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Preface

Stochastic analysis is important and powerful tool to study uncertainty in numerous problems
of statistics and modern finance theory. This book presents a selected collection of some of
the research of GAU Business Research Center during the last 10 years in this important area.
All these researches were published in international impact-factor journals.

First chapter by Lazrieva and Toronjadze presents the optimal B-robust estimate for multi-
dimensional parameter in drift coefficient of diffusion type process with small noise. Chap-
ter 2 by Mania et al. presents the mean-variance hedging problem under partial information.
Chapter 3 by Tevzadze is devoted to the proof of the existence of unique solution of gen-
eral backward stochastic differential equation with quadratic grows driven by martingales. In
chapter 4, Mania et al. discuss the mean-variance hedging problem in case where flow of ob-
servable events do not contain the full information on the underlying asset price process. In
chapter 5, Lazrieva and Toronjadze present general results concerning the asymptotic behav-
ior of the Polyak average of the solution of the Robbins-Monro type stochastic differential
equation. In chapter 6, Lazrieva and Toronjadze present the recourse estimation problem
of a one-dimensional parameter in the trend coefficient of diffusion process. In chapter 7,
Tevzadze et al. study the robust maximization of terminal wealth utility in diffusion finan-
cial market models. In chapter 8, Chikvinidze and Mania give new proofs of some well
known results of BMO martingales and improves some estimate of BMO norms. In chap-
ter 9, Lazrieva and Toronjadze study the recursive estimation problem of one-dimensional
parameter of statistical models associated with semimartingales. Chapter 10 by Mania and
Tevzadze studies regularity properties of the dynamic value function of the primal and dual
problems of optimal investing for utility functions defined only whole real line. Chapter 11
by Mania and Tevzadze establishes connections between system of Forward and Backward
SDEs and backward stochastic PDEs related to the utility maximization problem.

Editor T. Toronjadze

GAU Business School






OPTIMAL ROBUST MEAN-VARIANCE HEDGING IN INCOMPLETE
FINANