,X∗
t , Y

∗
t )

√
p2σ · ν∗(t,X∗

t , Y
∗
t )dWt,

X0 = x,

dY ∗
t = β(Y ∗

t )dt+ ρ
pσ · ν∗(t,X∗

t , Y
∗
t )√

p2σ · ν∗(t,X∗
t , Y

∗
t )

dWt +

√
1− ρ2

pσ · ν∗(t,X∗
t , Y

∗
t )

2

p2σ · ν∗(t,X∗
t , Y

∗
t )

dW⊥
t ,

Y0 = y,

defining an optimal wealth process has the coefficients which are Lipschitz functions on each
{(t, x, y) : |x| ≤ R, |y| ≤ R} and satisfy the linear growth condition. Hence there exists
unique strong solution of SDE with E supt≤T |X∗

t |k < ∞, E supt≤T |Y ∗
t |k < ∞, for each

k ≥ 1 (see Theorem 2.3, Chapter V of [14]) and E
∫ T

0
π∗2(t,X∗, Y ∗)dt < ∞. For each

control pair (πt, νt) ∈ Π2×ŨK we denote by (Xt(π
∗, ν), Yt(π

∗, ν)), (Xt(π, ν
∗), Yt(π, ν

∗))
the solution of the system (2.7) corresponding to π∗

t , νt and πt, ν
∗
t respectively.

Let τR = T ∧ inf{t : |X∗
t | ≥ R, |Y ∗

t | ≥ R}. Since

∂

∂t
v +Hπ∗,ν∗

(x, y, vx, vy, vxx, vxy, vyy)

≡ ∂

∂t
v +

1

2
vyy + β(y)vy + xr(y)vx + f(t, x, y, π∗, ·) · ν∗ = 0

and vxπ
∗, vy are the continuous bounded functions on each ball, we can apply Ito’s formula

to v(t,X∗
t , Y

∗
t ) and get v(t, x, y) = Ev(X∗t,x,y

τR , Y ∗t,x,y
τR ). Passing to the limit as R → ∞

we obtain
v(t, x, y) = EU(X∗t,x,y

T , Y ∗t,x,y
T ),

since by the integrability of supt≤T |X∗
t |p + supt≤T |Y ∗

t |p we have

P (τR < T ) ≤ P (sup
t≤T

|X∗
t | ≥ R, sup

t≤T
|Y ∗

t | ≥ R) → 0 as R → ∞

and

|Ev(X∗t,x,y
T , Y ∗t,x,y

T )− Ev(τR, X
∗t,x,y
τR , Y ∗t,x,y

τR )|

≤ |Ev(X∗t,x,y
T , Y ∗t,x,y

T )χ(τR < T )|+ |Ev(X∗t,x,y
τR , Y ∗t,x,y

τR )χ(τR < T )|
≤ 2LE(1 + sup

t≤T
|X∗

t |p + sup
t≤T

|Y ∗
t |p)χ(τR < T ) → 0 as R → ∞.

Similarly, using Ito’s formula for the processes v(t,Xt(π
∗, ν), Yt(π

∗, ν)),
v(t,Xt(π, ν

∗), Yt(π, ν
∗)) and taking into account the inequalities

f(t, x, y, π, ·) · ν∗(t, x, y) ≤ f(t, x, y, π∗(t, x, y), ·) · ν∗(t, x, y)
≤ f(t, x, y, π∗(t, x, y), ·) · ν
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we get

EU(Xt,x,y
T (π, ν∗), Y t,x,y

T (π, ν∗)) ≤ v(t, x, y) ≤ EU(Xt,x,y
T (π∗, ν), Y t,x,y

T (π∗, ν)).

Finally, we obtain

EU(Xt,x,y
T (π, ν∗), Y t,x,y

T (π, ν∗)) ≤ EU(X∗t,x,y
T , Y ∗t,x,y

T ))

≤ EU(Xt,x,y
T (π∗, ν), Y t,x,y

T (π∗, ν)).

This means that the pair (π∗, ν∗) is a saddle point of problem (2.6).
Since v(t, x, y) = infν∈ŨK

EU(Xt,x,y
T (π∗, ν), Y t,x,y

T (π∗, ν)) satisfies the HJB equation
of the stochastic control problem and

min
ν∈P(K)

f(t, x, y, π∗(t, x, y), ·) · ν = min
(µ,σ)∈K

f(t, x, y, π∗(t, x, y), µ, σ),

we conclude that

v(t, x, y) = min
ν∈ŨK

EU(Xt,x,y
T (π∗, ν), Y t,x,y

T (π∗, ν))

= min
(µ,σ)∈UK

EU(Xt,x,y
T (π∗, µ, σ), Y t,x,y

T ).

Thus

min
ν∈ŨK

max
π∈Π2

EU(Xt,x,y
T (π, ν), Y t,x,y

T (π, ν)))

≤ max
π∈Π2

EU(Xt,x,y
T (π, ν∗), Y t,x,y

T (π, ν∗)) ≤ v(t, x, y)

= min
(µ,σ)∈UK

EU(Xt,x,y
T (π∗, µ, σ), Y t,x,y

T )

≤ max
π∈Π2

min
(µ,σ)∈UK

EU(Xt,x,y
T (π, µ, σ), Y t,x,y

T ).

On the other hand,

max
π∈Π2

min
(µ,σ)∈UK

EU(Xt,x,y
T (π, µ, σ), Y t,x,y

T )

≤ min
ν∈ŨK

max
π∈Π2

EU(Xt,x,y
T (π, ν), Y t,x,y

T (π, ν)).

Therefore we get that the values of problems (2.4),(2.5) and (2.6), (2.7) are equal to

min
ν∈ŨK

max
π∈Π2

EU(Xt,x,y
T (π, ν), Y t,x,y

T (π, ν))

= max
π∈Π2

min
(µ,σ)∈UK

EU(Xt,x,y
T (π, µ, σ), Y t,x,y

T ). �

Corollary 2. The optimal strategy of the robust utility maximization problem (2.4), (2.5) is
given by

π∗(t, x, y) = − (b(y) + l̄(t, x, y))vx(t, x, y) + m̄(t, x, y)ρvxy(t, x, y)

(2σM l̄(t, x, y)− σ−σ+)vxx(t, x, y)
, (2.31)

where the pair (l̄(t, x, y), m̄(t, x, y)) is defined by (2.28) and v(t, x, y) is a solution of (2.26),
(2.27).
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Example 2. Let us consider the robust mean-variance hedging problem with zero drift and
unknown volatility

min
π∈Π2

max
σt∈[σ−,σ+]

E(H(YT )−XT (π, σ))
2, (2.32)

dXt = rXtdt+ πtσtdWt, X0 = x,

dYt = β(Yt)dt+ ρdWt +
√
1− ρ2dW⊥

t , Y0 = y.
(2.33)

Therefore we have U(x, y) = −(x − H(y))2, (x, y) ∈ R2, µ− = µ+ = 0, r′(y) = 0. We
assume that H is a continuous bounded function. By equation (2.28) we get

(pµ · ν∗(t, x, y), pσ · ν∗(t, x, y)) =
(
0,

σ−σ+

σM

)

since pσ · ν(t, x, y) = 2σ−σ+

σ++σ−
= σ−σ+

σM
(this means ν∗(t, x, y) = σ−

σ++σ−
δ(0,σ+) +

σ+

σ++σ−
δ(0,σ−)). Thus

arg min
σ∈[σ−,σ+]

ρ2σ2

−2(2σMσ − σ−σ+)
=

σ−σ+

σM

and from (2.26) follows

∂

∂t
v(t, x, y) +

1

2
vyy(t, x, y) + β(y)vy(t, x, y) + xr(y)vx(t, x, y)

+ min
σ∈[σ−,σ+]

ρ2σ2v2xy(t, x, y)

−2(2σMσ − σ−σ+)vxx(t, x, y)

≡ ∂

∂t
v(t, x, y) +

1

2
vyy(t, x, y) + β(y)vy(t, x, y) + xr(y)vx(t, x, y)

− ρ2
σ−σ+

2σ2
M

v2xy(t, x, y)

vxx(t, x, y)
= 0, (2.34)

v(T, x, y) = −(x−H(y))2. (2.35)

The solution of (2.34), (2.35) can be given as a quadratic polynomial in x

v(t, x, y) = −A(t, y)x2 + 2B(t, y)x− C(t, y),

where the triplet (A,B,C) satisfies the system of PDEs

∂

∂t
A(t, y) +

1

2
Ayy(t, y) + β(y)Ay(t, y) + 2rA(t, y) + ρ2

σ−σ+

2σ2
M

A2
y(t, y)

A(t, y)
= 0,

A(T, y) = 1,

∂

∂t
B(t, y) +

1

2
Byy(t, y) + β(y)By(t, y) + 2rB(t, y) + ρ2

σ−σ+

2σ2
M

Ay(t, y)By(t, y)

A(t, y)
= 0,

B(T, y) = H(y),

∂

∂t
C(t, y) +

1

2
Cyy(t, y) + β(y)Cy(t, y) + ρ2

σ−σ+

2σ2
M

B2
y(t, y)

A(t, y)
= 0,

C(T, y) = H2(y).
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The system admits an explicit solution

A(t, y) = e2r(T−t), B(t, y) = e2r(T−t)EH(Y t,y
T ),

C(t, y) = ρ2
σ−σ+

2σ2
M

e2r(T−t)

∫ T

t

EB2
y(s, Y

t,y
s )ds+ EH2(Y t,y

T )

(notice that By(t, y) = e2r(T−t)EHy(Y
t,y
T )e

∫ T
t

βy(Y
t,y
s )ds, when H is differentiable). The

optimal strategy then takes the form

π∗(t, x, y) = −
ρσ−σ+

σM
vxy(t, x, y)

(2σM
σ−σ+

σM
− σ−σ+)vxx(t, x, y)

= − ρ

σM

vxy(t, x, y)

vxx(t, x, y)
= − ρ

σM

By(t, y)− xAy(t, y)

−A(t, y)

=
ρ

σM

By(t, y)

A(t, y)
=

ρ

σM
e−2r(T−t)By(t, y).

B(t, y) = e2r(T−t)EH(Y t,y
T ) is a classical bounded solution of the corresponding linear

parabolic equation with bounded continuous By(t, y) and continuous Byy(t, y) (see [14]
formulae (5.20)–(5.22) of Chapter VI). It is clear that

|v(t, x, y)| ≤ L(1 + |x|2),
∣∣∣ vx(t, x, y)
vxx(t, x, y)

∣∣∣ ≤ L(1 + |x|),
∣∣∣vxy(t, x, y)
vxx(t, x, y)

∣∣∣ ≤ L

for some L > 0 and By(t, y) is the locally Lipschitz function. Hence the pair
(π∗(t, x, y), ν∗(t, y)) satisfies all conditions of Theorem 1.

The case ρ = 1, r = 0, β ≡ 0 is discussed in the introduction. In this case the second
equation in (2.7) defines the Brownian motion Yt = Bt for all non-anticipating strategies
νt(Y ) ≡ νt(B) and (2.7) coincides with (1.3).

In the case of objective function U(x, y) defined on R+ × R it is convenient to determine
the wealth process as a solution of SDE

dXt = r(Yt)Xtdt+ πtXt(b(Yt) + µt)dt+ πtXtσtdWt, X0 = x,

dYt = β(Yt)dt+ ρdWt +
√
1− ρ2dW⊥

t , Y0 = y
(2.36)

The set of admissible strategies Π we define as the set of all predictable processes π such that∫
πsdWs is BMO-martingale (as regards BMO-martingales see [21]). It is clear that for each

(π, µ, σ) ∈ Π×UK ,
∫
πsσsdWs is also BMO-martingale, a solution of (2.36) is positive and

maximin problem

max
π∈Π

min
(µ,σ)∈UK

EU(Xµ,σ
T (π), YT ), (2.37)

make sense.
As in previous case of problem (2.4),(2.5) we consider the following extended maximin

problem

max
π∈Π

min
ν∈ŨK

EU(Xν
T (π), Y

ν
T ), (2.38)
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dXt = r(Yt)Xtdt+ πtXt(b(Yt) + pµ · νt)dt+ πtXt

√
p2σ · νtdWt, X0 = x,

dYt = β(Yt)dt+ ρ
pσ · νt√
p2σ · νt

dWt +

√
1− ρ2

(pσ · νt)2
p2σ · νt

dW⊥
t , Y0 = y.

(2.39)

It is easy to see that HJBI equation for the value v(t, x, y) of this problem is the solution of
the same equation (2.26), but π∗ is defined now by

π∗(t, x, y) = − (b(y) + l̄(t, x, y))vx(t, x, y) + m̄(t, x, y)ρvxy(t, x, y)

x(2σM l̄(t, x, y)− σ−σ+)vxx(t, x, y)
, (2.40)

where the pair (l̄(t, x, y), m̄(t, x, y)) is defined by (2.28).

Theorem 1′. Let v(t, x, y) be a classical solution of (2.20), (2.21) such that
vxx(t, x, y) < 0 and

|v(t, x, y)| ≤L(1 + |x|+ |y|)p,
∣∣∣∣
vx(t, x, y)

vxx(t, x, y)

∣∣∣∣ ≤ Lx,

∣∣∣∣
vxy(t, x, y)

vxx(t, x, y)

∣∣∣∣ ≤ Lx, (t, x, y) ∈ [0, T ]× R+ × R,
(2.41)

holds for some constants L > 0, p ≥ 1. Suppose also that the triplet (π∗(t, x, y), pµ ·
ν∗(t, x, y), pσ·ν∗(t, x, y)) satisfies the Lipschitz condition on each compact subsets of [0, T ]×
R+ × R, where

π∗(t, x, y) = − (b(y) + pµ · ν∗(t, x, y))vx(t, x, y) + pσ · ν∗(t, x, y)ρvxy(t, x, y)
x(2σMpσ · ν∗(t, x, y)− σ−σ+)vxx(t, x, y)

, (2.42)

and (pµ · ν∗(t, x, y), pσ · ν∗(t, x, y)) coincides with (l̄(t, x, y), m̄(t, x, y)) defined by (2.28).
Then (π∗, ν∗) is saddle point of the problem (2.38), (2.39) and

max
π∈Π

min
(µ,σ)∈UK

EU(Xµ,σ
T (π), YT )

= max
π∈Π

min
ν∈ŨK

EU(Xν
T (π), Y

ν
T ) = min

ν∈ŨK

max
π∈Π

EU(Xν
T (π), Y

ν
T ).

Proof. The strategy defined by (2.42) is bounded since for all (t, x, y) ∈ [0, T ]× R+ × R

|π∗(t, x, y)| ≤ maxy(b(y) + µ+)

σ2
−

∣∣∣∣
vx(t, x, y)

xvxx(t, x, y)

∣∣∣∣+
ρσ+

σ2
−

∣∣∣∣
vxy(t, x, y)

xvxx(t, x, y)

∣∣∣∣ ≤ L̄

for some constant L̄. Hence (π∗(t,X∗
t , Y

∗
t ))t∈[0,T ] ∈ Π, where (X∗, Y ∗) is the correspond-

ing solution of (2.39). The rest of the proof follows the proof of Theorem 1. �

3. POWER AND EXPONENTIAL UTILITY CASES

Now let us consider the robust utility maximization problem with power utility U(x) =
1
qx

q, x > 0 with 0 < q < 1

max
π∈Πδ

x

min
(µ,σ)∈UK

1

q
E(Xµ,σ

T (π))q, (3.1)
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subject to

dXt = r(Yt)Xtdt+ πtXt(b(Yt) + µt)dt+ πtXtσtdWt, X0 = x,

dYt = β(Yt)dt+ ρdWt +
√
1− ρ2dW⊥

t , Y0 = y.
(3.2)

In this case, the HJBI equation (2.26),(2.27) gets

∂

∂t
v(t, x, y) +

1

2
vyy(t, x, y) + β(y)vy(t, x, y) + xr(y)vx(t, x, y)

+ min
(µ,σ)∈K

((b(y) + µ)vx(t, x, y) + ρσvxy(t, x, y))
2

−2(2σMσ − σ−σ+)vxx(t, x, y)
= 0, (3.3)

v(T, x, y) =
1

q
xq. (3.4)

A solution of this equation is of the form v(t, x, y) = 1
qx

qeu(t,y), where u satisfies the
equation

∂

∂t
u(t, y) +

1

2
uyy(t, y) + β(y)uy(t, y) +

1

2
u2
y(t, y) + qr(y)

− q

2(q − 1)
min

(µ,σ)∈K

(b(y) + µ+ ρσuy(t, y))
2

2σMσ − σ−σ+
= 0, (3.5)

u(T, y) = 0. (3.6)

The pair (pµ · ν∗(t, x, y), pσ · ν∗(t, x, y)) from Theorem 1′ takes the form

(pµ · ν∗(t, y), pσ · ν∗(t, y)) = (l(ρuy(t, y)),m(ρuy(t, y))), (3.7)

where (l,m) is defined by (2.23).

Remark 3.1. By Corollary 1 and (2.28), equation (3.5) can be written as

∂

∂t
u(t, y) +

1

2
uyy(t, y) + β(y)uy(t, y) +

1

2
u2
y(t, y) + qr(y)

− qρuy(t, y)

2(q − 1)σ2
M

(2(b(y) + µ+)σM + σ−σ+ρuy(t, y))χ

(
ρuy(t, y) ≤

µ+σM

σMσ− − σ+σ−

)

− q

2(q − 1)σ2
−
(b(y) + µ+ + ρσ−uy(t, y))

2χ

(
µ+σM

σMσ− − σ+σ−
< ρuy(t, y) ≤ −µ+

σ−

)

− q

2(q − 1)σ2
+

(b(y) + µ− + ρσ+uy(t, y))
2χ

(
−µ−

σ+
< ρuy(t, y) ≤

µ−σM

σMσ+ − σ+σ−

)

− qρuy(t, y)

2(q−1)σ2
M

(2(b(y) + µ−)σM+σ−σ+ρuy(t, y))

× χ

(
ρuy(t, y)>

µ−σM

σMσ+−σ+σ−

)
= 0, (3.8)

u(T, y) = 0. (3.9)

Theorem 3. Under conditions A1)–A3) the Cauchy problem (3.5), (3.6) admits a classi-
cal solution with bounded uy(t, y) and a saddle point (ν∗(t, y), π∗(t, y)) of the problem
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(2.38), (2.39) is defined by equation (3.7) and by the formula

π∗(t, y) =
1

1− q

(
b(y) + pµ · ν∗(t, y)

p2σ · ν∗(t, y)
+ ρ

pσ · ν∗(t, y)
p2σ · ν∗(t, y)

uy(t, y)

)
. (3.10)

Moreover, π∗(t, y) is the optimal strategy of robust utility maximization problem (3.1), (3.2).

Proof. By the Proposition of Appendix B there exists a classical solution of (3.5),(3.6) with
bounded uy(t, y). From the continuity of uyy(t, y) follows that uy(t, y) is the locally Lips-
chitz function. By the Lemma A.1 the pair (pµ ·ν∗(t, y), pσ ·ν∗(t, y)), where ν∗(t, y) defined
by (3.7), is the locally Lipschitz function. Since p2σ ·ν∗(t, y) = 2σM (pσ ·ν∗(t, y))−σ−σ+ ≥
σ2
− is satisfied, 1

p2
σ·ν∗(t,y) is also the locally Lipschitz function. Hence

π∗(t, y) = − 1

q − 1

b(y) + l(ρuy(t, y)) +m(ρuy(t, y))ρuy(t, y)

2m(ρuy(t, y))σM − σ−σ+

=
1

1− q

b(y) + pµ · ν∗(t, y) + pσ · ν∗(t, y)ρuy(t, y)

2pσ · ν∗(t, y)σM − σ−σ+

=
1

1− q

(
b(y) + pµ · ν∗(t, y)

p2σ · ν∗(t, y)
+ ρ

pσ · ν∗(t, y)
p2σ · ν∗(t, y)

uy(t, y)

)
(3.11)

following from (2.30) is also the Lipschitz function. It is obvious that π∗ ∈ Π for each ν ∈
UK (since X(π∗, ν) is a solution of the linear SDE), vxx(t, x, y) = (q − 1)xq−2eu(t,y) < 0
and all the conditions of Theorem 1′ are satisfied. Therefore we can conclude that
(π∗(t, y), ν∗(t, y)) is the saddle point of the problem (3.1), (2.9). �

Corollary 3. If b = 0, r = 0, then

u(t, y) = − q

2(q − 1)
(T − t) min

(µ,σ)∈K

µ2

2σMσ − σ−σ+
= − q

2(q − 1)
(T − t)

µ2
−

σ2
+

is a solution of (3.5) and a saddle point of the maximin problem can be given explicitly

(µ∗
t , σ

∗
t ) = (µ−, σ+), π∗(t, x, y) = − µ−

2(q − 1)σ2
+

x.

Example 4. When σ− = σ+ = σM we obtain

∂

∂t
u(t, y) +

1

2
uyy(t, y) + β(y)uy(t, y) +

1

2
u2
y(t, y)

− q

2(q − 1)σ2
M

min
µ−≤µ≤µ+

(b(y) + µ+ ρσMuy(t, y))
2

≡ ∂

∂t
u(t, y) +

1

2
uyy(t, y) + (2ρσMb(y) + β(y))uy(t, y) +

1

2

(
1− qρ2σM

q − 1

)
u2
y(t, y)

− q

2(q − 1)σ2
M

min
µ−≤µ≤µ+

((b(y) + µ)2 + 2µρσMuy(t, y)) = 0,

u(T, y) = 0.

Applications of such type equations in finance and the existence of a classical solution are
discussed in [16].
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Remark 3.2. Instead of PDE (3.5) we can use the BSDE with quadratic growth

dVt = −
(
1

2
Z2
t + qr(Yt)

− q

2(q − 1)
min

(µ,σ)∈K

(b(Yt) + µ+ ρσZt)
2

2σMσ − σ−σ+

)
dt+ ZtdWt + Z⊥

t dW⊥
t ,

VT = 0.

solvability of which follows from the results of [22, 34]. The solution of the BSDE can be
constructed using the solution of PDE (3.5) by the formulas

Vt = u(t, Yt), Zt = ρuy(t, Yt), Z
⊥
t =

√
1− ρ2uy(t, Yt).

The optimal strategy π∗
t = π∗(t, Yt) is defined by the linear equation

π∗
t =

1

1− q

(
b(Yt) + pµ · ν̂∗t (Zt)

p2σ · ν̂∗t (Zt)
+

pσ · ν̂∗t (Zt)

p2σ · ν̂∗t (Zt)
Zt

)
,

following from (3.10). As follows from (3.7), the pair (pµ · ν̂∗t (z), pσ · ν̂∗t (z)) coincides with
(l(z),m(z)) defined by (2.23). �

Suppose now U(x, y) = −e−γ(x−H(y)), (x, y) ∈ R2, γ > 0 and r = 0. This case
corresponds to the exponential hedging problem of the contingent claim H(y), depending
only on the non-tradable asset. We assume that H ∈ Cb(R). Now following [27] we consider
the restricted class of strategies Π = {π ∈ Π2 :

∫ t

0
πsdWs is BMO-martingale} and minimax

problem
min
π∈Π

max
(µ,σ)∈UK

Eeγ(H(YT )−Xµ,σ
T (π)) (3.12)

subject to (2.5). It is easy to verify that a solution of (2.26),(2.27) is of the form v(t, x, y) =
−eγu(t,y)−γx, where u(t, y) is a bounded solution of

∂

∂t
u(t, y) +

1

2
uyy(t, y) + β(y)uy(t, y) +

1

2
γu2

y(t, y)

+
1

2γ
min

(µ,σ)∈K

(b(y) + µ+ ργσuy(t, y))
2

2σMσ − σ−σ+
= 0, (3.13)

u(T, y) = H(y). (3.14)

The existence of a classical bounded solution of (3.13),(3.14) with bounded uy for the case

H ′ ∈ C0(R) (3.15)

follows from Proposition B.1. Thus vx(t,x,y)
vxx(t,x,y)

= − 1
γ , vxy(t,x,y)

vxx(t,x,y)
= −uy(t, y) are bounded.

One can checks that all conditions of Theorem 1 except of the polynomial growth condition
of v(t, x, y) are satisfied. The robust optimal portfolio is

π∗(t, y) = − 1

γ

b(y) + pµ · ν∗(t, y)− γρpσ · ν∗(t, y)uy(t, y)

2σMpσ · ν∗(t, y)− σ−σ+
,

where (pµ · ν∗(t, y), pσ · ν∗(t, y)) is defined by (2.28). Thus (π∗(t, y), pµ · ν∗(t, y), pσ ·
ν∗(t, y)) is the bounded, locally Lipschitz function of (t, y) and Xt,x,y

s (π∗, ν∗), s ≥ t, is
BMO-martingale. Hence {eγ(Xt,x,y

τ (π∗,ν∗)−u(τ,Y t,x,y
τ )), τ is stopping times, t ≤ τ ≤ T} is
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uniformly integrable family of random variables. This enable us to pass in the limit in the
Theorem 1

Ev(X∗t,x,y
T , Y ∗t,x,y

T ) = Eeγ(X
∗t,x,y
τR

−u(τR,Y ∗t,x,y
τR

)) → Eeγ(X
∗t,x,y
T −u(T,Y ∗t,x,y

T ))

= Ev(T,X∗t,x,y
T , Y ∗t,x,y

T ) as R → ∞

without the polynomial growth condition of v(t, x, y). Hence we have proved

Theorem 5. Under conditions A1)–A3) and (3.15) the Cauchy problem (3.13), (3.14) ad-
mits a classical solution with bounded uy(t, y) and a saddle point
(π∗(t, y), ν∗(t, y)) of the problem (3.12) is defined by the equation

(pµ · ν∗(t, y), pσ · ν∗(t, y)) = (l(ργuy(t, y)),m(ργuy(t, y)))

and by the formula

π∗(t, y) = − 1

γ

b(y) + pµ · ν∗(t, y)− γρ(pσ · ν∗(t, y))uy(t, y)

2σMpσ · ν∗(t, y)− σ−σ+
.

Moreover π∗(t, y) is the optimal strategy of the robust exponential hedging problem (3.12),
(2.5).

APPENDIX A

Each measure ν may be realized as a distribution of a pair of random variables (ξ, η) with
the value in K. Simplifying the notation we denote b(y) + µ by µ again. Our aim is to
characterize the dependence of the minimizer of the problem

min
ν∈P(K)

[
(pµ · ν + κpσ · ν)2

p2σ · ν

]
= min

(ξ,η)∈K

[
(Eξ + κEη)2

Eη2

]

on a parameter κ ∈ R.

Proposition A.1. Let

(ξ∗, η∗) = arg min
(ξ,η)∈K

[
(Eξ + κEη)2

Eη2

]
.

Then ξ∗ is a number, η∗ is the Bernoulli random variable with value in the set {σ−, σ+} and
the expectation of the pair (ξ∗, η∗) is given by the formula

(ξ∗, Eη∗) =




(
µ+,

µ+

κ
+

σ−σ+

σM

)
if κ ∈

(
−∞,

µ+σM

σMσ− − σ+σ−

]
,

(µ+, σ−) if κ ∈
(

µ+σM

σMσ− − σ+σ−
,−µ+

σ−

]
,

(κ,−1)constant if κ ∈
(
−µ+

σ−
,−µ−

σ+

]
,

(µ−, σ+) if κ ∈
(
−µ−

σ+
,

µ−σM

σMσ+ − σ+σ−

]
,

(
µ−,

µ−

κ
+

σ−σ+

σM

)
if κ ∈

(
µ−σM

σMσ+ − σ+σ−
,∞

)
.
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Moreover,

(ξ∗ + κEη∗)2

Eη∗2
=




κ(2µ+σM + κσ−σ+)

σ2
M

if κ ∈
(
−∞,

µ+σM

σMσ− − σ+σ−

]
,

(µ+ + κσ−)
2

σ2
−

if κ ∈
(

µ+σM

σMσ− − σ+σ−
,−µ+

σ−

]
,

0 if κ ∈
(
−µ+

σ−
,−µ−

σ+

]
,

(µ− + κσ+)
2

σ2
+

if κ ∈
(
−µ−

σ+
,

µ−σM

σMσ+ − σ+σ−

]
,

κ(2µ−σM + κσ−σ+)

σ2
M

if κ ∈
(

µ−σM

σMσ+ − σ+σ−
,∞

)
.

Proof. Let (µ++κσ−)(µ−+κσ+) ≤ 0. Then by the continuity of a function µ+κσ, (µ, σ) ∈
K, there exists (µ̂, σ̂) such that µ̂ + κσ̂ = 0. Thus (µ̂, σ̂) is proportional to (κ,−1) and[
(Eξ∗+κEη∗)2

Eη∗2

]
= 0. If (µ+ + κσ−)(µ− + κσ+) > 0, then either κ > µ−

σ+
and ξ∗ = µ− or

κ < −µ+

σ−
and ξ∗ = µ+. Thus it is sufficient to study the minimization problem

min
η∈[σ−,σ+]

[
(µa + κEη)2

Eη2

]
for a = +,−.

Now we show that η∗ is of the form η∗ = σ−χB + σ+χBc for some event B. In-
deed, if Eη∗ = y, then Eη∗2 = 2σMy − σ−σ+ and η∗ is the maximizer of the problem
maxη,Eη=y Eη2, since for any η, with Eη = y we have

Eη2 = E(η − σM )2 + 2σMy − σ2
M

≤
(
σ+ − σ−

2

)2

+ 2σMy − σ2
M = 2σMy − σ−σ+ = Eη∗2.

Hence

min
η∈[σ−,σ+]

[
(µa + κEη)2

Eη2

]
= min

σ−≤y≤σ+

ψa(y),

where ψa(y) =
(µa+κy)2

2σMy−σ−σ+
. Since

ψ′
a(y) =

κ2

2σM
− κ2

2σM

(2σM
µa

κ + σ−σ+)
2

(2σMy − σ−σ+)2

the equation ψ′
a(y) = 0 has two roots:

ya1 = −µa

κ
, ya2 =

µa

κ
+

σ−σ+

σM
.

If ya1 = −µa

κ ∈ [σ−, σ+], then ya2 = µa

κ + σ−σ+

σM
∈ [−σ+ + σ−σ+

σM
,−σ− + σ−σ+

σM
] and vice

versa. Moreover, [σ−, σ+] ∩ [−σ+ + σ−σ+

σM
,−σ− + σ−σ+

σM
] = ∅. Since limy→±∞ ψa(y) =

±∞, the smallest root is the maximizer and the biggest one is the minimizer. The case of ya1 ∈
[σ−, σ+] is equivalent to the case κ ∈

[
− σ+

µa
,−σ−

µa

]
, which yields minψa(y) = ψa(y

a
1 ) = 0.

From the relation ya2 ∈ [σ−, σ+] follows that −σ+ + σ−σ+

σM
≤ −µa

κ ≤ −σ+ − σ−σ+

σM
,
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which is equivalent to the relation κ ∈
(
− ∞, µa

σ−−σ−σ+
σM

]
∪
[

µa

σ+−σ−σ+
σM

,∞
)
. In that case,

minσ−≤y≤σ+
ψa(y) = ψa(y

a
2 ) = κ 2µa+κσ−σ+

σ2
M

.
Now we will consider step by step all the possibilities of displacement of κ in the intervals

formulated in the proposition.
1) κ ∈ (−∞, µa

σ−−σ−σ+
σM

]. Since µa

σ−−σ−σ+
σM

≤ −µ+

σ−
, we have κ ∈ (−∞,−µ+

σ−
] and

ξ∗ = µ+. Moreover, minψ+(y) = ψ+(y
+
2 ) = κ 2µ++κσ−σ+

σ2
M

.

2) κ ∈ ( µ+

σ−−σ−σ+
σM

,−µ+

σ−
]. From κ ≤ −µ+

σ−
it follows that y+1 = −µ+

κ < σ− and from

κ > µ+

σ−−σ−σ+
σM

it follows that y+2 = µ+

κ + σ−σ+

σM
< σ−. Hence ψ+(y) is increasing on

[σ−, σ+] and argminσ−≤y≤σ+
ψ+(y) = σ−.

3) κ ∈ (−µ+

σ−
,−µ−

σ+
]. Then y+1 = −µ+

κ ∈ [σ−, σ+] and minψ+(y) = 0.
4) κ ∈ (−µ−

σ+
, µ−

σ+−σ−σ+
σM

]. Then µ−
κ > σ+− σ−σ+

σM
and y−1 = −µ−

κ < −σ++
σ−σ+

σM
< σ−,

y−2 = µ−
κ + σ−σ+

σM
> σ+. Hence ψ−(y) is decreasing on [σ−, σ+] and argminψ+(y)=σ+.

5) κ ∈ ( µ−

σ+−σ−σ+
σM

,∞]. Then κ > µ−
σ+

and ξ∗ = µ−. On the other hand, from µ−
κ <

σ+ − σ−σ+

σM
it follows that y−2 ∈ [σ−, σ+]. Hence minσ−≤y≤σ+

ψ−(y) = ψ−(y
−
2 ). �

Lemma A.1. Let u(y), f1(z), f2(z), . . . , fN (z) be Lipschitz functions and −∞ = a0 <
a1 < · · · < aN = ∞ are such points that fk(ak) = fk+1(ak), k = 1, . . . , N − 1. Then the
function

ν(y) = fk(u(y)), if ak−1 < u(y) ≤ ak, k = 2, . . . , N,

is also a Lipschitz function.

Proof. For the sake of simplicity we consider the case N = 2. It is clear that fk(u(y)),
k = 1, 2, 3, are Lipschitz functions, i.e. there exists a constant C > 0 such that |fk(u(y1) −
fk(u(y2))| ≤ C|y1 − y2|. Suppose A1 = {y : u(y) ≤ a1}, A2 = {y : u(y) > a1} and set
y1 ∈ A1 y2 ∈ A2. Since u(y1) ≤ a1 ≤ u(y2), by the continuity of u there exists ȳ such that
u(ȳ) = a1, y1 ≤ ȳ ≤ y2. Hence we have

|ν(y1)− ν(y2)| = |f1(u(y1))− f2(u(y2))| = |f1(u(y1))− f1(a1) + f2(a2)− f2(u(y2))|
≤ |f1(u(y1))− f1(u(ȳ))|+ |f2(u(ȳ))− f2(u(y2))|
≤ C|y1 − ȳ|+ C|y2 − ȳ| = C(y2 − y1). �

APPENDIX B

Let β, a, b,H ∈ Cb(R) and γ, c, g be some constants. We consider the Cauchy problem
∂

∂t
u(t, y) +

1

2
uyy(t, y) + β(y)uy(t, y) + γu2

y(t, y) + a(y)

+ c min
(µ,σ)∈K

(b(y) + µ+ gσuy(t, y))
2

2σMσ − σ−σ+
= 0, (B.1)

u(T, y) = H(y). (B.2)

Proposition B.1. Let β, a, b,H be such that a′, b′, H ′ ∈ C0(R). Then the Cauchy problem
(B.1), (B.2) admits a classical solution with bounded u(t, y), uy(t, y).
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Proof. By condition of the proposition there exists N ≥ 0 such that a′(y), b′(y) = 0, H ′(y) =
0, if |y| > N . Thus a(y) = a+, b(y) = b+, H(y) = H+, if y ≥ N and a(y) = a−, b(y) =
b−, H(y) = H−, if y ≤ −N for some constants a+, a−, b+, b−, H+, H−. The solutions of
(3.5) on the intervals (−∞,−N ] and [N,∞) are u−(t) = a−(T−t)+c (b

−+µ−)2

σ2
+

(T−t)+H−

and u+(t) = a+(T − t) + c (b
++µ−)2

σ2
+

(T − t) + H+, respectively. Now let us consider the

Cauchy-Dirichlet problem on the bounded domain (0, T )× (−N,N)

∂

∂t
u(t, y) +

1

2
uyy(t, y) + β(y)uy(t, y) + γu2

y(t, y) + d(y)

+ c min
(µ,σ)∈K

(b(y) + µ+ gσuy(t, y))
2

2σMσ − σ−σ+
= 0,

u(T, y) = H(y), u(t,±N) = u±(t).

Suppose

a1(t, y, u, p) =
1

2
p, a(t, y, u, p) = −β(y)p− γp2 − d(y)− c min

(µ,σ)∈K

(b(y) + µ+ gσp)2

2σMσ − σ−σ+
.

Hence we get the Cauchy-Dirichlet problem for ũ(t, y) = u(T − t, y) in the form of [24]
∂

∂t
ũ(t, y)− ∂

∂y
a1(t, y, ũ(t, y), ũy(t, y)) + a(t, y, ũ(t, y), ũy(t, y)) = 0,

ũ(0, y) = H(y), ũ(t,±N) = u±(T − t).

It is easy to see that a(t, y, u, p) is the Lipschitz function on the each ball of its domain,
a(t, y, u, 0)u is a lower-bounded by a quadratic function of the type −b1u

2 − b2, b1, b2 > 0
and all the rest conditions of Theorem 6.2 (Chapter V, p. 457) of [24] are satisfied. Therefore
there exists a classical solution of (3.5), (3.6) with bounded uy(t, y). �

Remark B.1. The existence of classical solution of equation (B.3) with boundary conditions
u(T, y) = 0, uy(t,±N) + u(t,±N) = u±(t) follows also from Example 3.6 of [18].
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NEW PROOFS OF SOME RESULTS ON BMO MARTINGALES USING BSDES

B. CHIKVINIDZE AND M. MANIA

Abstract. Using properties of backward stochastic differential equations we give new proofs
of some well known results on BMO martingales and improve some estimates of BMO norms.

Key words and phrases: BMO martingales, Girsanov’s transformation, Backward stochastic
differential equation

MSC 2010: 60G44.

1. INTRODUCTION

The BMO martingale theory is extensively used to study backward stochastic differential
equations (BSDEs). Some properties of BMO martingales was already used by Bismut [3]
when he discussed the existence and uniqueness of a solution of some particular backward
stochastic Riccati equations, choosing the BMO space for the martingale part of the solution
process. In the work of Delbaen et al [6] conditions for the closedness of stochastic integrals
with respect to semimartingales in L2 were established in relation to the problem of hedging
contingent claims and linear BSDEs. Most of these conditions deal with BMO martingales
and reverse Hölder inequalities. BMO martingales naturally arise in BSDEs with quadratic
generators. When the generator of a BSDE has quadratic growth then the martingale part of
any bounded solution of the BSDE is a BMO martingale. This fact was proved in [10, 13, 14,
15, 17, 20] under various degrees of generality. Note that in [4] the existence of a solution was
proved to BSDE with quadratic growth and unbounded terminal condition, where the terminal
value satisfies certain exponential moment condition. In this case the martingale part of a
solution of such equation is not a BMO martingale in general, but the stochastic exponential
of the martingale part (as for BMO martingales) is a uniformly integrable martingale (see
[18] for details). Later, the BMO norms were used to prove an existence, uniqueness and
stability results for BSDEs, among others in [1, 2, 5, 7, 9, 16, 19, 20].

The aim of this paper is to do the converse: to prove some results on BMO martingales
using the BSDE technique.

It is well known that if M is a BMO martingale, then the mapping φ : L(P ) � X −→
X̃ = 〈X,M〉 − X ∈ L(P̃ ) is an isomorphism of BMO(P ) onto BMO(P̃ ), where dP̃ =
ET (M)dP . E. g., it was proved by Kazamaki [11, 12] that the inequality

‖X̃‖BMO(P̃ ) ≤ CKaz(M̃) · ‖X‖BMO(P )

is valid for all X ∈ BMO(P ), where the constant CKaz(M̃) > 0 is independent of X
but depends on the martingale M . Using the properties of a suitable BSDE we prove this

Published in J. Theoret. Probab. 27 (2014), no. 4, 1213–1228.
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inequality with a constant C(M̃) which we express as a linear function of the BMO(P̃ )

norm of M̃ = 〈M〉 −M and which is less than CKaz(M̃) for all values of this norm.
Using properties of BSDEs we also prove the well known equivalence between BMO

property, Muckenhoupt and reverse Hölder conditions (Doleans-Dade and Meyer [8], Kaza-
maki [12]) and obtain BMO norm estimates in terms of reverse Hölder and Muckenhaupt
constants.

2. REVERSE HÖLDER AND MUCKENHOUPT CONDITIONS AND RELATIONS WITH
BSDES

We start with a probability space
(
Ω,F , P

)
, a finite time horizon

0 < T < ∞ and a filtration F = (Ft)0≤t≤T satisfying the usual conditions of right-
continuity and completeness.

We recall definitions of BMO martingales, Reverse Hölder and Muckenhaupt conditions
(see, e.g., Doleans-Dade and Meyer [8], or Kazamaki [12]).

Definition 1. A continuous, uniformly integrable martingale (Mt,Ft) with M0 = 0 is said
to be from the class BMO if

‖M‖BMO = sup
τ

∥∥∥E[
〈M〉T − 〈M〉τ |Fτ

]1/2∥∥∥
∞

< ∞,

where the supremum is taken over all stopping times τ ∈ [0, T ] and 〈M〉 is the sharp bracket
of M .

Denote by E(M) the stochastic exponential of a continuous local martingale M :

Et(M) = exp
{
Mt −

1

2
〈M〉t

}
.

Throughout the paper we assume that M is a continuous local martingale with 〈M〉T < ∞
P - a.s. This implies that Et(M) > 0 P -a.s. for all t ∈ [0, T ], which allows to define Eτ,T (M)
as Eτ,T (M) = ET (M)/Eτ (M).

Definition 2. Let 1 < p < ∞. E(M) is said to satisfy (Rp) condition if the reverse Hölder
inequality

E
[{

Eτ,T (M)
}p

∣∣∣Fτ

]
≤ Cp

is valid for every stopping time τ , with a constant Cp > 0 depending only on p.

If E(M) is a uniformly integrable martingale then by the Jensen inequality we also have
that E

[{
Eτ,T (M)

}p
∣∣∣Fτ

]
≥ 1.

A condition dual to (Rp) is the Muckenhoupt condition (Ap).

Definition 3. E(M) is said to satisfy (Ap) condition for 1 < p < ∞ if there is a constant
Dp > 0 such that for every stopping time τ ∈ [0, T ]

E
[{

Eτ,T (M)
}− 1

p−1

∣∣∣Fτ

]
≤ Dp.

Note that, since E(M) is a supermartingale, the Jensen inequality implies the converse
inequality

E
[{

Eτ,T (M)
}− 1

p−1

∣∣∣Fτ

]
≥

{
E
[
Eτ,T (M)

∣∣Fτ

]}− 1
p−1 ≥ 1.
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In this paper we shall consider only linear BSDEs of the type

Yt = Y0 −
∫ t

0

[αYs + βψs]d〈M〉s +
∫ t

0

ψsdMs +Nt, YT = 1,

where α and β are constants.
A solution of such a BSDE is a triple (Y, ψ,N), where Y is a special semimartingale, ψ

is a predictable M -integrable process and N is a locally square integrable martingale with
〈N,M〉 = 0.

Let us define the space S∞ ×BMO(P )×H2(P ) equipped with the following norms

‖Y ‖∞ = ‖Y ∗
T ‖L∞ , where Y ∗

T = sup
t∈[0,T ]

|Yt|,

‖ψ ·M‖BMO(P ) = sup
τ

∥∥∥E
[ ∫ T

τ

ψ2
sd〈M〉s|Fτ

]1/2∥∥∥
∞
,

‖N‖H2 = E
1
2 [N ]T ,

where [N ] is the square bracket of N .
Note that, since the martingale M is assumed to be continuous, only the latter term of

this equation may have the jumps, i.e., ∆Y = ∆N . In order to avoid the definition of BMO
norms for right-continuous martingales, we are using the H2 norms for orthogonal martingale
parts. This is sufficient for our goals, since the generators of equations under consideration
do not depend on orthogonal martingale parts.

Sometimes we call Y alone the solution of BSDE, keeping in mind that ψ ·M +N is the
martingale part of Y .

Lemma 1. Let M be a continuous local martingale.
a) E(M) satisfies (Rp) if and only if there exists a bounded, positive solution of BSDE

{
Yt = Y0 −

∫ t

0
[p(p−1)

2 Ys + pψs]d〈M〉s +
∫ t

0
ψsdMs +Nt,

YT = 1.
(1)

b) E(M) satisfies (Ap) if and only if there exists a bounded, positive solution of equation
{
Xt = X0 −

∫ t

0
[ p
2(p−1)2Xs − 1

p−1ϕs]d〈M〉s +
∫ t

0
ϕsdMs + Lt,

XT = 1.
(2)

Proof. a) Let first show that if E(M) satisfies (Rp), then the process Yt=E
[{

Et,T (M)
}p

∣∣∣Ft

]

is a solution of BSDE (1). It is evident that Y is a bounded positive process and that
Yt

{
Et(M)

}p
is a uniformly integrable martingale. Therefore, since Et(M) > 0, the process

Y will be a special semimartingale. Let Yt = Y0+At+mt be the canonical decomposition of
Y , where m is a locally square integrable martingale and A a predictable process of bounded
variation. Using the Galtchouk-Kunita-Watanabe decomposition for m, we get

Yt = Y0 +At +

∫ t

0

ψsdMs +Nt, (3)

where N is a locally square integrable martingale strongly orthogonal to M .
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Now using the Itô formula we have

Yt

{
Et(M)

}p
= Y0 +

∫ t

0

[p(p− 1)

2
Ys + pψs

]{
Es(M)

}p
d〈M〉s

+

∫ t

0

{
Es(M)

}p
dAs + m̃t, (4)

where m̃ is a local martingale.
Because Yt

{
Et(M)

}p
is a martingale, equalizing the part of bounded variation to zero, we

obtain that

At = −
∫ t

0

[p(p− 1)

2
Ys + pψs

]
d〈M〉s,

which implies that Yt = E
[{

Et,T (M)
}p

∣∣∣Ft

]
is a solution of equation (1).

Now let equation (1) admits a bounded positive solution Yt. Using the Itô formula for
the process Yt

{
Et(M)

}p
we get that Yt

{
Et(M)

}p
is a local martingale. Hence it is a su-

permartingale, as a positive local martingale. Therefore, from the supermartingale inequality
and the boundary condition YT = 1 we obtain that E

[{
Et,T (M)

}p
∣∣∣Ft

]
≤ Yt. Because Y is

bounded, this implies that E(M) satisfies (Rp) condition.
b) The proof is similar to the proof of the part a), we only need to replace p by − 1

p−1 . �

Let E(M) be a uniformly integrable martingale. Denote by P̃ a new probability measure
defined by dP̃ = ET (M)dP and let M̃ = 〈M〉 −M .

Now we shall give a new proof of the well known equivalence (Doleans-Dade and Meyer
[8], Kazamaki [12]) between BMO property, Muckenhoupt and reverse Hölder conditions.

Theorem 1. Let E(M) be a uniformly integrable martingale. Then the following conditions
are equivalent:
i) M̃ ∈ BMO(P̃ ).
ii) E(M) satisfies the (Rp) condition for some p > 1.
iii) M ∈ BMO(P ).
iv) E(M) satisfies the (Ap) condition for some p > 1.

Proof. For the sake of simplicity, in all proofs given here, we shall assume without loss of
generality that all stochastic integrals are martingales, otherwise one can use the localization
arguments.

i) =⇒ ii) Let M̃ ∈ BMO(P̃ ). According to Lemma 1 it is sufficient to show that equation
(1) admits a bounded positive solution for some p > 1. Let us rewrite equation (1) in terms
of the P̃ -martingale M̃ :

{
Yt = Y0 −

∫ t

0
[p(p−1)

2 Ys + (p− 1)ψs]d〈M〉s −
∫ t

0
ψsdM̃s +Nt,

YT = 1.

Since 〈N,M〉 = 0, N is a local P̃ - martingale orthogonal to M̃ .
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Define the mapping H : S∞ × BMO(P̃ )×H2(P̃ ) into itself, which maps (y, ψ, n) ∈
S∞ ×BMO(P̃ )×H2(P̃ ) onto the solution (Y,Ψ, N) of the BSDE (1), i.e.,

Yt = EP̃

[
1 +

∫ T

t

[p(p− 1)

2
ys + (p− 1)ψs

]
d〈M〉s

∣∣∣∣Ft

]

and

−
∫ t

0

ΨsdM̃s +Nt = EP̃

[ ∫ T

0

[p(p− 1)

2
ys + (p− 1)ψs

]
d〈M〉s

∣∣∣∣Ft

]

−EP̃

∫ T

0

[p(p− 1)

2
ys + (p− 1)ψs

]
d〈M〉s.

We shall show that there exists p > 1 such that this mapping is a contraction.
Let

δY = Y 1 − Y 2, δy = y1 − y2, δΨ = Ψ1 −Ψ2, δψ = ψ1 − ψ2, δN = N1 −N2.

It is evident that δYT = 0 and

δYt = δY0 −
∫ t

0

[p(p− 1)

2
δys + (p− 1)δψs

]
d〈M〉s −

∫ t

0

δΨsdM̃s + δNt.

Applying the Itô formula to (δYτ )
2 − (δYT )

2 and taking conditional expectations we have

(δYτ )
2 + EP̃

[ ∫ T

τ

(δΨs)
2d〈M〉s

∣∣∣∣Fτ

]
+ EP̃

[
[δN ]T − [δN ]τ

∣∣∣Fτ

]

= EP̃

[ ∫ T

τ

p(p− 1)δYsδysd〈M〉s
∣∣∣∣Fτ

]
+ EP̃

[ ∫ T

τ

2(p− 1)δYsδψsd〈M〉s
∣∣∣∣Fτ

]

and using elementary inequalities we obtain

(δYτ )
2 + EP̃

[ ∫ T

τ

(δΨs)
2d〈M〉s

∣∣∣∣Fτ

]
+ EP̃

[
[δN ]T − [δN ]τ

∣∣∣Fτ

]

≤ p(p− 1)

2
‖M̃‖2

BMO(P̃ )
· ‖δY ‖2∞ +

p(p− 1)

2
‖M̃‖2

BMO(P̃ )
· ‖δy‖2∞

+(p− 1)‖M̃‖2
BMO(P̃ )

· ‖δY ‖2∞ + (p− 1)
∥∥∥
∫

δψdM̃
∥∥∥
2

BMO(P̃ )
.

Because the right-hand side of the inequality does not depend on τ , we will have
(
1− 3p(p− 1)

2
‖M̃‖2

BMO(P̃ )
− 3(p− 1)‖M̃‖2

BMO(P̃ )

)
‖δY ‖2∞

+
∥∥∥
∫

δΨdM̃
∥∥∥
2

BMO(P̃ )
+ ‖δN‖2

H2(P̃ )

≤ 3p(p− 1)

2
‖M̃‖2

BMO(P̃ )
‖δy‖2∞ + 3(p− 1)

∥∥∥
∫

δψdM̃
∥∥∥
2

BMO(P̃ )
. (5)

Since

1− 3

2
(p− 1)(p+ 2)‖M̃‖2

BMO(P̃ )
> 0
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for p sufficiently close to 1, one can make the constant of ‖δY ‖2∞ in the left-hand side of (5)
positive and we finally obtain the inequality

‖δY ‖2∞ +
∥∥∥
∫

δΨdM̃
∥∥∥
2

BMO(P̃ )
+ ‖δN‖2

H2(P̃ )

≤ α(p) · ‖δy‖2∞ + β(p) ·
∥∥∥
∫

δψdM̃
∥∥∥
2

BMO(P̃ )
, (6)

where

α(p) =
3p(p− 1)‖M̃‖2

BMO(P̃ )

2− 3(p− 1)(p+ 2)‖M̃‖2
BMO(P̃ )

,

β(p) =
6(p− 1)

2− 3(p− 1)(p+ 2)‖M̃‖2
BMO(P̃ )

.

It is easy to see that limp↓1 α(p) = limp↓1 β(p) = 0. So, if we take p∗ such that
α(p∗) < 1 and β(p∗) < 1 we obtain that there exists 0 < C < 1 such that

‖δY ‖2∞ +
∥∥∥
∫

δΨdM̃
∥∥∥
2

BMO(P̃ )
+ ‖δN‖2

H2(P̃ )

≤ C
(
‖δy‖2∞ +

∥∥∥
∫

δψdM̃
∥∥∥
2

BMO(P̃ )
+ ‖δn‖2

H2(P̃ )

)
, (7)

for any (y, ψ, n) ∈ S∞ ×BMO(P̃ )×H2(P̃ ).
Thus, the mapping H is a contraction and there exists a fixed-point of H , which is the

unique solution (Y,Ψ, N) of (1) in S∞ ×BMO(P̃ )×H2(P̃ ).
Since α(p) and β(p) are decreasing functions of p ∈ (1,∞), the norms ‖Y ‖∞ and ‖Ψ ·

M̃‖BMO(P̃ ) are uniformly bounded, as functions of p for p ∈ [1, p∗]. Therefore, for any
p ∈ [1, p∗] we have

Yt = EP̃

[
1 +

∫ T

t

[p(p− 1)

2
Ys + (p− 1)Ψs

]
d〈M〉s

∣∣∣∣Ft

]
(8)

and

Yt ≥ 1− p(p− 1)

2
‖Y ‖∞‖M̃‖2

BMO(P̃ )
− p− 1

2
‖M̃‖2

BMO(P̃ )

−p− 1

2
‖Ψ · M̃‖2

BMO(P̃ )
≥ 0

for some p sufficiently close to 1. Hence, there exists a bounded positive solution of equation
(1) for some p > 1, which implies that E(M) satisfies the Rp condition, according to Lemma
1.

ii) =⇒ iii) Let E(M) be a uniformly integrable martingale and satisfies the (Rp) condition

for some p > 1. Then the process Yt = E
[{

Et,T (M)
}p

∣∣∣Ft

]
is a solution of equation (1) and

satisfies the two-sided inequality
1 ≤ Yt ≤ Cp. (9)
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Applying the Itô formula to e−βYt , integrating from τ to T and taking conditional expec-
tations we have

e−β − e−βYτ = β
p(p− 1)

2
E
[ ∫ T

τ

Yse
−βYsd〈M〉s

∣∣∣Fτ

]

+E
[ ∫ T

τ

e−βYs

(β2

2
ψ2
s + βpψs

)
d〈M〉s

∣∣∣Fτ

]
+

β2

2
E
[ ∫ T

τ

e−βYsd〈N c〉s
∣∣∣Fτ

]

+E
[
Στ<s≤T

(
e−βYs − e−βYs− + βe−βYs−∆Ys

)∣∣∣Fτ

]
.

Since β2

2 ψ2
s+βpψs ≥ −p2

2 and e−βYs−e−βYs−+βe−βYs−∆Ys ≥ 0 we obtain the inequality

p

2
E
[ ∫ T

τ

(
β(p− 1)Ys − p

)
e−βYsd〈M〉s

∣∣Fτ

]
≤ e−β − e−βYτ .

Then from the two-sided inequality (9) it follows that for any β > p
p−1

p

2
(β(p− 1)− p)e−βCpE

[
〈M〉T − 〈M〉τ

∣∣∣Fτ

]
≤ e−β − e−βCp , (10)

which implies that

‖M‖2BMO(P ) ≤
2(eβ(Cp−1) − 1)

p(β(p− 1)− p)
,

since the right-hand side of (10) does not depends on τ .
iii) =⇒ iv) If M is a BMO(P ) martingale, then according to Lemma 1 it is sufficient

to show that equation (2) admits bounded positive solution for some p > 1, which can be
proved similarly to the implication i) =⇒ ii). By the same way one can show that for the
mapping H

Xt = E

[
1 +

∫ T

t

[ p

2(p− 1)2
xs −

1

p− 1
ϕs

]
d〈M〉s

∣∣∣∣Ft

]
,

where −
∫ t

0
ΦsdMs + Lt is the martingale part of X , the inequality (6) holds with

α(p) =
3p‖M‖2BMO(P )

2(p− 1)2 − (9p− 6)‖M‖2BMO(P )

,

β(p) =
6(p− 1)

2(p− 1)2 − (9p− 6)‖M‖2BMO(P )

,

where limp→∞ α(p) = limp→∞ β(p) = 0. So if we take p large enough we obtain that the
mapping H is a contraction.

iv) =⇒ i) The proof is similar to the proof of the implication ii) =⇒ iii) and we only give
a brief sketch of the proof.

Since E(M) satisfies the (Ap) condition for some p > 1, according to Lemma 1 the

process Xt = E
[{

Et,T (M)
}− 1

p−1

∣∣∣Ft

]
is a bounded positive solution of equation (2), which

can be written in the following equivalent form

Xt = X0 −
∫ t

0

[
p

2(p− 1)2
Xs −

p

p− 1
ϕs]d〈M〉s −

∫ t

0

ϕsdM̃s + Lt
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in terms of P̃ martingale M̃ = 〈M〉 − M . Note that 〈M̃〉 = 〈M〉 and L is also a local P̃
martingale orthogonal to M̃ .

Applying the Itô formula for e−βXT −e−βXτ , using successively the elementary inequality
β2

2 ϕ2
s −

βp
p−1ϕs ≥ − p2

2(p−1)2 , the convexity of the function e−βx and the two-sided inequality
1 ≤ Xt ≤ Dp, similarly to the implication ii) =⇒ iii) we obtain the following estimate for
the BMO norm of M̃

‖M̃‖2
BMO(P̃ )

≤ 2(p− 1)2

p(β − p)

(
eβ(Dp−1) − 1

)

valid for any β > p, where Dp is a constant from Definition 3. �

3. GIRSANOV’S TRANSFORMATION OF BMO MARTINGALES AND BSDES

Let M be a continuous local P -martingale such that E(M) is a uniformly integrable mar-
tingale and let dP̃ = ET (M)dP . To each continuous local martingale X we associate the
process X̃ = 〈X,M〉 −X , which is a local P̃ -martingale according to Girsanov’s theorem.
We denote this map by ϕ : L(P ) → L(P̃ ), where L(P ) and L(P̃ ) are classes of P and P̃
local martingales.

Let consider the process

Yt = EP̃
[
〈X〉T − 〈X〉t

∣∣Ft

]
= E

[
Et,T (M)(〈X〉T − 〈X〉t)

∣∣Ft

]
. (11)

Since 〈X̃〉 = 〈X〉 under either probability measure, it is evident that

‖Y ‖∞ = ‖X̃‖2
BMO(P̃ )

. (12)

Let M ∈ BMO(P ). According to Theorem 1 condition (Rp) is satisfied for some p > 1.
The (Rp) condition and conditional energy inequality (Kazamaki [12], page 29) imply that
for any X ∈ BMO(P ) the process Y is bounded, i.e., ϕ maps BMO(P ) into BMO(P̃ ).
Moreover, as proved by Kazamaki [11, 12], BMO(P ) and BMO(P̃ ) are isomorphic under
the mapping φ and for all X ∈ BMO(P ) the inequality

‖X̃‖2
BMO(P̃ )

≤ C2
Kaz(M̃) · ‖X‖2BMO(P ) (13)

is valid, where

C2
Kaz(M̃) = 2p · 21/p sup

τ

∥∥∥EP̃
[{

Eτ,T (M̃)
}− 1

p−1

∣∣∣Fτ

]∥∥∥
(p−1)/p

∞
, (14)

and p > 1 is such that
‖M̃‖BMO(P̃ ) <

√
2(
√
p− 1). (15)

The conditional expectation in (14) is bounded, if p satisfies inequality (15), according to
Theorem 2.4 from [12]. Note also that the similar inequality holds for the inverse mapping
φ−1 by the closed graph theorem.

Similarly to Lemma 1 one can show that for any X ∈ BMO(P ) the process Y (defined
by (11)) is a positive bounded solution of the BSDE

Yt = Y0 − 〈X〉t −
∫ t

0

ϕsd〈M〉s +
∫ t

0

ϕsdMs + Lt, YT = 0. (16)
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Indeed, it is evident that (Yt + 〈X〉t)Et(M) is a local martingale. Since Et(M) > 0 P-a.s.
for all t ∈ [0, T ], the process Y will be a special semimartingale with the decomposition

Yt = Y0 +At +

∫ t

0

ϕsdMs +Nt, (17)

where A is a predictable process of bounded variation and N is a local martingale orthogonal
to M .

By the Itô formula

(Yt + 〈X〉t)Et(M) =

∫ t

0

Es(M)
[
dAs + d〈X〉s + ϕsd〈M〉s

]
+ local martingale,

which implies that At = −〈X〉t −
∫ t

0
ϕsd〈M〉s. Therefore, it follows from (17) that Y

satisfies equation (16).
Now we give an alternative proof of the inequality (13) with a constant expressed as a

linear function of the BMO norm of the martingale M̃ .

Theorem 2. If M ∈ BMO(P ), then φ : X → X̃ is an isomorphism of BMO(P ) onto
BMO(P̃ ). In particular, the inequality

1(
1 +

√
2
2 ‖M‖BMO(P )

)‖X‖BMO(P ) ≤ ‖X̃‖BMO(P̃ )

≤
(
1 +

√
2

2
‖M̃‖BMO(P̃ )

)
‖X‖BMO(P ). (18)

is valid for any X ∈ BMO(P ).

Proof. Applying the Itô formula to (Yτ + ε)p− (YT + ε)p (for 0 < p < 1, ε > 0) and taking
conditional expectations we obtain

(
Yτ+ε

)p−εp = E
[ ∫ T

τ

p(Ys+ε)p−1d〈X〉s
∣∣∣Fτ

]
+
p(1− p)

2
E
[ ∫ T

τ

(Ys+ε)p−2d〈Lc〉s
∣∣∣Fτ

]

+E
[ ∫ T

τ

(p(1− p)

2
(Ys + ε)p−2ϕ2

s + p(Ys + ε)p−1ϕs

)
d〈M〉s

∣∣∣Fτ

]

−E
[
Στ<s≤T

(
(Ys + ε)p − (Ys− + ε)p − p(Ys− + ε)p−1∆Ys

)∣∣∣Fτ

]
. (19)

Because f(x) = xp is concave for p ∈ (0, 1), the last term in (19) is positive. Therefore,
using the inequality

p(1− p)

2
(Ys + ε)p−2ϕ2

s + p(Ys + ε)p−1ϕs +
p

2(1− p)
(Ys + ε)p ≥ 0

from (19) we obtain

(Yτ + ε)p − εp ≥ E
[ ∫ T

τ

p(Ys + ε)p−1d〈X〉s
∣∣∣Fτ

]

− p

2(1− p)
E
[ ∫ T

τ

(Ys + ε)pd〈M〉s
∣∣∣Fτ

]
. (20)
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Since 0 < p < 1

p
(
‖Y ‖∞ + ε

)p−1
E
[
〈X〉T − 〈X〉τ

∣∣∣Fτ

]
≤ E

[ ∫ T

τ

p(Ys + ε)p−1d〈X〉s
∣∣∣Fτ

]
,

from (20) we have

p
(
‖Y ‖∞ + ε

)p−1
E
[
〈X〉T − 〈X〉τ

∣∣∣Fτ

]

≤
(
Yτ + ε

)p − εp +
p

2(1− p)
E
[ ∫ T

τ

(Ys + ε)pd〈M〉s
∣∣∣Fτ

]

and taking norms in the both sides of the latter inequality we obtain

p
(
‖Y ‖∞+ε

)p−1 ·‖X‖2BMO(P ) ≤
(
‖Y ‖∞+ε

)p−εp+
p

2(1− p)

(
‖Y ‖∞+ε

)p ·‖M‖2BMO(P ).

Taking the limit when ε → 0 we will have that for all p ∈ (0, 1)

‖X‖2BMO(P ) ≤
(1
p
+

1

2(1− p)
‖M‖2BMO(P )

)
· ‖Y ‖∞.

Therefore,

‖X‖2BMO(P ) ≤ min
p∈(0,1)

(1
p
+

1

2(1− p)
‖M‖2BMO(P )

)
· ‖Y ‖∞

=
(
1 +

√
2

2
‖M‖BMO(P )

)2

· ‖Y ‖∞, (21)

since the minimum of the function f(p) = 1
p + 1

2(1−p)‖M‖2BMO(P ) is attained for p∗ =
√
2/(

√
2 + ‖M‖BMO(P )) and f(p∗) =

(
1 +

√
2
2 ‖M‖BMO(P )

)2

.
Thus, from (21) and (12) we obtain

1(
1 +

√
2
2 ‖M‖BMO(P )

)‖X‖BMO(P ) ≤ ‖X̃‖BMO(P̃ ).

Now we can use inequality (21) for the Girsanov transform of X̃ .
Since dP/dP̃ = E−1

T (M) = ET (M̃), M̃, X̃ ∈ BMO(P̃ ) and

ϕ(X̃) = 〈X̃, M̃〉 − X̃ = X,

from (21) we get the inverse inequality:

‖X̃‖BMO(P̃ ) ≤
(
1 +

√
2

2
‖M̃‖BMO(P̃ )

)
‖X‖BMO(P ). (22)

The theorem is proved. �
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Comparison of constants C(M̃) and CKaz(M̃). Let us compare the constant

C(M̃) = 1 +

√
2

2
‖M̃‖BMO(P̃ )

from (18) with the corresponding constant CKaz(M̃) from (13) (Kazamaki [12]).
Since by the Jensen inequality

EP̃
[{

Eτ,T (M̃)
}− 1

p−1

∣∣∣Fτ

]
≥ 1,

it follows from (14) that the constant CKaz(M̃) is more than
√
2p, where p is such that

‖M̃‖BMO(P̃ ) <
√
2(
√
p− 1). Since the last inequality is equivalent to the inequality

p >
(
1 +

√
2

2
‖M̃‖BMO(P̃ )

)2
,

we obtain from (14) that at least

C2(M̃) <
1

2
C2

Kaz(M̃).

It is evident that in the trivial case M = 0 we have that P̃ = P and X̃ = X . Note that, if
M = 0 then (18) gives the two-sided inequality

‖X‖BMO(P ) ≤ ‖X̃‖BMO(P̃ ) ≤ ‖X‖BMO(P ),

implying the equality X̃ = X , whereas from (13) we only have
1

2
‖X‖BMO(P ) ≤ ‖X̃‖BMO(P̃ ) ≤ 2‖X‖BMO(P ).

This shows that the following simple corollary can not be deduced from inequality (13).

Corollary. Let (Mn, n ≥ 1) be a sequence of BMO(P ) martingales such that
limn→∞ ‖Mn‖BMO(P ) = 0. Let dPn = ET (Mn)dP and X̃n = 〈X,Mn〉 − X . Then
for any X ∈ BMO(P )

lim
n→∞

‖X̃n‖BMO(Pn) = ‖X‖BMO(P ).

Proof. The second inequality of (18), applied for X = Mn and M = Mn gives

‖M̃n‖BMO(Pn) ≤
(
1 +

√
2

2
‖M̃n‖BMO(Pn)

)
‖Mn‖BMO(P ).

Therefore,
1

√
2
2 + 1/‖M̃n‖BMO(Pn)

≤ ‖Mn‖BMO(P ),

which implies that limn→∞ ‖M̃n‖BMO(Pn) = 0. Now, passing to the limit in the two-sided
inequality (18) we obtai

‖X‖BMO(P ) ≤ lim
n→∞

‖X̃n‖BMO(Pn) ≤ ‖X‖BMO(P ). �

Remark. Note that the converse of Theorem 2 is also true. I.e., if M is a continuous local
martingale and E(M) is a uniformly integrable martingale, Schachermayer [21] proved that
if M /∈ BMO(P ) then the map ϕ is not an isomorphism from BMO(P ) into BMO(P̃ ).
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RECURSIVE ESTIMATION PROCEDURES FOR ONE-DIMENSIONAL
PARAMETER OF STATISTICAL MODELS ASSOCIATED WITH

SEMIMARTINGALES

N. LAZRIEVA AND T. TORONJADZE

Abstract. The recursive estimation problem of a one-dimensional parameter for statistical
models associated with semimartingales is considered. The asymptotic properties of recursive
estimators are derived, based on the results on the asymptotic behaviour of a Robbins–Monro
type SDE. Various special cases are considered.

Key words and phrases: Stochastic approximation, Robbins–Monro type SDE, semimartin-
gale statistical models, recursive estimation, asymptotic properties

MSC 2010: 62L20, 60H10, 60H30

INTRODUCTION

Beginning from the paper [1] of A. Albert and L. Gardner a link between Robbins–Monro
(RM) stochastic approximation algorithm (introduced in [19]) and recursive parameter esti-
mation procedures was intensively exploited. Later on recursive parameter estimation proce-
dures for various special models (e.g., i.i.d models, non i.i.d. models in discrete time, etc.)
have been studied by a number of authors using methods of stochastic approximation (see,
e.g., [2, 3, 4, 7, 8, 14, 15, 20, 21, 22]). It would be mentioned the fundamental book [18] by
M. B. Nevelson and R. Z. Khas’minski (1972) between them.

In 1987 by N. Lazrieva and T. Toronjadze a heuristic algorithm of a construction of the
recursive parameter estimation procedures for statistical models associated with semimartin-
gales (including both discrete and continuous time semimartingale statistical models) was
proposed [9]. These procedures could not be covered by the generalized stochastic approx-
imation algorithm with martingale noises (see, e.g., [17]), while in discrete time case the
classical RM algorithm contains recursive estimation procedures.

To recover the link between the stochastic approximation and recursive parameter estima-
tion in [10, 11, 12] by Lazrieva, Sharia and Toronjadze the semimartingale stochastic dif-
ferential equation was introduced, which naturally includes both generalized RM stochastic
approximation algorithms with martingale noises and recursive parameter estimation proce-
dures for semimartingale statistical models.

In the present work we are concerning with the construction of recursive estimation pro-
cedures for semimartingale statistical models asymptotically equivalent to the MLE and M -
estimators, embedding these procedures in the Robbins–Monro type equation. For this reason
in Section 1 we shortly describe the Robbins–Monro type SDE and give necessary objects to
state results concerning the asymptotic behavior of recursive estimator procedures.

Published in Trans. A. Razmadze Math. Inst. 171 (2017), no. 1, 57–75.
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In Section 2 we give a heuristic algorithm of constructing recursive estimation procedures
for one-dimensional parameter of semimartingale statistical models. These procedures pro-
vide estimators asymptotically equivalent to MLE. To study the asymptotic behavior of these
procedures we rewrite them in the form of the Robbins–Monro type SDE. Besides, we give a
detailed description of all objects presented in this SDE, allowing us separately study special
cases (e.g. discrete time case, diffusion processes, point processes, etc.).

In Section 4 we formulate main results concerning the asymptotic behaviour of recursive
procedures, asymptotically equivalent to the MLE.

In Section 5, we develop recursive procedures, asymptotically equivalent to M -estimators.
Finally, in Section 6, we give various examples demonstrating the usefulness of our ap-

proach.

1. THE ROBBINS–MONRO TYPE SDE

Let on the stochastic basis (Ω,F , F = (Ft)t≥0, P ) satisfying the usual conditions the
following objects be given:

a) the random field H = {Ht(u), t ≥ 0, u ∈ R1} = {Ht(ω, u), t ≥ 0, ω ∈ Ω,
u ∈ R1} such that for each u ∈ R1 the process H(u) = (Ht(u))t≥0 ∈ P (i.e. is
predictable);

b) the random field M = {M(t, u), t ≥ 0, u ∈ R1} = {M(ω, t, u), ω ∈ Ω, t ≥ 0,
u ∈ R1} such that for each u ∈ R1 the process M(u) = (M(t, u))t≥0 ∈ M2

loc(P );
c) the predictable increasing process K = (Kt)t≥0 (i.e. K ∈ V+ ∩ P).

In the sequel we restrict ourselves to the consideration of the following particular case:
for each u ∈ R1 M(u) = ϕ(u) · m + W (u) ∗ (µ − ν), where m ∈ Mc

loc(P ), µ is an
integer-valued random measure on (R × E,B(R+) × E), ν is its P -compensator, (E, E) is
the Blackwell space, W (u) = (W (t, x, u), t ≥ 0, x ∈ E) ∈ P ⊗ E . Here we also mean that
all stochastic integrals are well-defined.1

Later on by the symbol
t∫
0

M(ds, us), where u = (ut)t≥0 is some predictable process, we

denote the following stochastic line integrals:
∫ t

0

ϕ(s, us) dms +

∫ t

0

∫

E

W (s, x, us)(µ− ν)(ds, dx)

provided the latters are well-defined.
Consider the following semimartingale stochastic differential equation

zt = z0 +

∫ t

0

Hs(zs−) dKs +

∫ t

0

M(ds, zs−), z0 ∈ F0. (1.1)

We call SDE (1.1) the Robbins–Monro (RM) type SDE if the drift coefficient Ht(u),
t ≥ 0, u ∈ R1 satisfies the following conditions: for all t ∈ [0,∞) P -a.s.

(A)
Ht(0) = 0,

Ht(u)u < 0 for all u �= 0.

The question of strong solvability of SDE (1.1) is well-investigated (see, e.g., [5]).

1See [16] for basic concepts and notations.
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We assume that there exists a unique strong solution z = (zt)t≥0 of equation (1.1) on the
whole time interval [0,∞) and such that M̃ ∈ M2

loc(P ), where

M̃t =

∫ t

0

M(ds, zs−).

Sufficient conditions for the latter can be found in [5].
The unique solution z = (zt)t≥0 of RM type SDE (1.1) can be viewed as a semimartingale

stochastic approximation procedure.
In [10] and [11], the asymptotic properties of the process z = (zt)t≥0 as t → ∞ are

investigated, namely, convergence (zt → 0 as t → ∞ P -a.s.), rate of convergence (that
means that for all δ < 1

2 , γδ
t zt → 0 as t → ∞ P -a.s., with the specially chosen normalizing

sequence (γt)t≥0) and asymptotic expansion

χ2
t z

2
t =

Lt

〈L〉1/2t

+Rt

with the specially chosen normalizing sequence χ2
t and martingale L = (Lt)t≥0, where

Rt → 0 as t → ∞ (see [10] and [11] for definition of objects χ2
t , Lt and Rt).

2. BASIC MODEL AND REGULARITY

Our object of consideration is a parametric filtered statistical model

E = (Ω,F ,F = (Ft)t≥0, {Pθ; θ ∈ R})

associated with one-dimensional F-adapted RCLL process X = (Xt)t≥0 in the following
way: for each θ ∈ R1 Pθ is assumed to be the unique measure on (Ω,F) such that under
this measure X is a semimartingale with predictable characteristics (B(θ), C(θ), νθ) (w.r.t.
standard truncation function h(x) = xI{|x|≤1}). For simplicity assume that all Pθ coincide
on F0.

Suppose that for each pair (θ, θ′) Pθ
loc∼ Pθ′ . Fix some θ0 ∈ R and denote P = Pθ0 ,

B = B(θ0), C = C(θ0), ν = νθ0 .
Let ρ(θ) = (ρt(θ))t≥0 be a local density process (likelihood ratio process)

ρt(θ) =
dPθ,t

dPt
,

where for each θ Pθ,t := Pθ|Ft, Pt := P |Ft are restrictions of measures Pθ and P on Ft,
respectively.

As it is well-known (see, e.g., [6, Ch. III, §3d, Th. 3.24]) for each θ there exists a P̃-
measurable positive function

Y (θ) = {Y (ω, t, x; θ), (ω, t, x) ∈ Ω×R+ ×R},

and a predicable process β(θ) = (βt(θ))t≥0 with

|h(Y (θ)− 1)| ∗ ν ∈ A+
loc(P ), β2(θ) ◦ C ∈ A+

loc(P ),

and such that
(1) B(θ) = B + β(θ) ◦ C + h(Y (θ)− 1) ∗ ν,
(2) C(θ) = C, (3) νθ = Y (θ) · ν.

(2.1)
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In addition, the function Y (θ) can be chosen in such a way that

at := ν({t}, R) = 1 ⇐⇒ at(θ) := νθ({t}, R) =

∫
Y (t, x; θ)ν({t})dx = Ŷt(θ) = 1.

We give a definition of the regularity of the model based on the following representation
of the density process as exponential matringale:

ρ(θ) = E(M(θ)),

where

M(θ) = β(θ) ·Xc +

(
Y (θ)− 1 +

Ŷ (θ)− a

1− a
I{0<a<1}

)
∗ (µ− ν) ∈ Mloc(P ), (2.2)

Et(M) is the Dolean exponential of the martingale M (see, e.g., [16]). Here Xc is a continu-
ous martingale part of X under measure P .

We say that the model is regular if for almost all (ω, t, x) the functions β : θ → βt(ω; θ)

and Y : θ → Y (ω, t, x; θ) are differentiable (notation β̇(θ) := ∂
∂θβ(θ), Ẏ (θ) := ∂

∂θY (θ))
and differentiability under integral sign is possible. Then

∂

∂θ
ln ρ(θ) = L(Ṁ(θ),M(θ)) := L(θ) ∈ Mloc(Pθ),

where L(m,M) is the Girsanov transformation defined as follows: if m,M ∈ Mloc(P ) and
Q � P with dQ

dP = E(M), then

L(m,M) := m− (1 + ∆M)−1 ◦ [m,M ] ∈ Mloc(Q).

It is not hard to verify that

L(θ) = β̇(θ) · (Xc − β(θ) ◦ C) + Φ(θ) ∗ (µ− νθ), (2.3)

where

Φ(θ) =
Ẏ (θ)

Y (θ)
+

ȧ(θ)

1− a(θ)

with I{a(θ)=1}ȧ(θ) = 0, and 0/0 = 0 (recall that ∂
∂θ Ŷ (θ) = ȧ(θ)).

Indeed, due to the regularity of the model, we have

Ṁ(θ) = β̇(θ) ·Xc +

(
Ẏ (θ)− ȧ(θ)

1− a
I(0<a<1)

)
∗ (µ− ν)

and (2.3) simply follows from (1.16)–(1.18) of [13, Part I] with

g(θ) = Y (θ)− 1 +
a(θ)− a

1− a
I(0<a<1) ,

ψ(θ) = Ẏ (θ)− ȧ(θ)

1− a
I(0<a<1) .

The empirical Fisher information process is Ît(θ) = [L(θ), L(θ)]t and if we assume that
for each θ ∈ R1 L(θ) ∈ M2

loc(Pθ), then the Fisher information process is

It(θ) = 〈L(θ), L(θ)〉t.
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3. RECURSIVE ESTIMATION PROCEDURE FOR MLE

In [9], a heuristic algorithm was proposed for the construction of recursive estimators of
unknown parameter θ asymptotically equivalent to the maximum likelihood estimator (MLE).

This algorithm was derived using the following reasons:
Consider the MLE θ̂ = (θ̂t)t≥0, where θ̂t is a solution of estimational equation

Lt(θ) = 0.

The question of solvability of this equation is considered in [13, Part II].
Assume that

1) for each θ ∈ R1, It(θ) → ∞ as t → ∞, Pθ-a.s., the process (Ît(θ))1/2(θ̂t−θ) is Pθ-
stochastically bounded and, in addition, the process (θ̂t)t≥0 is a Pθ-semimartingale;

2) for each pair (θ′, θ) the process L(θ′) ∈ M2
loc(Pθ′) and is a Pθ-special semimartin-

gale;
3) the family (L(θ), θ ∈ R1) is such that the Itô–Ventzel formula is applicable to the

process (L(t, θ̂t))t≥0 w.r.t. Pθ for each θ ∈ R1;
4) for each θ ∈ R1 there exists a positive increasing predictable process (γt(θ))t≥0,

γ0 > 0, asymptotically equivalent to Î−1
t (θ), i.e.

γt(θ)Ît(θ)
Pθ→ 1 as t → ∞.

Under these assumptions using the Ito–Ventzel formula for the process
(L(t, θ̂t))t≥0 we get an “implicit” stochastic equation for θ̂ = (θ̂t)t≥0. Analyzing the or-
ders of infinitesimality of terms of this equation and rejecting the high order terms we get the
following SDE (recursive procedure)

dθt = γt(θt−)L(dt, θt−), (3.1)

where L(dt, ut) is a stochastic line integral w.r.t. the family {L(t, u), u ∈ R1, t ∈ R+} of
Pθ-special semimartingales along the predictable curve u = (ut)t≥0.

Note that in many cases under consideration one can choose γt(θ) = (I−1
t (θ) + 1)−1, or

in ergodic situations such as i.i.d. case, ergodic diffusion one can replace It(θ) by another
process equivalent to them (see examples).

To give an explicit form to the SDE (3.1) for the statistical model associated with the
semimartingale X assume for a moment that for each (u, θ) (including the case u = θ)

|Φ(u)| ∗ µ ∈ A+
loc(Pθ). (3.2)

Then for each pair (u, θ) we have

Φ(u) ∗ (µ− νu) = Φ(u) ∗ (µ− νθ) + Φ(u)

(
1− Y (u)

Y (θ)

)
∗ νθ.

Based on this equality one can obtain the canonical decomposition of Pθ-special semi-
martingale L(u) (w.r.t. measure Pθ):

L(u) = β̇(u) ◦ (Xc − β(θ) ◦ C) + Φ(u) ∗ (µ− νθ)

+ β̇(u)(β(θ)− β(u)) ◦ C +Φ(u)

(
1− Y (u)

Y (θ)

)
∗ νθ. (3.3)
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Now, using (3.3) the meaning of L(dt, ut) is
∫ t

0

L(ds, us−) =

∫ t

0

β̇s(us−)d(X
c − β(θ) ◦ C)s +

∫ t

0

∫
Φ(s, x, us−)(µ− νθ)(ds, dx)

+

∫ t

0

β̇s(us)(βs(θ)− βs(us))dCs

+

∫ t

0

∫
Φ(s, x, us−)

(
1− Y (s, x, us−)

Y (s, x, θ)

)
νθ(ds, dx).

Finally, the recursive SDE (3.1) takes the form

θt = θ0 +

∫ t

0

γs(θs−)β̇s(θs−)d(X
c − β(θ) ◦ C)s

+

∫ t

0

∫
γs(θs−)Φ(s, x, θs−)(µ− νθ)(ds, dx)

+

∫ t

0

γs(θ)β̇s(θs)(βs(θ)− βs(θs))dCs

+

∫ t

0

∫
γs(θs−)Φ(s, x, θs−)

(
1− Y (s, x, θs−)

Y (s, x, θ)

)
νθ(ds, dx). (3.4)

Remark 3.1. One can give more accurate than (3.2) sufficient conditions (see, e.g., [6, 16])
to ensure the validity of decomposition (3.3).

Assume that there exists an unique strong solution (θt)t≥0 of the SDE (3.4).
Fox arbitrary θ ∈ R1. To investigate the asymptotic properties, under measure Pθ, of

recursive estimators (θt)t≥0 as t → ∞, namely, a strong consistency, rate of convergence
and asymptotic expansion we reduce the SDE (3.4) to the Robbins–Monro type SDE.

For this aim denote zt = θt − θ. Then (3.4) can be rewritten as

zt = z0 +

∫ t

0

γs(θ + zs−)β̇(θ + zs−)(βs(θ)− βs(θ + zs−)dCs

+

∫ t

0

∫
γs(θ + zs−)Φ(s, x, θ + zs−)

(
1− Y (s, x, θ + zs−)

Y (s, x, θ)

)
νθ(ds, dx)

+

∫ t

0

γs(θ + zs)β̇s(θ + zs)d(X
c − β(θ) ◦ C)s

+

∫ t

0

∫
γs(θ + zs−)Φ(s, x, θ + zs−)(µ− νθ)(ds, dx). (3.5)

For the definition of the objects Kθ, {Hθ(u), u ∈ R1} and {Mθ(u), u ∈ R1} we consider
such a version of characteristics (C, νθ) that

Ct = cθ ◦Aθ
t ,

νθ(ω, dt, dx) = dAθ
tB

θ
ω,t(dx),
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where Aθ = (Aθ
t )t≥0 ∈ A+

loc(Pθ), cθ = (cθt )t≥0 is a nonnegative predictable process, and
Bθ

ω,t(dx) is a transition kernel from (Ω×R+,P) in (R,B(R)) with Bθ
ω,t({0}) = 0 and

∆Aθ
tB

θ
ω,t(R) ≤ 1

(see [6, Ch. 2, §2, Prop. 2.9]).
Put Kθ

t = Aθ
t ,

Hθ
t (u) = γt(θ + u)

{
β̇t(θ + u)(βt(θ)− βt(θ + u))cθt

+

∫
Φ(t, x, θ + u)

(
1− Y (t, x, θ + u)

Y (t, x, θ)

)
Bθ

ω,t(dx)

}
, (3.6)

Mθ(t, u) =

∫ t

0

γs(θ + u)β̇s(θ + u)d(Xc − β(θ) ◦ C)s

+

∫ t

0

∫
γs(θ + u)Φ(s, x, θ + u)(µ− νθ)(ds, dx). (3.7)

Assume that for each u, u ∈ R, Mθ(u) = (Mθ(t, u))t≥0 ∈ M2
loc(Pθ). Then

〈Mθ(u)〉t =
∫ t

0

(γs(θ + u)β̇s(θ + u))2cθsdA
θ
s

+

∫ t

0

γ2
s (θ + u)

(∫
Φ2(s, x, θ + u)Bθ

ω,s(dx)

)
dAθ,c

s

+

∫ t

0

γ2
s (θ + u)Bθ

ω,t(R)

{∫
Φ2(s, x, θ + u)qθω,s(dx)

− as(θ)

(∫
Φ(s, x, θ + u)qθω,s(dx)

)2}
dAθ,d

s ,

where as(θ) = ∆Aθ
sB

θ
ω,s(R), qθω,s(dx)I{as(θ)>0} =

Bθ
ω,s(dx)

Bθ
ω,s(R)

I{as(θ)>0}.

Now we give a more detailed description of Φ(θ), I(θ), Hθ(u) and 〈Mθ(u)〉. This allows
us to study the special cases separately (see Remark 3.2 below). Denote

dνcθ
dνc

:= F (θ),
qθω,t(dx)

qω,t(dx)
:= fω,t(x, θ) (:= ft(θ)).

Then

Y (θ) = F (θ)I{a=0} +
a(θ)

a
f(θ)I{a>0}

and

Ẏ (θ) = Ḟ (θ)I{a=0} +

(
ȧ(θ)

a
f(θ) +

a(θ)

a
ḟ(θ)

)
I{a>0}.

Therefore

Φ(θ) =
Ḟ (θ)

F (θ)
I{a=0} +

{
ḟ(θ)

f(θ)
+

ȧ(θ)

a(θ)(1− a(θ))

}
I{a>0} (3.8)

with I{a(θ)>0}
∫ ḟ(θ)

f(θ) q
θ(dx) = 0.
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Remark 3.2. Denote β̇(θ) = �c(θ), Ḟ (θ)
F (θ) := �π(θ), ḟ(θ)

f(θ) := �δ(θ), ȧ(θ)
a(θ)(1−a(θ)) := �b(θ).

Indices i = c, π, δ, b carry the following loads: “c” corresponds to the continuous part,
“π” to the Poisson type part, “δ” to the predictable moments of jumps (including a main
special case – the discrete time case), “b” to the binomial type part of the likelihood score
�(θ) = (�c(θ), �π(θ), �δ(θ), �b(θ)).

In these notations we have for the Fisher information process:

It(θ) =

∫ t

0

(�cs(θ))
2dCs +

∫ t

0

∫
(�πs (x; θ))

2Bθ
ω,s(dx)dA

θ,c
s

+

∫ t

0

Bθ
ω,s(R)

[ ∫
(�δs(x; θ))

2qθω,s(dx)

]
dAθ,d

s +

∫ t

0

(�bs(θ))
2(1− as(θ))dA

θ,d
s .

(3.9)

For the random field Hθ(u) we have

Hθ
t (u) = γt(θ + u)

{
�ct(θ + u)(βt(θ)− βt(θ + u))cθt (3.10)

+

∫
�πt (x; θ + u)

(
1− Ft(x; θ + u)

Ft(x; θ)

)
Bθ

ω,t(dx)I{∆Aθ
t=0}

+

{∫
�δt (x; θ + u)qθω,t(dx)�

b
t(θ + u)

at(θ)− at(θ + u)

at(θ)

}
Bθ

ω,t(R)I{∆Aθ
t>0}. (3.11)

Finally, we have for 〈Mθ(u)〉:

〈Mθ(u)〉t =(γ(θ + u)�c(θ + u))
2
cθ ◦Aθ

t+

∫ t

0

γ2
s (θ+u)

∫
(�πs (x; θ + u))2Bθ

ω,s(dx)dA
θ,c
s

+

∫ t

0

γ2
s (θ + u)Bθ

ω,s(R)

{∫
(�δs(x; θ + u) + �bs(θ + u))2qθω,s(dx)

− as(θ)

(∫
(�δs(x; θ + u) + �bs(θ + u))qθω,s(dx)

)2}
dAθ,d

s . (3.12)

Thus, we reduced SDE (3.5) to the Robbins–Monro type SDE with Kθ
t = Aθ

t , and Hθ(u)
and Mθ(u) defined by (3.6) and (3.7), respectively.

As it follows from (3.6), (3.11)

Hθ
t (0) = 0 for all t ≥ 0, Pθ-a.s.

As for condition (A) to be satisfied it ie enough to require that for all t ≥ 0, u �= 0 Pθ-a.s.

β̇t(θ + u)(βt(θ)− βt(θ + u)) < 0,
(∫

Ḟ (t, x, θ + u)

F (t, x, θ + u)

(
1− F (t, x; θ + u)

F (t, x; θ)

)
Bθ

ω,t(dx)

)
I{∆Aθ

t=0}u < 0,

(∫
ḟ(t, x; θ + u)

f(t, x; θ + u)
qθt (dx)

)
I{∆Aθ

t>0}u < 0,

ȧt(θ + u)(at(θ)− at(θ + u))u < 0,
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and the simplest sufficient conditions for the latter ones is the strong monotonicity (P -a.s.)
of functions β(θ), F (θ), f(θ) and a(θ) w.r.t. θ.

4. MAIN RESULTS

We are ready to formulate main results about asymptotic properties of recursive estimators
{θt, t ≥ 0} as t → ∞, (Pθ-a.s.), which is the same of solution zt, t ≥ 0, of equation (3.5).

For simplicity we restrict ourselves by the case when semimartingale X = (Xt)t≥0 is
left quasi-continuous, so ν(ω; {t}, R) = 0 for all t ≥ 0, P -a.s., and Aθ = (Aθ

t )t≥0 is a
continuous process. In this case

Hθ
t (u) = γt(θ + u)

{
β̇t(θ + u)(βt(θ)− βt(θ + u))cθt

+

∫
Ḟt(x; θ + u)

Ft(x; θ + u)

(
1− Ḟt(x; θ + u)

Ft(x; θ)

)
Bθ

ω,t(dx)

}
, (4.1)

〈Mθ(u)〉t =
∫ t

0

(γs(θ + u)β̇s(θ + u))2dAθ
s

+

∫ t

0

γ2
s (θ + u)

(∫ (
Ḟs(x; θ + u)

Fs(x; θ + u)

)2

Bθ
ω,s(dx)

)
dAθ

s, (4.2)

It(θ) =

∫ t

0

(β̇s(θ))
2cθsdA

θ
s +

∫ t

0

∫ (
Ḟs(x; θ)

Fs(x; θ)

)2

Bω,s(dx)dA
θ
s. (4.3)

Theorem 4.1 (Strong consistency). Let for all t ≥ 0, Pθ-a.s. the following conditions be
satisfied:

(A) Hθ
t (0) = 0, Hθ

t (u)u < 0, u �= 0,
(B) hθ

t (u) ≤ Bθ
t (1 + u2), where Bθ = (Bθ

t )t≥0 is a predictable process, Bθ
t ≥ 0,

Bθ ◦Aθ
∞ < ∞,

hθ
t (u) =

d〈Mθ(u)〉t
dAθ

t

, (4.4)

(C) for each ε, ε > 0,

inf
ε≤|u|≤ 1

ε

|Hθ(u)u| ◦Aθ
∞ = ∞.

Then for each θ ∈ R1

θ̂t → 0 (or zt → 0), as t → ∞, Pθ-a.s.

Proof. Immediately follows from conditions of Theorem 3.1 of [10] applied to prespecified
by (4.1)–(4.3) objects. �

In the sequel we assume that for each θ ∈ R1

Pθ

(
lim
t→∞

Ît(θ)

It(θ)
= 1

)
= 1,

from which it follows that γt(θ) = I−1
t (θ). Denote

gθt =
dIt(θ)

dAθ
t

= (β̇t(θ))
2cθt +

∫ (
Ḟt(x; θ)

Ft(x; θ)

)2

Bω,t(dx). (4.5)
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We assume also that zt → 0 as t → ∞, Pθ-a.s.

Theorem 4.2 (Rate of convergence). Suppose that for each δ, 0 < δ < 1, the following
conditions are satisfied:

(i)

∫ ∞

0

[
δ
gθt
Iθt

− 2βθ
t (zt)

]+
dAθ

t < ∞, Pθ-a.s.,

where βθ
t (u) =



−Hθ

t (u)
u , u �= 0,

− lim
u→0

Hθ
t (u)
u , u = 0,

(4.6)

(ii)

∫ ∞

0

(It(θ))
δhθ

t (zt)dA
θ
t < ∞, Pθ-a.s.

Then for each θ ∈ R1, δ, 0 < δ < 1,

Iδt (θ)z
2
t → 0 as t → ∞, Pθ-a.s.

Proof. It is enough to note that conditions (2.3) and (2.4) of Theorem 2.1 from [11] are
satisfied with It(θ) instead of γt, δgθt /It(θ) instead of rδt and βθ

t (u) instead of βt(u). �

In the sequel we assume that for all δ, 0 < δ < 1
2 ,

Iδt (θ)zt → 0 as t → ∞, Pθ-a.s.

It is not hard to verify that the following expansion holds true

I
1/2
t (θ)zt =

Lθ
t

〈Lθ〉1/2t

+Rθ
t , (4.7)

where Lθ
t , Rθ

t will be specified below.
Indeed, according to “Preliminary and Notation” section of [11]

βθ
t = − lim

u→0

Hθ
t (u)

u
= −I−1

t (θ)gθt .

Further,

−βθ ◦Aθ
t =

∫ t

0

I−1
s (θ)

dIs(θ)

dAs(θ)
dAθ

s = ln It(θ).

Therefore
Γθ
t = ε−1

t (−βθ ◦Aθ
t ) = It(θ) (4.8)

and

Lθ
t =

∫ t

0

Γθ
sdM

θ(s, 0)

with

〈Lθ〉t =
∫ t

0

(Γθ
s)

2d〈Mθ(0)〉s =
∫ t

0

I2s (θ)I
−2
s (θ)dIs(θ) = It(θ). (4.9)

Finally, we obtain
χθ
t = Γθ

t 〈Lθ〉−1/2
t = I

1/2
t (θ). (4.10)

As for Rθ
t , one can use the definition of Rt from the same section by replacing of objects by

the corresponding objects with upperscipts “θ”, e.g. βt by βθ
t , Lt by Lθ

t , etc.
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Theorem 4.3 (Asymptotic expansion). Let the following conditions be satisfied:

(i) 〈Lθ〉t is a deterministic process, 〈Lθ〉∞ = ∞,
(ii) there exists ε, 0 < ε < 1

2 , such that

1

〈Lθ〉t

∫ t

0

|βθ
s − βθ

s (zs)|I−ε
s (θ)〈Lθ〉sdAθ

s → 0 as t → ∞, Pθ-a.s.,

(iii)

1

〈Lθ〉t

∫ t

0

I2t (θ)(h
θ
s(zs, zs)− 2hθ

s(zs, 0) + hs(0, 0))dA
θ
s

Pθ→ 0 as t → ∞,

where

hθ
t (u, v) =

d〈Mθ(u),Mθ(v)〉
dAθ

t

. (4.11)

Then in equation (4.7) for each θ ∈ R

Rθ
t

Pθ→ 0 as t → ∞.

Proof. It is not hard to verify that all conditions of Theorem 3.1 from [11] are satisfied with
〈Lθ〉t instead of 〈L〉t, βθ

s (u) instead of βs(u), I−1
θ (θ) instead of γt, Aθ

t instead of χt, Γθ
s

instead Γs, and I
1/2
t (θ) instead of χt, hθ

t (u, v) instead of ht(u, v), and, finally, P θ instead
of P . �

Remark. It follows from equation (4.7) and Theorem 4.3 that, using the Central Limit Theo-
rem for martingales

I
1/2
t (θ)(θt − θ)

d→ N(0, 1).

5. RECURSIVE PROCEDURE FOR M -ESTIMATORS

As stated in previous section the maximum likelihood equation has the form

Lt(θ) = Lt(Ṁθ,Mθ) = 0.

This equation is the special member of the following family of estimational equations

Lt(mθ,Mθ) = 0 (5.1)

with certain P -martingales mθ, θ ∈ R1. These equations are of the following sense: their
solutions are viewed as estimators of unknown parameter θ, so-called M -estimators. To pre-
serve the classical terminology we shall say that the martingale mθ defines the M -estimator,
and Pθ-martingale L(mθ,Mθ) is the influence martingale.

As it is well known M -estimators play the important role in robust statistics, besides they
are sources to obtain asymptotically normal estimators.

Since for each θ ∈ R1 Pθ is an unique measure such that under this measure X = (Xt)t≥0

is a semimartingale with characteristics (B(θ), c(θ), νθ) all Pθ-martingales admit an integral
representation property w.r.t. continuous martingale part and martingale measure (µ − νθ)
of X . In particular, the P -martingale Mθ has the form (see Eq. (2.2))

Mθ = β(θ) ◦Xs + ψ ∗ (µ− ν), (5.2)
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where

ψ(s, x, θ) = Y (t, x, θ)− 1 +
Ŷ (t, θ)− a

1− a
I(0<a<1)

and mθ ∈ Mloc(P ) can be represented as

m(θ) = g(θ) ◦Xc +G(θ) ∗ (µ− ν) (5.3)

with certain functions g(θ) and G(θ).
It can be easily shown that Pθ-martingale L(mθ,Mθ) can be represented as

L(mθ,Mθ) = ϕm(θ) · (Xc − β(θ) ◦ C) + Φm(θ) ∗ (µ− νθ), (5.4)

where the functions ϕm and Φm are expressed in terms of functions β(θ), ψ(θ), g(θ) and
G(θ).

On the other hand, it can be easily shown that each Pθ-martingale M̃θ can be expressed as
L(m̃θ,Mθ) with P -martingale m̃θ defined as

m̃θ = L(M̃θ, L(−Mθ,Mθ)) ∈ Mloc(P )

(since dP
dPθ

= E(L(−Mθ,Mθ)), according to the generalized Girsanov theorem

L(M̃θ, L(−Mθ,Mθ)) ∈ Mloc(P )).
Therefore without loss of generality one can consider the M -estimator associated with the

parametric family (M̃θ, θ ∈ R) of Pθ-martingale as the solution of the estimational equation

M̃t(θ) = 0. (5.5)

In the sequel we assume that for each θ ∈ R1, M̃θ ∈ M2
loc(Pθ). Assume also that there

exists a positive decreasing predictable process γ̃t(θ) with γ̃0(θ) = 1 such that γ̃t(θ)〈M̃θ〉t
Pθ→

1 as t → ∞.
Now using the same arguments as in Section 3 we introduce the following recursive pro-

cedure for constructing estimator (θ̃t, t ≥ 0) asymptotically equivalent to the M -estimator
defined by relation (5.5) as the solution of the following SDE

dθ̃t = γ̃t(θ)M̃(dt, θ̃t−). (5.6)

To obtain the explicit form of the last SDE, recall that M̃θ has an integral representation
property

M̃t(θ) = ϕ̃(θ) ◦ (Xc − β(θ) ◦ 〈Xc〉) + Φ̃(θ) ∗ (µ− νθ).

We can obtain the canonical decomposition of Pθ-semimartingale M̃t(u), u ∈ R1 (w.r.t.
measure Pθ)

M̃(u) = ϕ̃(u) ◦ (Xc − β(θ) ◦ C) + Φ̃(u) ∗ (µ− νθ)

+ [ϕ̃(u)(β(θ)− β(u))] ◦ C + Φ̃(u)

(
1− y(u)

y(θ)

)
∗ (µ− νθ).

Based on the last expression we can derive the explicit form of SDE (5.5)

θt = θ0 +

∫ t

0

γ̃s(θ̃s−)ϕ̃(s, θs−)d(X
c − β(θ) ◦ C)
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+

∫ t

0

∫
γ̃s(θs−)Φ̃(s, x, θ̃s−)(µ− νθ)(ds, dx)

+

∫ t

0

γ̃s(θs−)ϕ̃(s, θ̃s−)(βs(θ)− βs(θs−))dCs

+

∫ t

0

∫
γs(θs−)Φ̃(s, x, θ̃s−)

(
1− Y (s, x, θ̃s−)

Y (s, x, θ)

)
νθ(ds, dx). (5.7)

To study the asymptotic properties of the solution of this equation (θ̃t, t ≥ 0) (e.g. consis-
tency, rate of convergence, asymptotic normality) is more convenient to rewrite this equation
as (zt = θ̃t − θ)

zt = z0 +

∫ t

0

γ̃s(θ + zs−)ϕ̃(s, θ + zs−)d(X
c − β(θ) ◦ C)

+

∫ t

0

∫
γ̃s(θ + zs−)Φ̃(s, x, θ + zs−)(µ− νθ)(ds, dx)

+

∫ t

0

γ̃s(θ + zs−)ϕ̃(s, θ + zs−)(βs(θ)− βs(θs + zs−))dCs

+

∫ t

0

∫
γ̃s(θ + zs−)Φ̃(s, x, θ + zs−)

(
1− Y (s, x, θ + zs−)

Y (s, x, θ)

)
νθ(ds, dx). (5.8)

6. EXAMPLES

To make the things more clear let us begin with the simplest case of i.i.d. observations.

Example 1. Let {pθ, θ ∈ R1} be the family of probability measures defined on some mea-
surable space (X,B) such that for each pair θ, θ′, pθ ∼ pθ′ .

Put Ω = X∞, Fn = B(Xn), F = B(X∞), Pθ = pθ×pθ×· · · . Then for θ, θ′, Pθ
loc∼ Pθ′ .

Fix some θ0 ∈ R1 and denote p = pθ0 . Let dpθ/dp = f(x, θ). Then the local density process

ρn(θ) =
dPn,θ

dPn
=

n∏
i=1

f(Xi, θ) = En(Mθ), (6.1)

where

M(θ) =
n∑

i=1

(f(Xi, θ)− 1)

is a P -martingale. Here (Xn)n≥1 is a coordinate process, Xn(ω) = xn.
Assume that for all x, f(x, θ) is continuous differentiable in θ and denote ∂

∂θ f(X, θ) =

ḟ(X, θ). Assume also that ∂
∂θ

∫
f(x, θ)p(dx) =

∫
ḟ(x, θ)p(dx). Then Ṁn(θ)=

n∑
i=1

ḟ(Xi, θ)

is a P -martingale.
In these notation the MLE takes the form

Ln(Ṁ(θ),Mθ) =

n∑
i=1

ḟ(Xi, θ)

f(Xi, θ)
= 0.
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The Fischer information process

In(θ) = 〈L(Ṁθ,Mθ)〉 = nI(θ), (6.2)

where I(θ) = Eθ

( ḟ(·,θ)
f(·,θ)

)2
, assuming that the last integral is finite.

The recursive estimation procedure to obtain the estimator θn, asymptotically equivalent
to MLE is well known:

θn = θn−1 +
1

nI(θn−1)

ḟ(Xn, θn−1)

f(Xn, θn−1)
. (6.3)

Let us derive this equation from the general recursive SDE.

For this aim consider the process Sn =
n∑

i=1

Xi, n ≥ 1. This process is a semimartingale

with the jump measure
µ(ω, [0, n]×B) =

∑
i≤n

I{Xi∈B}

and its Pθ-compensator is

νθ(ω, [0, n]×B) =
∑
i≤n

Pθ(Xi ∈ B) = n

∫

B

f(x, θ)p(dx).

Note that an(θ) = ν(ω, {n};X) = 1 for all n ≥ 1 and θ ∈ R1.
It is obvious that νθ = Y · ν, where Yθ(ω, n, x) ≡ f(x, θ). Besides,

Φ(θ) =
Ẏ (θ)

Y (θ)
+

ȧ(θ)

1− a(θ)
=

ḟ(·, θ)
f(·, θ)

.

At the same time the general recursive SDE for this special case can be written as

θn = θn−1 +
1

nI(θn−1)

ḟ(xn, θn−1)

f(xn, θn−1)
− 1

nI(θn−1)

∫
ḟ(x, u)

f(x, u)

f(x, u)

f(x, θ)
f(x, θ) dµ|u=θn−1 .

But
∫
ḟ(x, u) dµ = 0 and thus the last term equals zero and we come to equation (6.3).

In terms of zn = θn − θ equation (6.3) takes the form

zn = zn−1 +
1

nI(θ + zn−1)
b(θ, zn−1) +

1

nI(θ + zn−1)
∆mn,

where

b(θ, u) =

∫
ḟ(x, u)

f(x, u)
f(x, θ) dµ, ∆mn = ∆mn(u), ∆mn =

ḟ(x, u)

f(x, u)
− b(θ, u).

Concerning to M -estimators recall that by the definition the estimational equation is

Ln(m(θ),M(θ)) = 0, (6.4)

where m(θ) is some P -martingale, mn(θ) =
∑
i≤n

g(Xi, θ) with
∫
g(x, θ) dp = 0.

Equation (6.4) can be written as
∑
i≤n

g(Xi, θ)

f(Xi, θ)
= 0.
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Thus, without loss of generality, we can define M -estimator as the solution of the equation

M̃n(θ) =
∑
i≤n

ψ(Xi, θ) = 0, (6.5)

where∫
ψ(xi, θ)f(xi, θ)µ(dx) = 0, 〈M̃(θ)〉n = n

∫
ψ2(x, θ)f(x, θ)µ(dx) = nIψ(θ).

Now using the same arguments as in the case of MLE we obtain the following recur-
sive procedure for construction the estimator asymptotically equivalent to the M -estimator
defined by (6.5)

θn = θn−1 +
1

nIψ(θn−1)
ψ(Xn, θn−1).

Example 2. Discrete time case.
Let X0, X1, . . . , Xn, . . . be observations taking values in some measurable space

(X ,B(X )) such that the regular conditional densities of distributions (w.r.t. some measure p)
fi(xi, θ|xi−1, . . . , x0), i ≤ n, n ≥ 1 exist, f0(x0, θ) ≡ f0(x0), θ ∈ R1 is the parameter to
be estimated. Denote Pθ corresponding distribution on (Ω,F) := (X∞,B(X∞)). Identify
the process X = (Xi)i≥0 with coordinate process and denote F0 = σ(X0), Fn = σ (Xi,
i ≤ n). If ψ = ψ(Xi, Xi−1, . . . , X0) is a r.v., then under Eθ(ψ|Fi−1) we mean the following
version of conditional expectation

Eθ(ψ | Fi−1) :=

∫
ψ(z,Xi−1, . . . , X0)fi(z, θ | Xi−1, . . . , X0)µ(dz),

if the last integral exists.
Assume that the usual regularity conditions are satisfied and denote

∂

∂θ
fi(xi, θ | xi−1, . . . , x0) := ḟi(xi, θ | xi−1, . . . , x0),

the maximum likelihood scores

li(θ) :=
ḟi
fi

(Xi, θ | Xi−1, . . . , X0)

and the empirical Fisher information

In(θ) :=

n∑
i=1

Eθ(l
2
i (θ) | Fi−1).

Denote also
bn(θ, u) := Eθ(ln(θ + u) | Fn−1)

and indicate that for each θ ∈ R1, n ≥ 1

bn(θ, 0) = 0 (Pθ-a.s.). (6.6)

Using the same arguments as in the case of i.i.d. observations we come to the following
recursive procedure

θn = θn−1 + I−1
n (θn−1)ln(θn−1), θ0 ∈ F0.
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Fix θ, denote zn = θn − θ and rewrite the last equation in the form

zn = zn−1 + I−1
n (θ + zn−1)bn(θ, zn−1) + I−1

n (θ + zn−1)∆mn,

z0 = θ − θ,
(6.7)

where ∆mn = ∆m(n, zn−1) with ∆m(n, u) = ln(θ + u)− Eθ(ln(θ + u)|Fn−1).
Note that the algorithm (6.7) is embedded in SDE (1.1) with

Hn(u) = I−1
n (θ + u)bn(θ, u) ∈ Fn−1, ∆Kn = 1,

∆M(n, u) = I−1
n (θ + u)∆m(n, u).

This example clearly shows the necessity of consideration of random fields Hn(u) and
M(n, u).

The discrete time case was considered by T. Sharia in [20, 21].

Example 3. Recursive parameter estimation in the trend coefficient of a diffusion process.
Here we consider the problem of recursive estimation of the one-dimensional parameter

in the trend coefficient of a diffusion process ξ = {ξt, t ≥ 0} with

dξt = a(ξt, θ) dt+ σ(ξt) dwt, ξ0, (6.8)

where w = {wt, t ≥ 0} is a standard Wiener process, a(·, θ) is the known function, θ ∈ Θ ⊆
R is a parameter to be estimated, Θ is some open subset of R, σ2(·) is the known diffusion
coefficient.

We assume that there exists a unique weak solution of equation (6.8).
For each θ ∈ Θ denote by P θ the distribution of the process ξ on (C[0,∞),B).
Let X = {Xt, t ≥ 0} be the coordinate process, that is, for each x = {xt, t ≥ 0} ∈

C[0,∞), Xt(x) = xt, t ≥ 0.

Fix some θ ∈ Θ and assume that for each θ′ ∈ Θ, P θ (loc)∼ P θ′
. Then the density process

ρt(X, θ) can be written as

ρt(X, θ) :=
dP θ

t

dP θ′
t

(X) = exp

{∫ t

0

a(Xs, θ)− a(Xs, θ
′)

σ(Xs)

(dXs− a(Xs, θ
′)ds)

σ(Xs)

−1

2

∫ t

0

(
a(Xs, θ)− a(Xs, θ

′)

σ(Xs)

)2

ds.

Recall that if for all t ≥ 0 P θ-a.s.
∫ 1

0

σ2(Xs) ds < ∞, (6.9)

then the process
{
Xt −

t∫
0

a(Xs, θ) ds, t ≥ 0
}

∈ M2
loc(P

θ) with the square characteristic

t∫
0

σ2(Xs) ds.

Under suitable regularity conditions if we assume that for all t ≥ 0 P θ-a.s.
∫ t

0

(
ȧ(Xs, θ)

σ(Xs)

)2

ds < ∞, (6.10)
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we will have{
∂

∂θ
ln ρt(X, θ) =

∫ t

0

(
ȧ(Xs, θ)

σ(Xs)

)
d(Xs − a(Xs, θ)ds), t ≥ 0

}
∈ M2

loc(P
θ),

where ȧ(·, θ) denotes the derivative of a(·, θ) w.r.t. θ.
Below we assume that conditions (6.9) and (6.10) are satisfied.
Introduce the Fisher information process

It(θ) =

∫ t

0

(
ȧ(Xs, θ)

σ(Xs)

)2

ds.

Then, according to equation (3.4), the SDE for constructing the recursive estimator (θt, t ≥ 0)
has the form

dθt = It(θt)

[
ȧ(Xt, θt)

σ2(Xs)
dXc

t +
ȧ(Xt, θt)

σ2(Xt)
(a(Xt, θ)− a(Xt, θt)) dt

]
. (6.11)

Fix some θ ∈ Θ. To study the asymptotic properties of the recursive estimator {θt, t ≥ 0}
as t → ∞ under measure P θ let us denote zt = θt − θ and rewrite (6.11) in the following
form:

dzt=It(θ+zt)

[
ȧ(Xt, θ + zt)

σ2(Xs)
dXc

t+
ȧ(Xt, θ + zt)

σ2(Xt)
(a(Xt, θ)− a(Xt, θ + zt)) dt

]
. (6.12)

In the sequel we assume that there exists a unique strong solution of equation (6.12) such
that {∫ t

0

Is(θ + zs)
ȧ(Xs, θ + zs)

σ2(Xs)
dXc

s , t ≥ 0

}
∈ M2

loc(Pθ),

that is, for each t ≥ 0 P θ-a.s.
∫ t

0

I2s (θ + zs)

(
ȧ(Xs, θ + zs)

σ(Xs)

)2

ds < ∞.

To study the asymptotic properties of the process z = {zt, t ≥ 0} as t → ∞ (under
the measure P θ) one can use the results of Theorems 4.1–4.3 concerning the asymptotic
behaviour of solutions of the Robbins–Monro type SDE

zt = z0 +

∫ t

0

Hs(zs−) dKs +

∫ t

0

M(ds, zs−). (6.13)

Note that equation (6.13) covers equation (6.12) with Kt = t,

Ht(u) := Hθ
t (u)=It(θ + u)

ȧ(Xt, θ + u)

σ2(Xt)
(a(Xt, θ)−a(Xt, θ + u)) , Hθ

t (0)=0, (6.14)

M(u) := Mθ(u) =

{
Mθ(t, u) =

∫ t

0

Is(θ + u)
ȧ(Xt, θ + u)

σ2(Xt)
dXc

s , t ≥ 0

}
. (6.15)

Let for each u ∈ R the process Mθ(u) ∈ M2
loc(P

θ). Then

〈Mθ(u),Mθ(v)〉t =
∫ t

0

hs(u, v) ds,
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where

ht(u, v) = hθ
t (u, v) = It(θ + u)It(θ + v)

ȧ(Xt, θ + u)ȧ(Xt, θ + v)

σ2(Xt)
. (6.16)

This problem is fully studied by Lazrieva and Toronjadze in [9].

Example 4. Let (Ω,F = (Ft)t≥0, P, Pθ, θ ∈ R1) be filtered probability space and M =
(Mt)t≥0 be a P -martingale with the deterministic characteristic 〈M〉t, 〈M〉∞ = ∞. Let
for each θ ∈ R1 Pθ be unique measure on (Ω,F) such that the process X(t) follows the
equation

Xt = X0 + a(θ)〈M〉t +Mt,

where a(θ) is known function depending on the unknown parameter θ. Then for each pair
(θ, θ′), Pθ

loc∼ Pθ′ . Fix some θ0 ∈ R1. Then the local density process

ρt(θ) =
dPθ,t

dPθ0,t
= Et(M(θ)),

where
Mt(θ) = (a(θ)− a(θ0))(Xt − a(θ0)〈M〉t). (6.17)

Assume that a(θ) is strongly monotone function continuously differentiable in θ. Then

Lt(θ) =
∂

∂θ
ln ρt(θ) = Lt(Ṁ(θ),M(θ)) = ȧ(θ)(Xt − a(θ)〈M〉t)

and the Fischer information process os

It(θ) = 〈L(θ), L(θ)〉t = [ȧ(θ)]2〈M〉t .

Put γt(θ) = [ȧ(θ)]−2 1
〈M〉t+1 = [ȧ(θ)]−2γ−1

t (with the obvious notation γt = 〈M〉t + 1).
Therefore the recursive estimation procedure to obtain estimator asymptotically equivalent to
the MLE θt is

θt = θ0 +

∫ t

0

1

〈M〉s + 1

a(θ)− a(θs)

ȧ(θs)
d〈M〉s

+

∫ t

0

1

1 + 〈M〉s
1

ȧ(θs)
d(Xs − a(θ)〈M〉s). (6.18)

Denote zt = θt − θ and rewrite the last equation

dzt =
1

〈M〉t + 1

a(θ)− a(θ + zt)

ȧ(θ + zt)
d〈M〉t

+
1

〈M〉t + 1

1

ȧ(θ + zt)
d(Xt − a(θ)〈M〉t). (6.19)

Further, denote

Ht(θ, u) =
1

〈M〉t + 1

a(θ)− a(θ + zt)

ȧ(θ + zt)
,

Mt(θ, u) =

∫ t

0

1

〈M〉s + 1

1

ȧ(θ + u)
d(Xs − a(θ)〈M〉t).
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In these notation equation (6.19) is the Robbins–Monro type equation

dzt = Ht(θ, zt)d〈M〉t + dMt(θ, zt). (6.20)

Indeed, condition (A) of Theorem 4.1 is satisfied since

Ht(θ, 0) = 0 and Ht(θ, u)u < 0 for all u �= 0.

We study the asymptotic behavior of zt as t → ∞ under measure Pθ.
1) Convergence: zt → 0 as t → ∞ Pθ-a.s. or θt → θ as t → ∞ Pθ-a.s. (strong

consistency).

Proposition 6.1. Let the following condition be satisfied

[ȧ(θ + u)]2(1 + u2) ≥ c, (6.21)

where c os some constant depending on θ. Then

zt → 0 as t → ∞ Pθ-a.s.

Proof. Let us check conditions (A), (B), (C) of Theorem 4.1. (A) is evident. Concerning
condition (B) note that

〈M(θ, u)〉t =
1

(ȧ(θ + u))2

∫ t

0

1

(〈M〉s + 1)2
d〈M〉s

and

ht(θ, u) =
1

(ȧ(θ + u))2
1

(〈M〉t + 1)2
.

Then if we denote Bt =
1

(〈M〉t+1)2 , taking into account equation (6.21) we simply obtain

ht(θ, u) ≤ Bt(1 + u2) with B ◦ 〈M〉∞ < ∞ .

As for condition (C), we have to verify that for each ε > 0

inf
ε≤u≤ 1

ε

∣∣∣∣
a(θ)− a(θ + u)

ȧ(θ + u)

∣∣∣∣
∫ ∞

0

d〈M〉t
〈M〉t + 1

= ∞.

The last condition is satisfied if for each ε > 0

inf
ε≤|u|≤ 1

ε

∣∣∣∣
a(θ)− a(θ + u)

ȧ(θ + u)

∣∣∣∣ > 0,

which holds since ȧ(θ) is continuous. �

2) Rate of convergence. Here we assume that zt → 0 as t → ∞ Pθ-a.s.

Proposition 6.2. For all δ, 0 < δ < 1
2 , we have

γδ
t zt = (〈M〉t + 1)δzt → 0 as t → ∞, Pθ-a.s.

Proof. We have to check conditions (i) and (ii) of Theorem 4.2.
Condition (ii) is satisfied. Indeed, for all 0 < δ < 1∫ ∞

0

(〈M〉t + 1)δ[ȧ(θ + u)]−2 1

(〈M〉t + 1)2
d〈M〉t < ∞.
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As for condition (i), it is enough to verify that for all δ, 0 < δ < 1
2 ,

∫ ∞

0

1

〈M〉t + 1

[
δ − I(zt=0) −

a(θ)− a(θ + zt)

zt ȧ(θ + zt)

]+
d〈M〉t < ∞ .

But
[
δ − I(zt=0) − a(θ)−a(θ+zt)

zt ȧ(θ+zt)
I{zt �=0}

]+
= 0 eventually since zt → 0. �

3) Asymptotic expansion. Here we assume that for all δ, 0 < δ < 1
2 , γδ

t zt → 0 as t → ∞
Pθ-a.s.

Proposition 6.3. Let there exist some ε > 0, γ > 0 and c(θ) such that

|ȧ(θ + u)− ȧ(θ + v)| ≤ c|u− v|γ (6.22)

for all (u, v) ∈ Oε(0), then all conditions of Theorem 4.3 are satisfied and the following
asymptotic expansion holds true

(1 + 〈M〉t)1/2ȧ(θ)zt =
Lt

〈L〉1/2t

+Rt ,

where Rt → 0 as t → ∞ P -a.s., Lt = [ȧ(θ)]−1(Xt − a(θ)〈M〉t).

Example 5 (Point process with continuous compensator). Let Ω be a space of piecewise
constant functions x = (xt)t≥0 such that x0 = 0, xt = xt− + (0 or 1), F = σ{x : xs,
s ≥ 0} and Ft = σ{x : xs, 0 < s ≤ t}. Let for x ∈ Ω

τn(x) = inf{s : s > 0, xs = n}
setting τn(∞) = ∞ if lim

t→∞
xt < n. Let τ∞(x) = lim

n→∞
τn(x).

Note that x = (xt)t≥0 can be written as

xt =
∑
n≥1

I{τn(x)≤t},

and so (xt)t≥0 and the family of σ-algebras (Ft)t≥0 are right-continuous.
Let for each θ ∈ R1 Pθ be a probability measure on (Ω,F) such that under this measure

the coordinate process Xt(ω) = xt if ω = (xt)t≥0 is a point process with compensator
At(θ) = A(θ)A(t), where A(t) = A(t, ω) is an increasing process with continuous trajecto-
ries (Pθ-a.s.), A(0) = 0, Pθ{A∞ = ∞} = 1, and for each t > 0 Pθ̇(At < ∞) = 1, A(θ) is a
strongly monotone deterministic function, A(θ) > 0, and A(θ) is continuously differentiable
(denote Ȧ(θ) = d

dθ A(θ)).

Assume that for each pair (θ, θ′), Pθ
loc∼ Pθ′ . Fix as usual some θ0 ∈ R1. Then the local

density process ρt(θ) =
dPθ,t

dPθ0,t
can be represented as

ρt(θ) = Et(M(θ)),

where

Mt(θ) =

(
A(θ)

A(θ0)
− 1

)
(Xt −A(θ0)At).

Therefore Lt(θ) =
∂
∂θ ln ρt(θ) has the form

Lt(θ) = Lt(Ṁ(θ),M(θ)) =
Ȧ(θ)

A(θ)
(Xt −A(θ)A(t)).
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The Fisher information process is

It(θ) = 〈L(Ṁ(θ),M(θ))〉t =
[
Ȧ(θ)

A(θ)

]2
A(θ)A(t).

Put γt(θ) =
A(θ)

[Ȧ(θ)]2
1

A(t)+1 . It is evident that

lim
t→∞

γt(θ)It(θ) = 1.

Note that the process (Xt)t≥0 is a Pθ-semimartingale with the triplet of characteristics
(A(θ)A(t), 0, A(θ)A(t)). Therefore, according to Section 3,

F (θ) = F (ω, t, x, θ) =
A(θ)

A(θ0)
, Φ(θ) =

Ȧ(θ)

A(θ)
,

�c(θ) = �δ(θ) = �b(θ) = 0, �π(θ) =
Ȧ(θ)

A(θ)
.

Thus from (3.11) we obtain

Hθ
t (u) =

1

A(t) + 1

A(θ)−A(θ + u)

Ȧ(θ + u)
,

Mθ(t, u) =
1

Ȧ(θ + u)

∫ t

0

1

A(s) + 1
d(Xs −A(θ)A(s)),

and the equation for zt = θt − θ is

dzt =
1

A(t) + 1

A(θ)−A(θ + zt)

Ȧ(θ + zt)
dA(t)+

1

A(t) + 1

1

Ȧ(θ + zt)
d(Xt−A(θ)A(t)), (6.23)

where (θt)t≥0 is recursive estimation satisfying the equation

dθt =
1

A(t) + 1

A(θ)−A(θt)

Ȧ(θt)
dA(t) +

1

A(t) + 1

1

Ȧ(θt)
d(Xt −A(θ)A(t)).

As one can see the equation (6.23) is quite similar to (6.19) with A(θ) instead of a(θ) and
A(t) instead of 〈M〉t.

Now if conditions (6.21) and (6.22) with A(θ) instead of a(θ) and A(t) instead of 〈M〉t
are satisfied, then the asymptotic expansion holds true

(A(t) + 1)1/2Ȧ(θ)zt =
Lt

〈L〉1/2t

+Rt,

where Rt → 0 as t → ∞ Pθ-a.s., Lt = [Ȧ(θ)]−1(Xt −A(θ)A(t)).
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ON REGULARITY OF PRIMAL AND DUAL DYNAMIC VALUE FUNCTIONS
RELATED TO INVESTMENT PROBLEM AND THEIR REPRESENTATIONS AS

BACKWARD STOCHASTIC PDE SOLUTIONS

M. MANIA AND R. TEVZADZE

Abstract. We study regularity properties of the dynamic value functions of primal and dual
problems of optimal investing for utility functions defined on the whole real line. Relations
between decomposition terms of value processes of primal and dual problems and between op-
timal solutions of basic and conditional utility maximization problems are established. These
properties are used to show that the value function satisfies a corresponding backward sto-
chastic partial differential equation. In the case of complete markets we give conditions on
the utility function when this equation admits a solution.

Key words and phrases: Utility maximization, Complete and incomplete markets, Duality,
Backward stochastic partial differential equation, Value function

MSC 2010: 90A09, 60H30, 90C39

1. INTRODUCTION

We consider a financial market model, where the dynamics of asset prices is described by
the continuous semimartingale S defined on the complete probability space (Ω,F , P ) with
continuous filtration F = (Ft, t ∈ [0, T ]), where F = FT and T < ∞. We work with
discounted terms, i.e. the bond is assumed to be a constant.

Denote by Me (resp. Ma) the set of probability measures Q equivalent (resp. absolutely
continuous with respect) to P such that S is a local martingale under Q.

Throughout the paper we assume that the filtration F is continuous (i.e. all F -local mar-
tingales are continuous) and

Me �= ∅. (1)
The continuity of F and the existence of an equivalent martingale measure imply that the
structure condition is satisfied, i.e. S admits the decomposition

St = Mt +

∫ t

0

λs d〈M〉s,
∫ t

0

λ2
s d〈M〉s < ∞

for all t P -a.s., where M is a continuous local martingale and λ is a predictable process.
Let U = U(x) : R → R be a utility function taking finite values at all points of real line R

such that U is continuously differentiable, increasing, strictly concave and satisfies the Inada
conditions

U ′(∞) = lim
x→∞

U ′(x) = 0, U ′(−∞) = lim
x→−∞

U ′(x) = ∞. (2)
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We also assume that U satisfies the condition of reasonable asymptotic elasticity (see [6] and
[13] for details), i.e.

lim sup
x→∞

xU ′(x)

U(x)
< 1, lim inf

x→−∞

xU ′(x)

U(x)
> 1. (3)

We consider the utility maximization problem, i.e. the problem of finding a trading strat-
egy (πt, t ∈ [0, T ]) such that the expected utility of terminal wealth Xx,π

T becomes maximal.
The wealth process, determined by a self-financing trading strategy π and initial capital x, is
defined as a stochastic integral

Xx,π
t = x+

∫ t

0

πudSu, 0 ≤ t ≤ T.

The predictable, S−integrable process π we call admissible if the stochastic integral
(
∫ t

0
πudSu, t ∈ [0, T ]) is uniformly bounded from below.

The value function V associated to the problem is given by

V (x) = sup
π∈Π

E

[
U

(
x+

∫ T

0

πu dSu

)]
, (4)

where Π is the class of admissible strategies.
For the utility function U we denote by Ũ its convex conjugate

Ũ(y) = sup
x
(U(x)− xy), y > 0. (5)

The dual problem to (4) is

Ṽ (y) = inf
Q∈Me

E[Ũ(yρQT )], y > 0, (6)

where ρQt = dQt/dPt is the density process of the measure Q ∈ Me relative to the basic
measure P .

Let τ be a stopping time valued in [0, T ]. Denote by Πτ the class of admissible processes,
such that π = π1[τ,T ]. Define

Zτ,y = {Y : Y = y
ρT
ρτ

, ρT =
dQ

dP
, Q ∈ Me(S)}.

The dynamic value functions of primal and dual problems are defined as

V (τ, x) = ess sup
π∈Πτ

E

[
U

(
x+

∫ T

τ

πu dSu

)∣∣∣∣Fτ

]
, (7)

Ṽ (τ, y) = ess inf
Y ∈Zτ,y

E
[
Ũ(Y ) | Fτ

]
, y > 0. (8)

For V (0, x) and Ṽ (0, y) we use the notation V (x) and Ṽ (y) respectively. Following [13] we
make the following assymption.

Assumption 1. For each y > 0 the dual value function Ṽ (y) is finite and the minimizer
Q∗(y) ∈ Me (called the minimax martingale measure) exists.

We shall also need two complementary assumptions:
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Assumption 2. For the process ZT (y) = y dQ∗(y)
dP = yρ∗T (y) let

lim inf
y→∞

ZT (y)/y > 0.

This assumption we need to ensure an existence of the inverse flow of the optimal wealth
Xt(x) (more exactly, to ensure the relation limx→−∞ Xt(x) = −∞), see Theorem 1.4 from
[11].

Assumption 3. The utility function U is two times differentiable and there are constants
c1 > 0 and c2 > 0 such that

c1 < −U ′′(x)

U ′(x)
< c2, x ∈ R. (9)

The last condition is similar to the condition on relative risk-aversion introduced in [5].
Note that for exponential utility function the risk-aversion coefficient −U ′′(x)

U ′(x) = γ is a con-
stant and condition (9) is also satisfied for linear combinations of exponential utility functions
with different risk-aversion parameters.

Let Πx be the class of predictable S integrable processes π such that U(x + (π · S)T ) ∈
L1(P ) and π·S is a supermartingale under each Q ∈ Ma with finite Ũ -expectation EŨ(dQdP ),
where the notation π · S stands for the stochastic integral.

Denote Q(x) = Q∗(y) = Q∗(V ′(x)).
It was proved in [12] that under Assumption 1 the optimal strategy π(x) ∈ Πx of problem

(4) exists, is unique and V (x) = EU(XT (x)), where the optimal wealth XT (x) = x +∫ T

0
πu(x) dSu is a uniformly integrable Q(x)-martingale.

In addition, the following duality relations hold true almost surely:

U ′(XT (x)) = ZT (y), y = V ′(x), (10)

V ′
(
t, x+

∫ t

0

πu(x) dSu

)
= Zt(y), t ∈ [0, T ], (11)

where y = V ′(x) (see [13] and Proposition A3 from [11] for the dynamic version). Hereafter
we shall use these results without further comments.

It is well known (see, e.g., [10]) that for any x ∈ R the process (V (t, x), t ∈ [0, T ]) is a
supermartingale admitting an RCLL (right-continuous with left limits) modification.

Therefore, using the Galchouk–Kunita–Watanabe (GKW) decomposition, the value func-
tion is represented as

V (t, x) = V (0, x)−A(t, x) +

∫ t

0

ψ(s, x) dMs + L(t, x), (12)

where for any x ∈ R the process A(t, x) is increasing and L(t, x) is a local martingale
orthogonal to M .

Let us consider the following assumptions:
a) V (t, x) is two-times continuously differentiable at x P - a.s. for any t ∈ [0, T ],
b) for any x ∈ R the process V (t, x) is a special semimartingale with bounded variation

part absolutely continuous with respect to 〈M〉, i.e.

A(t, x) =

∫ t

0

a(s, x) d〈M〉s,
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for some real-valued function a(s, x) which is predictable and 〈M〉-integrable for
any x ∈ R,

c) for any x ∈ R the process V ′(t, x) is a special semimartingale with the decomposi-
tion

V ′(t, x) = V ′(0, x)−
∫ t

0

a′(s, x) d〈M〉s +
∫ t

0

ψ′(s, x) dMs + L′(t, x),

where V ′, a′, ψ′ and L′ are partial derivatives at x of V , a, ψ and L, respectively.
We shall say that (V (t, x), t ∈ [0, T ]) is a regular family of semimartingales if for V

conditions a), b) and c) are satisfied.
We shall consider also the following conditions:

d) the conditional optimization problem (7) admits a solution, i.e., for any t ∈ [0, T ]
and x ∈ R there exists a strategy π(t, x) such that

V (t, x) = E
(
U(x+

∫ T

t

πu(t, x)dSu)|Ft), (13)

e) for each s ∈ [t, T ] the function (Xs(t, x) = x+
∫ s

t
πu(t, x)dSu, s ≥ t) is continu-

ous at (t, x) P−a.s. .
The aim of the paper is to study the properties of the dynamic value functions and the optimal
solutions corresponding to primal and dual problems, their representations and existence of
a regular solution of backward stochastic partial differential equation (BSPDE) . Although
such results are interesting to derive BSPDEs, to study conditions a)-e) separately is also
important as they bring information on the structure of such objects.

It was shown in [8, 9, 10] (see, e.g., Theorem 3.1 from [10]) that if the value function
satisfies conditions a)-e), then it solves the BSPDE

V (t, x) = V (0, x) +
1

2

∫ t

0

(ϕ′(s, x) + λ(s)V ′(s, x))2

V ′′(s, x)
d〈M〉s

+

∫ t

0

ϕ(s, x) dMs + L(t, x), V (T, x) = U(x), (14)

and optimal wealth satisfies the following SDE

Xt(x) = x−
∫ t

0

ϕ′(s,Xs(x)) + λ(s)V ′(s,Xs(x))

V ′′(s,Xs(x))
dSs.

One of our main goal is to study conditions on the basic objects (on the asset price model
and on the objective function U ) which will guarantee that the value function V (t, x) is a
regular family of semimartingales and conditions d) and e) are also satisfied, in order to show
that the solution of equation (14) exists. This goal, for general objective functions, is reached
only in case of complete markets. In Theorem 5.1 sufficient conditions on utility functions
are given to ensure properties a)-e) and thus existence of a solution to the BSPDE (14) is
established.

The typical example, where all conditions a)-e) are satisfied in the incomplete market, is
the case of exponential utility function U(x) = −e−γx with risk aversion parameter γ ∈
(0,∞). In this case Ũ(y) = y

γ

(
ln y

γ − 1
)

and Assumption 1 is equivalent to the existence
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of Q ∈ Me with finite relative entropy EZQ
T lnZQ

T (see e.g. [1]). The corresponding value
function is of the form V (t, x) = −e−γxVt, where

Vt = ess inf
π∈Π

E(e−γ(
∫ T
t

πudSu)|Ft) (15)

is a special semimartingale and the BSPDE (14) for V (t, x) is transformed into a usual back-
ward stochastic differential equation (BSDE) for Vt

Vt = V0 +
1

2

∫ t

0

(ϕs + λsVs)
2

Vs
d〈M〉s +

∫ t

0

ϕsdMs + Lt, VT = 1, (16)

where L is a local martingale strongly orthogonal to M . It is evident that for V (t, x) =
−e−γxVt conditions a)- c) are satisfied and Theorem 3.1 from [10] implies that solution
of (16) exists. On the other hand an existence of a solution of equation (16) follows also
from general theory of quadratic BSDEs, but in the theory of BSPDEs there are no results
implying an existence of a solution of equations of type (14) (to our knowledge, the theory
about existence of these equations covers only the quasi and semi-linear case). In Theorem
5.1 of Section 5, as mentioned above, we provide conditions in the case of complete markets
when a solution of this equation exists.

The first main result of the paper is given as Theorem 2.1 and proves that under Assump-
tions 1-3, if the dual problem is well posed so is the dynamic primal problem. We also
relate the optimal strategy of the static problem (that is, V (0, x)) with the one of the dynamic
problem, associated to V (t, x).

It was shown in [13] that if we start at time τ with the optimal wealth Xτ (x), then the
optimal value in (7) is attained by π(τ, x) = π(0, x)I]τ,T ], i.e.,

E[U(XT (x))|Fτ ] ≥ E[U(Xτ (x) +

∫ T

τ

πudSu) | Fτ ], π ∈ Πτ ,

which is well understood from the Bellman principle.
Under Assumptions 1-3 we show (see Theorem 2.1) that if we start at time τ with the

wealth equal to arbitrary amount x, then the optimal strategy π(τ, x) of (7) is expressed in
terms of the optimal strategy π(x) = π(0, x) and the optimal wealth Xτ (x) = Xτ (0, x) of
(4) at time τ by the equality

πt(τ, x) = πt(X
−1
τ (x)), t ≥ τ µ〈S〉 − a.e.,

where X−1
t (x) is the inverse of the optimal wealth Xt(x) and µ〈S〉 is the Doleans measure

of 〈S〉.
In Section 3, we establish the relation between Doob-Meyer decomposition terms of the

value process V (t, x) (12) with corresponding terms of the dual value process Ṽ (t, y). The
second main result is stated as Theorem 3.1, where conditions are given when regularity of
the primal value function implies the regularity of the dual value function and we derive
BSPDE for Ṽ (t, y) from BSPDE (14). To obtain this result in addition to continuity of
filtration we require an integral representation property with respect to M and an orthogonal
local martingale M⊥, in order to avoid stochastic line integrals in BSPDE representation of
Ṽ (t, y).

The problem related with condition a) was studied in [5] for utility functions defined on
the positive real line for value functions at time 0 and in [11] for dynamic value function
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V (t, x) corresponding to utility functions defined on the whole real line. In particular, it
was shown in [11] that for any t ∈ [0, T ] the value function is continuously differentiable
at x and the second derivative exists in probability, which is weaker than condition a). In
addition, in [11] was proved that under Assumptions 1-3 for any t the optimal wealth is an
increasing function of x P -a.s. and an adapted inverse of Xt(x) exists. The problems related
with conditions a), b) and c) we connect with an existence of the inverse flow X−1

t (x) of
the optimal wealth. In Proposition 4.1 of Section 4, under stronger conditions we derive a
stochastic differential equation for the inverse of the optimal wealth ψt(x) = X−1

t (x) and
deduce from it that the finite variation part of the value process is absolutely continuous with
respect to the square characteristic〈S〉 of the asset price process. This result is the main step
for obtaining properties a)-c) in Proposition 4.2 of Section 4.

Finally we formulate the main result of Section 5. In this section we assume that the
market is complete.

Let

R1(x) = −U ′′(x)

U ′(x)
, R2(x) = −U ′′′(x)

U ′′(x)
, x ∈ R. (17)

We shall use one of the following conditions:
r1) U is three-times differentiable, R1(x) is bounded away from zero and infinity and

R2(x) is bounded and Lipschitz continuous,
r2) U is four-times differentiable and the density ZT of the unique martingale measure

is bounded.

Theorem 5.1. Assume that the market is complete and that one of the condition r1) or r2) be
satisfied. Then conditions a)-e) are fulfilled and the value function V (t, x) satisfies BSPDE
(14).

In the paper [3] a new approach was developed, where the solution of the problem (4) was
reduced to the solvability of a system of Forward-Backward equations which is also a heavy
task. Note that they showed that in case of complete markets this system admits a solution
under conditions similar to condition r1) given above.

In the work [4] the wealth inverse process and duality relations are used to derive some
type SPDE and SDE for the forward dynamic utility (defined on the half real line), its
derivative and Fenchel conjugate. In forward utility framework, in contrast to the classical
utility theory, there is no prespecified terminal time at the end of which the utility datum is
assigned. Thanks to this freedom at terminal time, it was shown in [4] that there exists a
whole class of dynamic value functions satisfying regularity conditions of the present paper,
which is hard to do for traditional utilities (since the value function is obliged to satisfy the
boundary condition V (T, x) = U(x)) and needs stronger conditions on the basic objects.

2. THE RELATION BETWEEN THE BASIC AND CONDITIONAL UTILITY MAXIMIZATION
PROBLEMS

In this section we study basic and conditional utility maximization problems in incomplete
markets for utility functions defined on the whole real line and establish relations between
optimal strategies of these problems.

To this end we first give some definitions and auxiliary assertions.



Stochastic Analysis: Applications to Statistics and Finance 207

We shall say that an adapted stochastic process (Xt, t ∈ [τ, T ]) is a generalized martingale
(resp. supermartingale) if

1) E(|Xt|/Fτ ) < ∞, for any t ∈ [τ, T ]
2) E(Xt/Ft′) = Xt′ (resp. ≤ Xt′) for any t′ ≤ t, where t′, t ∈ [τ, T ]
(see the definition of generalized conditional expectations and of generalized supermartin-

gales for discrete time in [14])

Definition 2.1. A predictable S integrable process π is in Πx,τ , if E(U(x+
∫ T

τ
πudSu)/Fτ )

is finite and ((π ·S)t, t ≥ τ) is a generalized supermartingale under each Q ∈ Ma with finite
Ũ -expectation EŨ(dQdP ).

The proof of the following assertion follows from Theorem 4.1 and Proposition 3.1 of
[11].

Proposition 2.1. Let Assumptions 1–3 be satisfied. Then for any t ∈ [0, T ] there exists a
modification of the optimal wealth process (Xt(x), x ∈ R) (resp. of Zt(y)) almost all paths
of which are strictly increasing and absolutely continuous with respect to dx (resp. dy).
Besides

X ′
t(x) > 0, EQ(x)(X ′

T (x))
2 ≤ C, (18)

lim
x→∞

Xt(x) = ∞, lim
x→−∞

Xt(x) = −∞ (19)

P -a.s. for any t ∈ [0, T ] and the adapted inverse X−1
t (x) (resp. Z−1

t (y)) of the optimal
wealth process exists.

We shall need also the continuity properties of the square characteristics 〈X(x) −X(y)〉
which can be deduced from Proposition 2.1.

Lemma 2.1. Let conditions of Proposition 2.1 be satisfied. Then, for any t ∈ [0, T ] the
random field (〈X(x)−X(y)〉t, x, y ∈ R) admits a continuous modification.

Proof. It follows from Proposition 2.1 that Xt(b)−Xt(a) =
∫ b

a
X ′

t(x)dx and
∫ b

a

EQ(x)〈X ′(x)〉T dx =

∫ b

a

EQ(x)
(
X′

T (x)
)2

dx < ∞

and by the Fubini theorem
∫ b

a
U ′(XT (x))

V ′(x) 〈X ′(x)〉T dx < ∞, P − a.s. Thus by continuity of
V ′(x)

U ′(XT (x)) we obtain
∫ b

a

〈X ′(x)〉T dx ≤ max
x∈[a,b]

V ′(x)

U ′(XT (x))

∫ b

a

U ′(XT (x))

V ′(x)
〈X ′(x)〉T dx < ∞, P − a.s.

Therefore, using the Kunita-Watanabe and Hölder’s inequalities we have

〈X(b)−X(a)〉t =
∫ b

a

∫ b

a

〈X ′(x), X ′(y)〉tdxdy

≤
∫ b

a

∫ b

a

〈X ′(x)〉1/2t 〈X ′(y)〉1/2t dxdy =

(∫ b

a

〈X ′(x)〉1/2t dx

)2

≤ (b− a)

∫ b

a

〈X ′(x)〉tdx < ∞, P − a.s.
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and it follows from inequality

〈X(b′)−X(a′)〉t − 〈X(b)−X(a)〉t
≤ 〈X(b′)−X(b)〉1/2t 〈X(b′)−X(a′) +X(b)−X(a)〉1/2t

+ 〈X(a′)−X(a)〉1/2t 〈X(b′)−X(a′) +X(b)−X(a)〉1/2t

that 〈X(bn) − X(an)〉t → 〈X(b) − X(a)〉t, P − a.s. when bn → b, an → a. Thus the
stochastic field defined by

〈X(x)−X(y)〉∗t =

{
limr→a,r′→b〈X(r)−X(r′)〉t, r, r′ are rational,
0, if the limit does not exist

is continuous and stochastically equivalent to 〈X(x)−X(y)〉t. �

Theorem 2.1. Let Assumptions 1–3 be satisfied. Then there exist the maximizer of (7) and
the minimizer of (8) in the classes Πτ,x and Zτ,y respectively and equalities

XT (τ, x) = XT (X
−1
τ (x)), πt(τ, x) = πt(X

−1
τ (x)), t ≥ τ, (20)

Y (τ, y) = ZT (Z
−1
τ (y)), ρQ

∗

T (τ, y) = ρQ
∗

τ (y)
ZT (Z

−1
τ (y))

y
(21)

are satisfied.
Moreover P -a.s.

V (τ, x) = E

[
U

(
x+

∫ T

τ

πu(X
−1
τ (x))dSu

)
| Fτ

]
,

Ṽ (τ, y) = E
[
Ũ(ZT (Z

−1
τ (y))) | Fτ

]
,

(22)

the duality relation

U ′

(
x+

∫ T

τ

πu(X
−1
τ (x))dSu

)
= ZT (Z

−1
τ (y)), y = V ′(τ, x) (23)

holds and the process

Zt(Z
−1
τ (y))Xt(X

−1
τ (x)), t ∈ [τ, T ], where y = V ′(τ, x), (24)

is a generalized martingale.

Proof. By the optimality principle (see, e.g. [10]) V (t,Xt(x)) is a martingale and since
V (T, x) = U(x) we have that for any x ∈ R

V (τ,Xτ (x)) = E
(
U(XT (x))/Fτ

)
P − a.s. (25)

Since for any τ the functions V (τ, x) and Xτ (x) are continuous for almost all ω ∈ Ω, the
equality (25) holds P -a.s. for all x ∈ R and substituting X−1

τ (x) in this equality we obtain
that

V (τ, x) = E
(
U(XT (X

−1
τ (x)))/Fτ

)
P − a.s.,

which means the maximality of XT (X
−1
τ (x)). Let us show that XT (X

−1
τ (x)) is equal to the

stochastic integral

XT (X
−1
τ (x)) = x+

∫ T

τ

πu(X
−1
τ (x))dSu (26)
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and that π(X−1
τ (x)) belongs to the class Πτ,x

In order to show equality (26) it is enough to show that
∫ T

τ
πu(x)dSu

∣∣
x=ξ

=
∫ T

τ
πu(ξ)dSu,

for ξ = X−1
τ (x).

Let us consider the sequence of simple random variables ξn =
∑∞

k=−∞ ck1Ak
, where

Ak = ( kn ≤ ξ < k+1
n ), ck = k

n . We have ξn → ξ uniformly and
∫ T

τ

πu(ξn)dSu =

∞∑
k=−∞

∫ T

τ

πu(ck)1Ak
dSu

=
∞∑

k=−∞

1Ak

∫ T

τ

πu(ck)dSu =

∫ T

τ

πu(x)dSu

∣∣
x=ξn

.

On the other hand
∫ T

τ

πu(x)dSu

∣∣
x=ξn

−
∫ T

τ

πu(x)dSu

∣∣
x=ξ

= XT (ξn)−Xτ (ξn)− (XT (ξ)−Xτ (ξ)) → 0,

as n → ∞, since Xt(x) is continuous and
∫ T

τ

(πu(ξn)− πu(ξ))
2d〈S〉u

= 〈X(x)−X(y)〉T − 〈X(x)−X(y)〉τ |x=ξn,y=ξ → 0, P − a.s.

as n → ∞, by continuity of 〈X(x) − X(y)〉t. Hence
∫ T

τ
πu(ξn)dSu →

∫ T

τ
πu(ξ)dSu in

probability and
∫ T

τ
πu(x)dSu

∣∣
x=ξ

=
∫ T

τ
πu(ξ)dSu − P -a.s.

Since E|U(XT (x))| < ∞ and EQ|Xt(x)| < ∞, t ∈ [0, T ] for any Q ∈ Ma and X−1
τ (x)

is Fτ -measurable we have that

E[|U(XT (X
−1
τ (x)))| | Fτ ] < ∞, EQ(|Xt(X

−1
τ (x))|/Fτ ) < ∞ P -a.s., t ≥ τ.

On the other hand, since for any t ∈ [0, T ] the function (Xt(x), x ∈ R) is continuous and
increasing, the supermartingale inequality EQ(Xt(x)/Ft′) ≤ Xt′(x), t′ ≤ t ≤ T , implies
that

EQ(Xt(X
−1
τ (x))/Ft′) ≤ Xt′(X

−1
τ (x)), τ ≤ t′ ≤ t ≤ T,

for any Q ∈ Ma, hence π(τ, x) = π(X−1
τ (x)) belongs to the class Πτ,x and the equality

(22) holds. Similarly one can show the minimality of ZT (Z
−1
τ (y)), so conditional density of

the minimax martingale measure to the problem (8) is ZT (Z−1
τ (y))
y .

Since for any t ∈ [0, T ] the functions V ′(t, x), x ∈ R and Zt(y), y > 0 are continuous
and the inverse of Zt(y) exists, from (11) we have that P -a.s.

Z−1
τ (V ′(τ, x)) = V ′(X−1

τ (x)) (27)

which together with (10) implies the conditional duality relation (23).
Note also that since Zt(y)Xt(x) is a martingale (see Theorem 1 from [13]), by continuity

of X(x) and Z(y) the process (Zt(V
′(X−1

τ ))Xt(X
−1
τ (x)), t ≥ τ) will be a generalized

martingale and by equality (27) this is equivalent to (24). �
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3. RELATIONS BETWEEN DECOMPOSITION TERMS OF THE VALUE PROCESSES OF
PRIMAL AND DUAL PROBLEMS

In this section in addition to the continuity of the filtration F we assume that any orthog-
onal to M local martingale L is represented as a stochastic integral with respect to the given
continuous local martingale M⊥. Therefore, the value process V (t, x) admits the decompo-
sition

V (t, x) = V (0, x)−A(t, x) +

∫ t

0

ϕ(s, x)dMs +

∫ t

0

ϕ⊥(s, x)dM
⊥
s ,

where A(t, x) is an increasing process for any x ∈ R , ϕ and ϕ⊥ are M and M⊥ integrable
predictable processes respectively. Since the value process Ṽ (t, y) of the dual problem is a
submartingale for each y > 0 it is decomposable as

Ṽ (t, y) = Ṽ (0, y) + Ã(t, y) +

∫ t

0

ϕ̃(s, y)dMs +

∫ t

0

ϕ̃⊥(s, y)dM
⊥
s , (28)

with M and M⊥ integrable predictable processes ϕ̃ and ϕ̃⊥ and an increasing process Ã(t, y).
It is known that the value processes of the primal and dual problems are related by the

equality

V (t,−Ṽ ′(t, y)) = Ṽ (t, y)− yṼ ′(t, y). (29)

We are interested in how the decomposition terms A,ϕ and ϕ⊥ are related to Ã, ϕ̃ and ϕ̃⊥,
respectively.

Theorem 3.1. Assume that the filtration F is continuous and any orthogonal to M local
martingale L is represented as a stochastic integral with respect to a local martingale M⊥.
Assume that V (t, x) is a regular family of semimartingales (i.e., satisfies conditions a)-c) of
the introduction) and that Ṽ ′(t, y) is a semimartingale with the decomposition

Ṽ ′(t, y) = Ṽ ′(0, y) + B̃(t, y) +

∫ t

0

ϕ̃′(s, y)dMs +

∫ t

0

ϕ̃′
⊥(s, y)dM

⊥
s , (30)

where B̃(t, y) is the process of finite variation for any y.
Then (Ṽ (t, y), y > 0) is a regular family of semimartingales and

ϕ̃(s, y) = ϕ(s,−Ṽ ′(s, y)), µ〈M〉 a.e., (31)

ϕ̃⊥(s, y) = ϕ⊥(s,−Ṽ ′(s, y)), µ〈M〉 a.e., (32)

Ã(t, y) =

∫ t

0

a(s,−Ṽ ′(s, y))d〈M〉s −
1

2

∫ t

0

(ϕ′(s,−Ṽ ′(s, y)))2

V ′′(s,−Ṽ ′(s, y))
d〈M〉s

−1

2

∫ t

0

(ϕ′
⊥(s,−Ṽ ′(s, y)))2

V ′′(s,−Ṽ ′(s, y))
d〈M⊥〉s. (33)
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In addition, Ṽ (t, y) satisfies the BSPDE

Ṽ (t, y) = Ṽ (0, y) +

∫ t

0

(
yλsϕ̃

′(s, y)− 1

2
y2λ2

sṼ
′′(s, y)

)
d〈M〉s

+
1

2

∫ t

0

(ϕ̃′
⊥(s, y))

2

Ṽ ′′(s, y)
d〈M⊥〉s +

∫ t

0

ϕ̃(s, y)dMs

+

∫ t

0

ϕ̃⊥(s, y)dM
⊥
s , Ṽ (T, y) = Ũ(y). (34)

Proof. Using the duality relation (29) and the Itô-Ventzel formula (see, e.g., [7] or [15]) we
have

V (t,−Ṽ ′(t, y)) = V (0,−Ṽ ′(0, y)) +

∫ t

0

ϕ(s,−Ṽ ′(s, y))dMs +

∫ t

0

ϕ⊥(s,−Ṽ ′(s, y))dM⊥
s

−
∫ t

0

V ′(s,−Ṽ ′(s, y))ϕ̃′(s, y)dMs −
∫ t

0

V ′(s,−Ṽ ′(s, y))ϕ̃′
⊥(s, y)dM

⊥
s

+

∫ t

0

a(s,−Ṽ ′(s, y))d〈M〉s −
∫ t

0

V ′(s,−Ṽ ′(s, y))dB̃(s, y)

+
1

2

∫ t

0

V ′′(s,−Ṽ ′(s, y))ϕ̃′(s, y)2d〈M〉s

+
1

2

∫ t

0

V ′′(s,−Ṽ ′(s, y))ϕ̃′
⊥(s, y)

2d〈M⊥〉s

−
∫ t

0

ϕ′(s,−Ṽ ′(s, y))ϕ̃′(s, y)d〈M〉s −
∫ t

0

ϕ′
⊥(s,−Ṽ ′(s, y))ϕ̃′

⊥(s, y)d〈M⊥〉s

= Ã(t, y) +

∫ t

0

ϕ̃(s, y)dMs +

∫ t

0

ϕ̃⊥(s, y)dM
⊥
s

−yB̃(t, y)− y

∫ t

0

ϕ̃′(s, y)dMs − y

∫ t

0

ϕ̃′
⊥(s, y)dM

⊥
s . (35)

Since V ′(s,−Ṽ ′(s, y)) = y, from (35) we obtain that
∫ t

0

ϕ(s,−Ṽ ′(s, y))dMs +

∫ t

0

ϕ⊥(s,−Ṽ ′(s, y))dM⊥
s

+

∫ t

0

a(s,−Ṽ ′(s, y))d〈M〉s +
1

2

∫ t

0

V ′′(s,−Ṽ ′(s, y))(ϕ̃′(s, y))2d〈M〉s

+
1

2

∫ t

0

V ′′(s,−Ṽ ′(s, y))(ϕ̃′
⊥(s, y))

2d〈M⊥〉s

−
∫ t

0

ϕ′(s,−Ṽ ′(s, y))ϕ̃′(s, y))d〈M〉s −
∫ t

0

ϕ′
⊥(s,−Ṽ ′(s, y))ϕ̃′

⊥(s, y))d〈M⊥〉s

= Ã(t, y) +

∫ t

0

ϕ̃(s, y)dMs +

∫ t

0

ϕ̃⊥(s, y)dM
⊥
s . (36)
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Equalizing the martingale parts in (36) we obtain equalities (31) and (32). Since Ṽ (t, y) is
two-times differentiable and

Ṽ ′′(t, y) = − 1

V ′′(t,−Ṽ ′(t, y))
, (37)

we have that ϕ̃(s, y) and ϕ̃⊥(s, y) are also differentiable and

ϕ̃′(s, y) = −ϕ′(s,−Ṽ ′(s, y))Ṽ ′′(s, y) =
ϕ′(s,−Ṽ ′(s, y))

V ′′(s,−Ṽ ′(s, y))
, µ〈M〉 a.e., (38)

ϕ̃′
⊥(s, y) = −ϕ′

⊥(s,−Ṽ ′(s, y))Ṽ ′′(s, y) =
ϕ′
⊥(s,−Ṽ ′(s, y))

V ′′(s,−Ṽ ′(s, y))
, µ〈M⊥〉 a.e. (39)

Therefore,

ϕ′(s,−Ṽ ′(s, y))ϕ̃′(s, y)) = V ′′(s,−Ṽ ′(s, y))(ϕ̃′(s, y))2, µ〈M〉 a.e.,

ϕ′
⊥(s,−Ṽ ′(s, y))ϕ̃′

⊥(s, y) = V ′′(s,−Ṽ ′(s, y))(ϕ̃′
⊥(s, y))

2, µ〈M⊥〉 a.e.

and equalizing the finite variation parts in (36) we deduce that equality (33) holds.
Let us show now that Ṽ (t, y) satisfies the BSPDE (34). It follows from (14) that

a(s, x) =
1

2

(λsV
′(s, x) + ϕ′(s, x))2

V ′′(s, x)
,

∫ t

0

a(s,−Ṽ ′(s, y))d〈M〉s =
1

2

∫ t

0

(yλs + ϕ′(s,−Ṽ ′(s, y)))2

V ′′(s−, Ṽ ′(s, y))
d〈M〉s

=

∫ t

0

(
yλsϕ̃

′(s, y)− 1

2
y2λ2

sṼ
′′(s, y)

)
d〈M〉s +

1

2

∫ t

0

(ϕ′(s,−Ṽ ′(s, y)))2

V ′′(s,−Ṽ ′(s, y))
d〈M〉s,

which (together with (33)) implies that

Ã(t, y) =

∫ t

0

(
yλsϕ̃

′(s, y)− 1

2
y2λ2

sṼ
′′(s, y)

)
d〈M〉s +

1

2

∫ t

0

(ϕ̃′
⊥(s, y))

2

Ṽ ′′(s, y)
d〈M⊥〉s. (40)

Now, (28) and (40) imply that Ṽ (t, y) satisfies (34). �

Remark 1. It follows from (28), (33) and (37) that Ṽ (t, y) satisfies also the forward SPDE
derived in [4], which takes in this case the following form

Ṽ (t, y) = Ṽ (0, y) +

∫ t

0

a(s,−Ṽ ′(s, y))d〈M〉s +
1

2

∫ t

0

(ϕ′(s,−Ṽ ′(s, y))2Ṽ ′′(s, y)d〈M〉s

+
1

2

∫ t

0

(ϕ′
⊥(s,−Ṽ ′(s, y)))2Ṽ ′′(s, y)d〈M⊥〉s

+

∫ t

0

ϕ(s,−Ṽ ′(s, y))dMs +

∫ t

0

ϕ⊥(s,−Ṽ ′(s, y))dM⊥
s .
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4. DIFFERENTIAL EQUATION FOR THE INVERSE FLOW OF THE OPTIMAL WEALTH

By Proposition 2.1, if the filtration F is continuous and Assumptions 1-3 are satisfied then
the adapted inverse X−1

t (x) of the optimal wealth process exists. Under stronger conditions
we shall derive for the inverse process X−1

t (x) a Stochastic Differential Equation (SDE)
which will be used to show the absolute continuity of bounded variation parts of V (t, x) and
V ′(t, x) with respect to square characteristic 〈S〉.

For stochastic process ξt(x) by ξ′t(x) we denote the derivative with respect to x, µ〈S〉

denotes Dolean’s measure for 〈S〉, i.e. the measure d〈S〉dP on [0, T ] × Ω. If F (t, x) is a
family of semimartigales, then

∫ T

0
F (ds, ξs) denotes a generalized stochastic integral (see

[7], Chapter 3), or stochastic line integral by terminology from [2]. If F (t, x) = xGt, where
Gt is a semimartingale, then the generalized stochastic integral coincides with the usual one
denoted by

∫ T

0
ξsdGs or (ξ ·G)T .

Now we shall derive an SDE for the inverse of the optimal wealth ψt(x) = X−1
t (x) of the

form

dψt = σt(ψt)dSt + µt(ψt)d〈S〉t, ψ0 = x, (41)

where σt(z) = − πt(z)
X′

t(z)
, µt(z) =

1
2X′

t(z)

(
π2
t (z)

X′
t(z)

)′
.

Proposition 4.1. Let X ′′
t (x), π

′
t(x) exist and be locally Lipschitz functions with respect to x

µ〈S〉−a.e.. Then SDE (41) or equivalently

dψt = − πt(ψt)

X ′
t(ψt)

dSt +
π′
t(ψt)πt(ψt)

X ′
t(ψt)2

d〈S〉t −
1

2

X ′′
t (ψt)π

2
t (ψt)

X ′
t(ψt)3

d〈S〉t, (42)

ψ0 = x (43)

admits a unique maximal solution and it coincides with X−1
t (x).

Proof. The SDE (41) admits unique maximal solution up to time τ(x)≤T , where |ψτ(x)−| =
∞ if τ(x) < T (see [7], Theorem 3.4.5). Applying the Itô–Ventzel formula for Xt(ψt) ≡
X(t, ψt) (see [7], Chapter 3 or [15]) and using that ψt satisfies (42) we get

dX(t, ψt) = X(dt, ψt) +X ′(t, ψt)dψt +
1

2
X ′′(t, ψt)d〈ψ〉t

+ d

〈∫ ·

0

X ′(dr, ψr(x)), ψ(x)

〉

t

= πt(ψt)dSt+X ′
t(ψt)

[
− πt(ψt)

X ′
t(ψt)

dSt +
π′
t(ψt)πt(ψt)

X ′
t(ψt)2

d〈S〉t

− 1

2

X ′′
t (x)π

2
t (ψt)

X ′
t(ψt)3

d〈S〉t
]
+

1

2

X ′′
t (x)π

2
t (ψt)

X ′
t(ψt)2

d〈S〉t −
π′
t(ψt)πt(ψt)

X ′
t(ψt)

d〈S〉t = 0,

ψ0(x) = x.

Hence X(t, ψt(x)) = x on [0, τ(x)) . Since |X−1
τ(x)(x)| < ∞, we have τ(x) = T P−a.s.

and ψt(x) = X−1
t (x). �
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Remark 2. Let πt(x) = Ht(Xt(x)). Then

dψt = −Ht(Xt(ψt))

X ′
t(ψt)

dSt +
H ′

t(Xt(ψt))Ht(Xt(ψt))

X ′
t(ψt)2

d〈S〉t −
1

2

X ′′
t (ψt)H

2
t (Xt(ψt))

X ′
t(ψt)3

d〈S〉t.

Using equalities Xt(ψt(x)) = x, 1
X′

t(ψt(x))
= ψ′

t(x), and − X′′
t (ψt(x))

X′
t(ψt(x))

=
ψ′′

t (x)
ψ′

t(x)
2 we obtain

the linear partial SDE

dψt(x) = −Ht(x)ψ
′
t(x)dSt +H ′

t(x)Ht(x)ψ
′
t(x)d〈S〉t +

1

2
H2

t (x)ψ
′′
t (x)d〈S〉t

or an SPDE in the divergence form

dψt(x) = −Ht(x)ψ
′
t(x)dSt +

1

2
(H2

t (x)ψ
′
t(x))

′d〈S〉t.

Let us define martingale random fields

M(t, x) = E[U(XT (x)|Ft],

M(t, x) = E[U ′(XT (x)|Ft].

Proposition 4.2. Let conditions of Proposition 4.1 be satisfied.
i) If M(t, x) is two times continuously differentiable with respect to x, then the finite

variation part of V (t, x) = M(t, ψt(x)) is absolutely continuous with respect to
〈S〉.

ii) If M(t, x) is two times continuously differentiable with respect to x, then V ′(t, x) is
a special semimartingale and the finite variation part of V ′(t, x) = M(t, ψt(x)) is
absolutely continuous with respect to 〈S〉. Besides V ′(t, x) admits the decomposition

V ′(t, x) = V ′(0, x)−
∫ t

0

a′(s, x) d〈M〉s +
∫ t

0

ψ′(s, x) dMs + L′(t, x). (44)

Proof. i) By the optimality principle V (t,Xt(x)) is a martingale and since V (T, x) = U(x)
we have that V (t,Xt(x)) = E[U(XT (x))|Ft] = M(t, x). Therefore by duality relation (11)

M′(t, x) = V ′(t,Xt(x))X
′
t(x) = Zt(y)X

′
t(x) (45)

is a martingale and let

M′(t, x) = V ′(x) +

∫ t

0

hr(x)dMr + Lt(x), L(x)⊥M

be the GKW decomposition of M′(t, x). From (42) we have
〈∫ ·

0

M′(dr, ψr(x)), ψ(x)

〉

t

= −
∫ t

0

hr(ψr(x))
πr(ψr(x))

X ′
r(ψr(x))

d〈S〉r. (46)

Since V (t, x) = M(t,X−1
t (x)), by the Itô–Ventzel formula we get

V (t, x) = V (0, x) +

∫ t

0

M(ds, ψs) +

∫ t

0

M′(s, ψs)dψs

+
1

2

∫ t

0

M′′(s, ψs)d〈ψ〉s +
〈∫ ·

0

M′(dr, ψr(x)), ψ(x)

〉

t

. (47)
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In view of (42) and (46) one can verify that all finite variation members of (47) are integrals
with respect to 〈S〉. Namely,

−A(t, x) =

∫ t

0

M′(r, ψr(x))

(
π′
r(ψr(x))πr(ψr(x))

X ′
r(ψr(x))2

− 1

2

X ′′
r (ψr(x))π

2
r(ψr(x))

X ′
r(ψr(x))3

)
d〈S〉r

+

∫ t

0

(
1

2
M′′(r, ψr(x))

π2
r(ψr(x))

X ′
r(ψr(x))2

− hr(ψr(x))
πr(ψr(x))

X ′
r(ψr(x))

)
d〈S〉r.

ii) It follows from (10) and (11) that

M(t, x) = E[U ′(XT (x))|Ft] = E[ZT (y)|Ft] = Zt(y) = V ′(t,Xt(x)), (48)

which (together with (45)) implies that M and M are related as

M′(t, x) = M(t, x)X ′
t(x) (49)

and V ′(t, x) = M(t,X−1
t (x)). It follows from (48) that M′

(t, x) = Z ′
t(y)V

′′(x) is a mar-
tingale and

〈∫ ·

0

M′
(dr, ψr(x)), ψ(x)

〉

t

= −
∫ t

0

h̄r(ψr(x))
πr(ψr(x))

X ′
r(ψr(x))

d〈S〉r, (50)

where M′
(t, x) = V̄ ′′(x) +

∫ t

0
h̄r(x)dMr + L̄t(x), L̄(x)⊥M is the GKW decomposition

of M′
(t, x). Therefore the Ito-Ventzel formula implies that V ′(t, x) = M(t,X−1

t (x)) is
a special semimartingale and similarly to i) one can show that the finite variation part of
V ′(t, x) is absolutely continuous with respect to 〈S〉. Therefore, V ′(t, x) is decomposable as

V ′(t, x) = V ′(0, x) +

∫ t

0

b(r, x)d〈M〉r +
∫ t

0

g(r, x)dMr +N(t, x), (51)

for some local martingale N(t, x) orthogonal to M for any x ∈ R and M and 〈M〉 integrable
processes g and b respectively. The Itô-Ventzel formula and conditions of this proposition
also imply that b(r, x) and g(r, x) are continuous at x. Therefore, integrating the equation
(51) with respect to dx (over a finite interval) and using the stochastic Fubini theorem (taking
decomposition (12) in mind), we obtain (44). �

5. THE CASE OF COMPLETE MARKETS

In this section for the case of complete markets we provide sufficient conditions on the
utility function U which guarantee existence of a solution of BSPDE (14).

Hereafter we shall assume that the market is complete, i.e.

dQ = ZT dP, where ZT = ET (−λ ·M),

is the unique martingale measure.

Lemma 5.1. Let the market be complete and condition r1) be satisfied. Then the optimal
wealth XT (x) is two-times differentiable and the derivatives X ′

T (x), X
′′
T (x) are bounded

and Lipschitz continuous.
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Proof. Since Ũ(y) and U(x) are conjugate, Ũ(y) is also three-times differentiable and

Ũ ′′(y) = − 1

U ′′(x)
, Ũ ′′′(y) = − U ′′′(x)

(U ′′(x))3
, y = U ′(x). (52)

Therefore the functions B1(y) and B2(y), where

B1(y) = yŨ ′′(y) = 1/R1(x), B2(y) = y2Ũ ′′′(y) = R2(x)/R
2
1(x) (53)

respectively, are also bounded. This implies that the second and third order derivatives of
Ũ(yZT ) are bounded, hence the function Ṽ (y) = EŨ(yZT ) is three-times differentiable
and

Ṽ ′′′(y) = EQŨ ′′′(yZT )Z
2
T .

Since Ṽ (y) and V (x) are conjugate, V (x) is also three-times differentiable.
The duality relation (10) takes in this case the following form

U ′(XT (x)) = yZT , XT (x) = −Ũ ′(yZT ), y = V ′(x). (54)

This relation implies that the function XT (x) is two-times differentiable for all ω ∈ Ω′ =
(ZT > 0) with P (Ω′) = 1 and differentiating the first equality in (54) we have that

U ′′(XT (x))X
′
T (x) = V ′′(x)ZT , (55)

U ′′′(XT (x))(X
′
T (x))

2 + U ′′(XT (x))X
′′
T (x) = V ′′′(x)ZT . (56)

From (54) and (55) we obtain that

X ′
T (x) =

V ′′(x)

V ′(x)

U ′(XT (x))

U ′′(XT (x))
.

By condition r1) and Proposition 1.2 from [11] c1 ≤ −V ′′(x)
V ′(x) ≤ c2. Therefore this implies

that X ′
T (x) is bounded, in particular

c1
c2

≤ X ′
T (x) ≤

c2
c1

, (57)

where c1 and c2 are constants from (9).
Comparing equations (55) and (56) we have that

X ′′
T (x) +

U ′′′(XT (x))

U ′′(XT (x))
(X ′

T (x))
2 =

V ′′′(x)

V ′′(x)
X ′

T (x). (58)

Since EQX ′
T (x) = 1 and EQX ′′

T (x) = 0, taking expectations with respect to the measure Q
in equation (58) we get

V ′′′(x)

V ′′(x)
= EQU ′′′(XT (x))

U ′′(XT (x))
(X ′

T (x))
2, (59)

which together with (57) and condition r1) implies that V ′′′(x)
V ′′(x) is bounded.

Therefore, it follows from (58) that X ′′
T (x) is also bounded, hence X ′

T (x) is Lipschitz
continuous.

Since the product of bounded Lipschitz continuous functions are Lipschitz continuous, it
follows from (59) that V ′′′(x)

V ′′(x) is Lipschitz continuous and (58) implies that X ′′
T (x) is also

Lipschitz continuous, since all terms in (58) are bounded and Lipschitz continuous. �
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Lemma 5.2. Let the market be complete and condition r2) be satisfied. Then the optimal
wealth XT (x) is three-times differentiable, X ′

T (x) is strictly positive and the derivatives
X ′

T (x), X
′′
T (x) and X ′′′

T (x) are uniformly bounded on every compact [a, b] ⊂ R .

Proof. Since U(x) and Ũ(y) are conjugate, Condition r2) implies that Ũ(y) is also four
times differentiable and the derivatives of Ũ(yZT ) are bounded for any y ∈ R, hence the
function Ṽ (y) = EŨ(yZT ) is four-times differentiable.

Then V (x) is also four-times differentiable, since V ′(x) is the inverse of −Ṽ ′(y). There-
fore, the duality relation

XT (x) = −Ũ ′(V ′(x)ZT )

implies that the optimal wealth XT (x) is three-times differentiable and the derivatives
X ′

T (x), X
′′
T (x) and X ′′′

T (x) are bounded on every compact [a, b] ∈ R. Therefore the deriva-
tives X ′

T (x), X
′′
T (x) satisfy the local Lipschitz condition.

Besides,

X ′
T (x) = −V ′′(x)ZT Ũ

′′(V ′(x)ZT )) > 0

since V ′′(x) < 0 and Ũ ′′(y) > 0. �

Corollary 5.1. The process (X ′′
t (x), (t, x) ∈ [0, T ]×R) admits a continuous modification.

Proof. Since X ′′
t (x) is a Q−martingale, by the Doob inequality and the mean value theorem

we get

EQ sup
t≤T

|X ′′
t (x1)−X ′′

t (x2)|2 ≤ c1E
Q|X ′′

T (x1)−X ′′
T (x2)|2

≤ c1|x1 − x2|EQ sup
α∈[0,1]

|X ′′′
T (αx1 + (1− α)x2)|2 ≤ c2|x1 − x2|2

for some constants c1, c2. By the Kolmogorov theorem the map

R � x → X ′′
· (x) ∈ C[0, T ]

admits a continuous modification, which implies the continuity of X ′′
t (x) with respect to the

variables (t, x), P−a.s.. �

Proposition 5.1. Assume that the market is complete and that either condition r1) or r2) is
satisfied.

Then the optimal wealth Xt(x), the optimal strategy πt(x) (µ〈S〉-a.e.), martingale flows
M(t, x) and M(t, x) are two-times continuously differentiable at x for all t, P−a.s. and the
coefficients of equation (42) satisfy the local Lipschitz condition.

Proof. First assume that condition r1) is satisfied. According to Lemma 5.1 the optimal
wealth XT (x) is two-times differentiable and the derivatives X ′

T (x), X
′′
T (x) are bounded

and Lipschitz continuous.
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To show an existence of π′(x) we use the decomposition X ′
T (x) = 1 +

∫ T

0
π
(x)
r dSr with

some predictable S-integrable integrand π(1)(x) and inequalities

EQ

∫ T

0

(
π
(1)
t (x+ ε)− π

(1)
t (x)

)2

d〈S〉t = EQ 〈X ′(x+ ε)−X ′(x)〉T

= EQ (X ′
T (x+ ε)−X ′

T (x))
2 ≤ ε2EQ max

0≤s≤1
|X ′′

T (x+ sε)|2

≤ ε2Const,

By the Kolmogorov theorem π(1)(x) is continuous with respect to x µ〈S〉-a.e.
Note that, if instead of r1) condition r2) is satisfied, then we shall have that there exists

a µ〈S〉-a.e. continuous modification of π(1)(x) on each compact of R which will imply an
existence of continuous modification on the whole real line.

Thus by the stochastic Fubini theorem (see [15] )

x2 − x1 +

∫ T

0

(πr(x2)− πr(x1))dSr = XT (x2)−XT (x1)

=

∫ x2

x1

X ′
T (x)dx = x2 − x1 +

∫ T

0

∫ x2

x1

π(1)
r (x)dxdSr

and consequently πr(x2) − πr(x1) =
∫ x2

x1
π
(1)
r (x)dx µ〈S〉-a.e.. Hence π(1)(x) = π′(x)

µ〈S〉-a.e. and

X ′
T (x) = 1 +

∫ T

0

π′
r(x)dSr (60)

for all x P−a.s.
It follows from (60) and from the Fubini theorem that

Xt(x2)−Xt(x1) = x2 − x1 +

∫ t

0

(πr(x2)− πr(x1))dSr

= x2 − x1 +

∫ t

0

∫ x2

x1

π′
r(x)dxdSr =

∫ x2

x1

X ′
t(x)dx

for any x2 ≥ x1 P−a.s. and lemma A3 from [11] implies that for each fixed t there exists a
modification of (Xt(x), x ∈ R) which is absolutely continuous with respect to the Lebesgue
measure dx. Since (X ′

t(x), t ∈ [0, T ]) is a Q-martingale

|X ′
t(x2)−X ′

t(x1)| ≤ EQ(|X ′
T (x2)−X ′

T (x1)|/Ft) ≤ C|x2 − x1| (61)

for any x2 ≥ x1 P−a.s. and Lemma 5.1 and Corollary 5.1 imply that there exists Ω′ ⊂
Ω, P (Ω′) = 1, such that at each ω ∈ Ω′ the inequality (61) is fulfilled for all (t, x).

Since EX ′′
T (x) = 0 and the market is complete we have X ′′

T (x) =
∫ T

0
π
(2)
r (x)dSr for

some predictable S-integrable integrand π(2). Similarly as above one can show that π(2)(x)
is continuous at x µ〈S〉-a.e., π(2)(x) = π′′(x) µ〈S〉-a.e. and, hence X ′′

t (x) admits the repre-
sentation

X ′′
t (x) =

∫ t

0

π′′
r (x)dSr.
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Similarly we can show that one can choose a modification of Xt(x) which is two-times
differentiable and such that X ′′(x) is Lipschitz continuous.

In case when instead of r1) the condition r2) is fulfilled X ′′(x) will satisfy the local Lip-
schitz condition. So, in both cases (i.e., if condition r1) or r2) is satisfied) the coefficients of
equation (42) will be locally Lipschitz continuous.

Since the market is complete M(t, x) = V ′(x)Zt and it is evident that M(t, x) is two-
times continuously differentiable. Besides, equality (49) implies that M(t, x) is also two-
times continuously differentiable at x. �

Theorem 5.1. Assume that the market is complete and that one of the condition r1) or r2) be
satisfied. Then conditions a)-e) are fulfilled and the value function V (t, x) satisfies BSPDE
(14).

Proof. It is evident that boundedness of B1(y) and B2(y) (defined by (53)) implies that
the dual value function Ṽ (t, y) = E(Ũ(yZT

Zt
)/Ft) is two-times continuously differentiable.

Since

V ′′(t, x) = − 1

Ṽ ′′(t, y)
, y = V ′(x),

the value function V (t, x) is also two-times continuously differentiable, hence condition a) is
fulfilled.

It follows from Proposition 5.1 that under the presence assumptions all conditions of
Propositions 4.1 and 4.2 are satisfied, therefore these propositions imply that V (t, x) satisfies
conditions b) and c), hence V (t, x) is a regular family of semimartingales.

Let us show that the condition e) is also satisfied. By optimality principle (see [10])
for any t ∈ [0, T ] the process (V (s,Xs(t, x)), s ≥ t) is a martingale, where Xs(t, x) =
x+

∫ s

t
πu(t, x)dSu is the solution of the conditional optimization problem (14). This implies

that P -a.s.
V (t, x) = E(V (s,Xs(t, x))/Ft). (62)

On the other hand using again the optimality principle we have

V (t,Xt(x)) = E(V (s,Xs(x))/Ft),

and substituting in this equality the inverse of the optimal capital Xt(x) we get

V (t, x) = E(V (s,Xs(X
−1
t (x))/Ft). (63)

Since for any t the function (V (t, x), x ∈ R) is strictly convex, comparing (62) and (63) we
obtain that P -a.s Xs(t, x) = Xs(X

−1
t (x)). By continuity at (t, x) of X−1

t (x) as a solution
of SDE (42) we obtain that condition e) is satisfied.

Thus, all conditions of Theorem 3.1 from [10] are satisfied which implies that V (t, x) is a
solution of the BSPDE (14). �

Corollary 5.2. Let conditions of Theorem 5.1 be satisfied. Then the process

Ṽ (t, y) = E
(
Ũ(y

ZT

Zt
)/Ft

)
, t ∈ [0, T ],

satisfies the BSPDE (34).
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Proof. According to Theorem 3.1 it is sufficient to verify that the process

Ṽ ′(t, y) = E(
ZT

Zt
Ũ ′(y

ZT

Zt
)/Ft), t ∈ [0, T ],

is a special semimartingale.
Let V (t.y) = E(ZT Ũ

′(yZT )/Ft). It is evident that Ṽ ′(t, y) = 1
Zt
V (t, y

Zt
). But by the

duality relation (10) V (t.y) = E(ZT Ũ
′(yZT )/Ft) = −ZtXt(x) and the martingale field

V (t.y) is two-times differentiable by Proposition 5.1. Therefore the Itô-Ventzel formula
implies that 1

Zt
V (t, y

Zt
) is a special semimartingale, hence so is the process Ṽ ′(t, y). �

We would like to thank anonymous referees for useful remarks and comments.
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CONNECTIONS BETWEEN A SYSTEM OF FORWARD-BACKWARD SDES
AND BACKWARD STOCHASTIC PDES RELATED TO THE UTILITY

MAXIMIZATION PROBLEM

M. MANIA AND R. TEVZADZE

Abstract. Connections between a system of Forward-Backward SDEs derived in [4] and
Backward Stochastic PDEs (from [9]) related to the utility maximization problem is estab-
lished. Besides, we derive another version of Forward-Backward SDE of the same problem
and prove the existence of solution.

Key words and phrases: Utility maximization problem, backward stochastic partial differ-
ential equation, forward backward stochastic differential Equation

MSC 2010: 90A09, 60H30, 90C39

1. INTRODUCTION

We consider a financial market model, where the dynamics of asset prices is described
by the continuous Rd-valued continuous semimartingale S defined on a complete probability
space (Ω,F , P ) with filtration F = (Ft, t ∈ [0, T ]) satisfying the usual conditions, where
F = FT and T < ∞. We work with discounted terms, i.e. the bond is assumed to be
constant.

Let U = U(x) : R → R be a utility function taking finite values at all points of real line R
such that U is continuously differentiable, increasing, strictly concave and satisfies the Inada
conditions

U ′(∞) = lim
x→∞

U ′(x) = 0, U ′(−∞) = lim
x→−∞

U ′(x) = ∞. (1.1)

We also assume that U satisfies the condition of reasonable asymptotic elasticity (see [5] and
[14] for a detailed discussion of these conditions), i.e.,

lim sup
x→∞

xU ′(x)

U(x)
< 1, lim inf

x→−∞

xU ′(x)

U(x)
> 1. (1.2)

For the utility function U we denote by Ũ its convex conjugate

Ũ(y) = sup
x
(U(x)− xy), y > 0. (1.3)

Denote by Me (resp. Ma) the set of probability measures Q equivalent (resp. absolutely
continuous) with respect to P such that S is a local martingale under Q.

Published in Trans. A. Razmadze Math. Inst. 172 (2018), no. 3.
221
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Let Ma
U (resp. Me

U ) be the convex set of probability measures Q ∈ Ma (resp. Me) such
that

EŨ
(dQT

dPT

)
< ∞. (1.4)

It follows from Proposition 4.1 of [13] that (1.4) implies EŨ
(
y dQT

dPT

)
< ∞ for any y > 0.

Throughout the paper we assume that

Me
U �= ∅. (1.5)

The wealth process, determined by a self-financing trading strategy π and initial capital x,
is defined as a stochastic integral

Xx,π
t = x+

∫ t

0

πudSu, 0 ≤ t ≤ T.

We consider the utility maximization problem with random endowment H , where H is a
liability that the agent must deliver at the terminal time T . H is an FT -measurable random
variable which for simplicity is assumed to be bounded (one can use also weaker assumption
1.6 from [11]). The value function V (x) associated to the problem is defined by

V (x) = sup
π∈Πx

E

[
U

(
x+

∫ T

0

πu dSu +H

)]
, (1.6)

where Πx is a class of strategies which (following [14] and [11]) we define as the class of
predictable S- integrable processes π such that U(x+ (π · S)T +H) ∈ L1(P ) and π · S is a
supermartingale under each Q ∈ Ma

U .
The dual problem to (1.6) is

Ṽ (y) = inf
Q∈Me

U

E[Ũ(yρQT ) + yρQTH], y > 0, (1.7)

where ρQt = dQt/dPt is the density process of the measure Q ∈ Me relative to the basic
measure P .

It was shown in [11] that under assumptions (2) and (5) an optimal strategy π(x) in the
class Πx exists. There exists also an optimal martingale measure Q(y) to the problem (1.7),
called the minimax martingale measure and by ρ∗ = (ρ∗t (y), t ∈ [0, T ]) we denote the density
process of this measure relative to the measure P .

It follows also from [11] that under assumptions (2) and (5) optimal solutions π∗i(x) ∈
Πxi and Q(y) ∈ Me

U are related as

U
′
(
x+

∫ T

0

π∗
u(x)dSu +H

)
= yρ∗T (y), P -a.s. (1.8)

The continuity of S and the existence of an equivalent martingale measure imply that the
structure condition is satisfied, i.e. S admits the decomposition

St = Mt +

∫ t

0

d〈M〉sλs,

∫ t

0

λT
s d〈M〉sλs < ∞

for all t P -a.s., where M is a continuous local martingale and λ is a predictable process. The
sign T here denotes the transposition.
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Let us introduce the dynamic value function of problem (1.6) defined as

V (t, x) = ess sup
π∈Πx

E

(
U

(
x+

∫ T

t

πu dSu +H

) ∣∣∣ Ft

)
. (1.9)

It is well known that for any x ∈ R the process (V (t, x), t ∈ [0, T ]) is a supermartingale
admitting an RCLL (right-continuous with left limits) modification.

Therefore, using the Galchouk–Kunita–Watanabe (GKW) decomposition, the value func-
tion is represented as

V (t, x) = V (0, x)−A(t, x) +

∫ t

0

ψ(s, x) dMs + L(t, x),

where for any x ∈ R the process A(t, x) is increasing and L(t, x) is a local martingale
orthogonal to M .

Definition 1.1. We say that (V (t, x), t ∈ [0, T ]) is a regular family of semimartingales if
a) V (t, x) is two-times continuously differentiable at x P - a.s. for any t ∈ [0, T ],
b) for any x ∈ R the process V (t, x) is a special semimartingale with bounded variation

part absolutely continuous with respect to an increasing predictable process (Kt, t ∈ [0, T ]),
i.e.

A(t, x) =

∫ t

0

a(s, x) dKs

for some real-valued function a(s, x) which is predictable and K-integrable for any x ∈ R,
c) for any x ∈ R the process V ′(t, x) is a special semimartingale with the decomposition

V ′(t, x) = V ′(0, x)−
∫ t

0

a′(s, x) dKs +

∫ t

0

ψ′(s, x) dMs + L′(t, x),

where a′, ϕ′ and L′ are partial derivatives of a, ϕ and L respectively.

If F (t, x) is a family of semimartigales, then
∫ T

0
F (ds, ξs) denotes a generalized stochas-

tic integral, or a stochastic line integral (see [6], or [2]). If F (t, x) = xGt, where Gt is a
semimartingale, then the stochastic line integral coincides with the usual stochastic integral
denoted by

∫ T

0
ξsdGs or (ξ ·G)T .

It was shown in [7, 8, 9] (see, e.g., Theorem 3.1 from [9]) that if the value function satisfies
conditions a)–c), then it solves the following BSPDE

V (t, x) = V (0, x)

+
1

2

∫ t

0

1

V ′′(s, x)
(ϕ′(s, x) + λ(s)V ′(s, x))T d〈M〉s(ϕ′(s, x) + λ(s)V ′(s, x))

+

∫ t

0

ϕ(s, x) dMs + L(t, x), V (T, x) = U(x), (1.10)

and optimal wealth satisfies the SDE

Xt(x) = x−
∫ t

0

ϕ′(s,Xs(x)) + λ(s)V ′(s,Xs(x))

V ′′(s,Xs(x))
dSs. (1.11)

This assertion is a verification theorem since conditions are required directly on the value
function V (t, x) and not on the basic objects (on the asset price model and on the objective
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function U ) only. In the case of complete markets ([10]) conditions on utility functions are
given to ensure properties a)-c) and thus existence of a solution to the BSPDE (1.10), (1.11)
is established. Note that the BSPDE (1.10), (1.11) is of the same form for random utility
functions U(ω, x), for utility functions defined on half real line and properties a)-c) are also
satisfied for standard (exponential, power and logarithmic) utility functions.

In the paper [4] a new approach was developed, where a characterization of optimal strate-
gies to the problem (1.6) in terms of a system of Forward-Backward Stochastic Differential
Equations (FBSDE) in the Brownian framework was given. The key observation was an ex-
istence of a stochastic process Y with YT = H such that U ′(Xt + Yt) is a martingale. The
same approach was used in [12], where these results were generalized in semimartingale set-
ting with continuous filtration rejecting also some technical conditions imposed in [4]. The
FBSDE for the pair (X,Y ) (where X is the optimal wealth and Y the process mentioned
above) is of the form (see, [12])

Yt = Y0 +

∫ t

0

[
λT
s

U ′(Xs + Ys)

U ′′(Xs + Ys)
− 1

2
λT
s

U ′′′(Xs + Ys)U
′(Xs + Ys)

2

U ′′(Xs + Ys)3
+ ZT

s

]
d〈M〉sλs

− 1

2

∫ t

0

U ′′′(Xs + Ys)

U ′′(Xs + Ys)
d〈N〉s +

∫ t

0

ZsdMs +Nt, YT = H; (1.12)

Xt = x−
∫ t

0

(
λs

U ′(Xs + Ys)

U ′′(Xs + Ys)
+ Zs

)
dSs, (1.13)

where N is a local martingale orthogonal to M .
Note that in ([4]) and ([12]) an existence of a solution of FBSDE (1.12), (1.13) is not

proved, since not all conditions of corresponding theorems are formulated in terms of basic
objects. E.g., in both papers it is imposed that E(U ′(X∗

T +H))2 < ∞ and it is not clear if
an optimal strategy satisfying this condition exists. Note that in [4] in the case of complete
markets an existence of a solution of FBSDE (1.12), (1.13) is proved under certain regularity
assumptions on the objective function U .

One of our goal is to derive another version of FBSDE (1.12), (1.13) and to prove the
existence of a solution which will imply the existence of a solution of the system (1.12),
(1.13) also.

The second goal is to establish relations between equations BSPDE (1.10), (1.11) and
FBSDE (1.12), (1.13). Solutions of these equations give constructions of the optimal strategy
of the same problem. BSPDE (3.6),(3.7) can be considered as a generalization of Hamiltom-
Jacobi-Bellman equation to the non Markovian case and FBSDE (1.12), (1.13) is linked with
the stochastic maximum principle (see [4]), although equation (1.12)–(1.13) is not obtained
directly from the maximum principle. It is well known that the relation between Bellman’s
dynamic programming and the Pontriagin’s maximum principle in optimal control is of the
form ψt = V ′(t,Xt), where V is the value function, X an optimal solution and ψ is an
adjoint process (see, e.g., [1], [15]). Therefore, somewhat similar relation between above
mentioned equations should be expected. In particular, it is shown in Theorem 3.1, that the
first components of solutions of these equations are related by the equality

Yt = −Ũ ′(V ′(t,Xt))−Xt.
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In addition, conditions are given when the existence of a solution of BSPDE (3.6),(3.7)
imply the existence of a solution of the system (1.12)–(1.13) and vice versa.

2. ANOTHER VERSION OF THE FORWARD-BACKWARD SYSTEM (1.12)–(1.13)

In this section we derive another version of the Forward-Backward system (1.12), (1.13)
in which the backward component Pt is a process, such that Pt + U ′(Xt) is a martingale.

Theorem 2.1. Let utility function U be three-times continuously differentiable and let the
filtration F be continuous. Assume that conditions (1.2) and (1.5) are satisfied. Then there
exists a quadruple (P, ψ, L,X), where P and X are continuous semimartingales, ψ is a
predictable M−integrable process and L is a local martingale orhogonal to M , that satisfies
the FBSDE

Xt = x−
∫ t

0

λsPs + λsU
′(Xs) + ψs

U ′′(Xs)
dSs, (2.1)

Pt = P0+

∫ t

0

[
λs−

1

2
U ′′′(Xs)

(λsPs + λsU
′(Xs) + ψs

)
U ′′(Xs)2

]T
d〈M〉s

(
λsPs+λsU

′(Xs)+ψs

)

+

∫ t

0

ψsdMs + Lt, PT = U ′(XT +H)− U ′(XT ). (2.2)

In addition the optimal strategy is expressed as

π∗
t = −λtPt + λtU

′(Xt) + ψt

U ′′(Xt)
(2.3)

and the optimal wealth X∗ coincides with X .

Proof. Define the process

Pt = E(U ′(X∗
T +H)/Ft)− U ′(X∗

t ). (2.4)

Note that the integrability of U ′(X∗
T +H) follows from the duality relation (1.8). It is evident

that PT = U ′(X∗
T +H)− U ′(X∗

T ).
Since U is three-times differentiable, U ′(X∗

t ) is a continuous semimartingale and Pt ad-
mits the decomposition

Pt = P0 +At +

∫ t

0

ψudMu + Lt, (2.5)

where A is a predictable process of finite variations and L is a local martingale orthogonal
to M .

Since ρ∗t is the density of a martingale measure, it is of the form ρ∗t = Et(−λ · M +
R), R⊥M . Therefore, (1.8) and (2.4) imply that

E(U ′(X∗
T +H)/Ft) = yρ∗t = y −

∫ t

0

λsyρ
∗
sdMs + R̃t

= y −
∫ t

0

(
Ps + U ′(X∗

s )
)
λsdMs + R̃t, (2.6)

where y = EU ′(X∗
T +H) and R̃ is a local martingale orthogonal to M .
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By definition of the process Pt, using the Itô formula for U ′(X∗
t ) and taking decomposi-

tions (2.5), (2.6) in mind, we obtain

P0 +At +

∫ t

0

ψsdMs + Lt = y −
∫ t

0

(
Ps + U ′(X∗

s )
)
λsdMs + R̃t

−U ′(x)−
∫ t

0

U ′′(X∗
s )π

∗T
s d〈M〉sλs −

1

2

∫ t

0

U ′′′(X∗
s )π

∗T
s d〈M〉sπ∗

s

−
∫ t

0

U ′′(X∗
s )π

∗
sdMs. (2.7)

Equalizing the integrands of stochastic integrals with respect to dM we have that µ〈M〉-a.e.

π∗
t = −λtPt + λtU

′(X∗
t ) + ψt

U ′′(X∗
t )

(2.8)

Equalizing the parts of finite variations in (2.7) we get

At = −
∫ t

0

(
U ′′(X∗

s )λs +
1

2
U ′′′(X∗

s )π
∗
s

)T
d〈M〉sπ∗

s (2.9)

and from (2.8), substituting the expression for π∗ in (2.9) we obtain that

At =

∫ t

0

[
λs −

1

2
U ′′′(Xs)

(λsPs + λsU
′(Xs) + ψs

)
U ′′(Xs)2

]T
d〈M〉s

×
(
λsPs + λsU

′(Xs) + ψs

)
. (2.10)

Therefore, (2.10) and (2.5) imply that Pt satisfies equation (2.2). Integrating both parts of
equality (2.8) with respect to dS and adding the initial capital we obtain equation (2.1) for
the optimal wealth. �

Corollary. Let conditions of Theorem 2.1 be satisfied. Then there exists a solution of FBSDE
(1.12), (1.13). In particular, if the pair (X,P ) is a solution of (2.1), (2.2)S, then the pair
(X,Y ), where

Yt = −Ũ ′(Pt + U ′(Xt))−Xt,

satisfies the FBSDE (1.12), (1.13).
Conversely, if the pair (X,Y ) solves the FBSDE (1.12), (1.13), then (Xt, Pt = U ′(Xt +

Yt)− U ′(Xt)) satisfies (2.1), (2.2).

3. RELATIONS BETWEEN BSPDE (1.10)–(1.11) AND FBSDE (1.12)–(1.13)

To establish relations between equations BSPDE (1.10), (1.11) and FBSDE (1.12), (1.13)
we need the following

Definition 3.1 ([3]). The function u(t, x) is called a decoupling field of the FBSDE (1.12),
(1.13) if

u(T, x) = H, a.s. (3.1)
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and for any x ∈ R, s, τ ∈ R+ such that 0 ≤ s < τ ≤ T the FBSDE

Yt = u(s, x)

+

∫ t

s

(
λT
r

U ′(Xr + Yr)

U ′′(Xr + Yr)
− 1

2
λT
r

U ′′′(Xr + Yr)U
′(Xr + Yr)

2

U ′′(Xr + Yr)3
+ ZT

r

)
d〈M〉rλr

−1

2

∫ t

s

U ′′′(Xr + Yr)

U ′′(Xr + Yr)
d〈N〉r +

∫ t

s

ZrdMr +Nt −Ns, Yτ = u(τ,Xτ ), (3.2)

Xt = x−
∫ t

s

(
λr

U ′(Xr + Yr)

U ′′(Xr + Yr)
+ Zr

)
dSr, (3.3)

has a solution (Y, Z,N,X) satisfying

Yt = u(t,Xt), a.s. (3.4)

for all t ∈ [s, τ ]. We mean that all integrals are well defined.
We shall say that u(t, x) is a regular decoupling field if it is a regular family of semimartin-

gales (in the sense of Definition 1.1).

If we differentiate equation BSPDE (1.10) at x (assuming that all derivatives involved
exist), we obtain the BSPDE

V ′(t, x) = V ′(0, x) +
1

2

∫ t

0

(
(ϕ′(s, x) + λsV

′(s, x))T

V ′′(s, x)
d〈M〉s(ϕ′(s, x) + λsV

′(s, x))

)′

+

∫ t

0

ϕ′(s, x) dMs + L′(t, x), V ′(T, x) = U ′(x+H). (3.5)

Thus, we consider the following BSPDE

V ′(t, x) = V ′(0, x) +

∫ t

0

[
(V ′′(s, x)λs + ϕ′′(s, x))T

V ′′(s, x)

− 1

2
V ′′′(s, x)

(V ′(s, x)λs + ϕ′(s, x))T

V ′′(s, x)

]
d〈M〉s(V ′(s, x)λs + ϕ′(s, x))

+

∫ t

0

ϕ′(s, x) dMs + L′(t, x), V ′(T, x) = U ′(x+H), (3.6)

where the optimal wealth satisfies the same SDE

Xt(x) = x−
∫ t

0

ϕ′(s,Xs(x)) + λ(s)V ′(s,Xs(x))

V ′′(s,Xs(x))
dSs. (3.7)

The FBSDE (1.12), (1.13) is equivalent, in some sense, to BSPDE (3.6),(3.7) and the follow-
ing statement establishes a relation between these equations.

Theorem 3.1. Let the utility function U(x) be three-times continuously differentiable and let
the filtration F be continuous.

a) If V ′(t, x) is a regular family of semimartingales and (V ′(t, x), ϕ′(t, x), L′(t, x), Xt)
is a solution of BSPDE (3.6),(3.7), then the quadruple (Yt, Zt, Nt, Xt), where

Yt = −Ũ ′(V ′(t,Xt))−Xt, (3.8)
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Zt = λtŨ
′(V ′(t,Xt)) +

ϕ′(t,Xt) + λtV
′(t,Xt)

V ′′(t,Xt)
, (3.9)

Nt = −
∫ t

0

Ũ ′′(V ′(s,Xs))d
( ∫ s

0

L′(dr,Xr)
)
, (3.10)

will satisfy the FBSDE (1.12), (1.13). Moreover, the function u(t, x) = −Ũ ′(V ′(t, x)) − x
will be the decoupling field of this FBSDE.

b) Let u(t, x) be a regular decoupling field of FBSDE (1.12), (1.13) and let (U ′(Xt +
Yt), s ≤ t ≤ T ) be a true martingale for every s ∈ [0, T ]. Then (V ′(t, x), ϕ′(t, x), L′(t, x), X)
will be a solution of BSPDE (3.6), (3.7) and following relations hold

V ′(t, x) = U ′(x+ u(t, x)), hence V ′(t,Xt) = U ′(Xt + Yt), (3.11)

ϕ′(t,Xt) = (Zt + λs
U ′(Xt + Yt)

U ′′(Xt + Yt)
)V ′′(t,Xt)− λtU

′(Xt + Yt), (3.12)

∫ t

0

L′(ds,Xs) =

∫ t

0

U ′′(Xs + Ys)dNs, (3.13)

where
∫ t

0
L′(ds,Xs) is a stochastic line integral with respect to the family (L′(t, x), x ∈ R)

along the process X .

Proof. a) It follows from BSPDE (3.6), (3.7) and from the Itô-Ventzel formula that V ′(t,Xt)
is a local martingale with the decomposition

V ′(t,Xt) = V ′(0, x)−
∫ t

0

λsV
′(s,Xs)dMs +

∫ t

0

L′(ds,Xs). (3.14)

Let Yt = −Ũ ′(V ′(t,Xt))−Xt. Since U is three-times differentiable (hence so is Ũ ), Yt

will be a special semimartingale and by GKW decomposition

Yt = Y0 +At +

∫ t

0

ZudMu +Nt, (3.15)

where A is a predictable process of finite variations and N is a local martingale orthogonal
to M .

The definition of the process Y , decompositions (3.14) , (3.15) and the Itô formula for
Ũ ′(V ′(t,Xt)) imply that

At +

∫ t

0

ZsdMs +Nt

=

∫ t

0

Ũ ′′(V ′(s,Xs))V
′(s,Xs)λsdMs −

∫ t

0

Ũ ′′(V ′(s,Xs))d
( ∫ s

0

L′(dr,Xr)
)

−1

2

∫ t

0

Ũ ′′′(V ′(s,Xs))V
′(s,Xs)

2λT
s d〈M〉sλs −

1

2

∫ t

0

Ũ ′′′(V ′(s,Xs))d〈
∫ .

0

L′(dr,Xr)〉s

+

∫ t

0

λsV
′(s,Xs) + ϕ′(s,Xs)

V ′′(s,Xs)
dMs +

∫ t

0

λT
s V

′(s,Xs) + ϕ′(s,Xs)
T

V ′′(s,Xs)
d〈M〉sλs. (3.16)
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Equalizing the integrands of stochastic integrals with respect to dM in (3.16) we have that
µ〈M〉-a.e.

Zs =
λsV

′(s,Xs) + ϕ′(s,Xs)

V ′′(s,Xs)
+ Ũ ′′(V ′(s,Xs))V

′(s,Xs)λs. (3.17)

Equalizing the orthogonal martingale parts we get P -a.s.

Nt = −
∫ t

0

Ũ ′′(V ′(s,Xs))d

(∫ s

0

L′(dr,Xr)

)
. (3.18)

Equalizing the parts of finite variations in (3.16) we have

At =

∫ t

0

λT
s V

′(s,Xs) + ϕ′(s,Xs)
T

V ′′(s,Xs)
d〈M〉sλs

− 1

2

∫ t

0

Ũ ′′′(V ′(s,Xs))V
′(s,Xs)

2λT
s d〈M〉sλs

− 1

2

∫ t

0

Ũ ′′′(V ′(s,Xs))d
〈∫ .

0

L′(dr,Xr)
〉
s

(3.19)

and by equalities (3.17), (3.18) we obtain from (3.19) that

At=

∫ t

0

(
Zs − Ũ ′′(V ′(s,Xs))V

′(s,Xs)λs−
1

2
Ũ ′′′(V ′(s,Xs))V

′(s,Xs)
2λs

)T

d〈M〉sλs

−1

2

∫ t

0

Ũ ′′′(V ′(s,Xs))

Ũ ′′(V ′(s,Xs))2
d〈N〉s. (3.20)

Therefore, using the duality relations

V ′(t,Xt) = U ′(Xt + Yt),

Ũ ′′(V ′(t,Xt)) = − 1

U ′′(Xt + Yt)
,

Ũ ′′′(V ′(t,Xt)) = − U ′′′(Xt + Yt)

(U ′′(Xt + Yt))3
,

we obtain from (3.20) that

At =

∫ t

0

(
λs

U ′(Xs + Ys)

U ′′(Xs + Ys)
− 1

2
λs

U ′′′(Xs + Ys)U
′(Xs + Ys)

2

U ′′(Xs + Ys)3
+ Zs

)T

d〈M〉sλs

−1

2

∫ t

0

U ′′′(Xs + Ys)

U ′′(Xs + Ys)
d〈N〉s (3.21)

Thus, (3.15) and (3.21) imply that Y satisfies equation (1.12).
Since

Ũ ′′(V ′(s,Xs))V
′(s,Xs) = − 1

U ′′(Xs + Ys)
,

from (3.7) and (3.17) we obtain equation (1.13) for the optimal wealth.
The proof that the function u(t, x) = −Ũ ′(V ′(t, x)) − x is the decoupling field of the

FBSDE (1.12) is similar. One should take integrals from s to t and use the same arguments.
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b) Since the quadruple (Y s,x, Zs,x, Ns,x, Xs,x) satisfies the FBSDE (3.2), (3.3), it follows
from the Itô formula that for any t ≥ s

U ′(Xs,x
t + Y s,x

t ) = U ′(x+ u(s, x))−
∫ t

s

λrU
′(Xs,x

r + Y s,x
r )dMr

+

∫ t

s

U ′′(Xs,x
r + Y s,x

r )dNr. (3.22)

Thus U ′(Xs,x
t + Y s,x

t ), t ≥ s, is a local martingale and a true martingale by assumption.
Therefore, it follows from (3.1) and (3.4) that

U ′(Xs,x
t + Y s,x

t ) = E(U ′(Xs,x
T +H)/Ft) = V ′(t,Xs,x

t ), (3.23)

where the last equality is proved similarly to [13]. For t = s we obtain that

U ′(x+ u(s, x)) = V ′(s, x), (3.24)

hence

u(t, x) = −Ũ ′(V ′(t, x))− x. (3.25)

Since U(x) is three-times differentiable and u(t, x) is a regular decoupling field, equality
(3.24) implies that V ′(t, x) will be a regular family of semimartingales. Therefore, using the
Itô-Ventzel formula for V ′(t,Xs,x

t ) and equalities (3.22) , (3.23) we have

∫ t

s

[
ϕ′(r,Xs,x

r )− V ′′(r,Xs.x
r )(λs

U ′(Xs,x
r + Y s,x

r )

U ′′(Xs,x
r + Y s,x

r )
+ Zs,x

r )

]
dMr

+

∫ t

s

L′(dr,Xr) +

∫ t

s

a′(r,Xs,x
r )dKr

−
∫ t

s

(
λr

U ′(Xs,x
r + Y s,x

r )

U ′′(Xs,x
r + Y s,x

r )
+ Zs,x

r

)T

d〈M〉r(V ′′(r,Xs,x
r )λr + ϕ′′(r,Xs,x

r ))

−1

2

∫ t

s

(V ′′′(r,Xs,x
r ))

(
λr

U ′(Xs,x
r + Y s,x

r )

U ′′(Xs,x
r + Y s,x

r )
+ Zs,x

r

)T

d〈M〉r

×
(
λr

U ′(Xs,x
r + Y s,x

r )

U ′′(Xs,x
r + Y s,x

r )
+ Zs,x

r

)

= −
∫ t

s

λrU
′(Xs,x

r + Y s,x
r )dMr +

∫ t

s

U ′′(Xs,x
r + Y s,x

r )dNr. (3.26)

Equalizing the integrands of stochastic integrals with respect to dM in (3.26) we have that
µK-a.e.

Zs,x
r =

λrV
′(r,Xs,x

r ) + ϕ′(r,Xs,x
r )

V ′′(r,Xs,x
r )

− λr
U ′(Xs,x

r + Y s,x
r )

U ′′(Xs,x
r + Y s,x

r )
. (3.27)
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Equalizing the parts of finite variations in (3.26), taking (3.27) in mind, we get that for any
t > s ∫ t

s

a′(r,Xs,x
r )dKr =

∫ t

s

[
(V ′′(r,Xs,x

r )λr + ϕ′′(r,Xs,x
r ))

V ′′(r,Xs,x
r )

−1

2
V ′′′(r,Xs,x

r )
(V ′(r,Xs,x

r )λr + ϕ′(r,Xs,x
r ))

V ′′(r,Xs,x
r )2

]T

×d〈M〉r(V ′(r,Xs,x
r )λr + ϕ′(r,Xs,x

r )). (3.28)

Let τs(ε) = inf{t ≥ s : Kt − Ks ≥ ε}. Since 〈M i,M j〉 << K̃ for any 1 ≤ i, j ≤ d,
where K̃ =

∑d
i=1〈M i〉, taking an increasing process K+ K̃ (which we denote again by K),

without loss of generality we can assume that 〈M〉 << K and denote by Ct the matrix of
Radon-Nicodym derivatives Ct =

d〈M〉t
dKt

. Then from (3.28)
∫ τs(ε)

s

[
(V ′′(r,Xs,x

r )λr + ϕ′′(r,Xs,x
r ))TCr(V

′(r,Xs,x
r )λr + ϕ′(r,Xs,x

r ))

V ′′(r,Xs,x
r )

−1

2
V ′′′(r,Xs,x

r )
(V ′(r,Xs,x

r )λr + ϕ′(r,Xs,x
r ))TCr(V

′(r,Xs,x
r )λr + ϕ′(r,Xs,x

r ))

V ′′(r,Xs,x
r )2

−a′(r,Xs,x
r )

]
dKr = 0. (3.29)

Since for any x ∈ R the process Xs,x
r is a continuous function on {(r, s), r ≥ s} with

Xs,x
s = x (as a solution of equation (3.3)) and V ′(t, x) is a regular family of semimartingales,

dividing equality (3.29) by ε and passing to the limit as ε → 0 from [7] ( Proposition B1 ) we
obtain that for each x

a′(s, x) =
(V ′′(s, x)λs + ϕ′′(s, x))TCs(V

′(s, x)λs + ϕ′(s, x))

V ′′(s, x)

−1

2
V ′′′(s, x)

(V ′(s, x)λs + ϕ′(s, x))TCs(V
′(s, x)λs + ϕ′(s, x))

V ′′(s, x)2

=
1

2

(
(V ′(s, x)λs + ϕ′(s, x))TCs(V

′(s, x)λs + ϕ′(s, x))

V ′′(s, x)

)′

, µK-a.e., (3.30)

which implies that V ′(t, x) satisfies the BSPDE

V ′(t, x) = V ′(0, x) +
1

2

∫ t

0

(
(V ′(s, x)λs + ϕ′(s, x))TCs(V

′(s, x)λs + ϕ′(s, x))

V ′′(s, x)

)′

dKs

+

∫ t

0

ϕ′(s, x) dMs + L′(t, x), V ′(T, x) = U ′(x+H). (3.31)

The theorem is proved. �

Remark 3.1. In the proof of the part a) of the theorem we need the condition that V ′(t, x) is
a regular family of semimartingales only to show equality (3.14) and to obtain representation
(3.10). Equality (3.14) can be proved without this assumption (replacing the stochastic line
integral by a local martingale orthogonal to M ) from the duality relation

V ′(t,Xt(x)) = ρt(y), y = V ′(x),
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where ρt(y)/y is the density of the minimax martingale measure (see [14] and [11] for the
version with random endowment). Since ρt(y)/y is representable in the form E(−λ·M+D),
for a local martingale D orthogonal to M , using the Dolean Dade equation we have

V ′(t,Xt) = ρt = y −
∫ t

0

λsρsdMs +

∫ t

0

ρsdDs

= 1−
∫ t

0

λsV
′(s,Xs)dMs +Rt,

where Rt ≡ (Z ·D)t is a local martingale orthogonal to M . Further the proof will be the same
if we always use a local martingale Rt instead of the stochastic line integral

∫ t

0
(L′(ds,Xs).

Hence the representation (3.10) will be of the form

Nt = −
∫ t

0

Ũ ′′(V ′(s,Xs))dRt.

Remark 3.2. It follows from the proof of Theorem 3.1, that if a regular decoupling field
for the FBSDE (1.12), (1.13) exists, then the second component of the solution Z is also
of the form Zt = g(ω, t,Xt) for some measurable function g and if we assume that any
orthogonal to M local martingale L is represented as a stochastic integral with respect to the
given continuous local martingale M⊥, then the third component N of the solution will take
the same form Nt =

∫ t

0
g⊥(s,Xs)dM

⊥
s , for some measurable function g⊥.

Remark 3.3. Similarly to Theorem 3.1 b) one can show that u(t, x) = V ′(t, x) − U ′(x) is
the decoupling field of (2.1), (2.2).
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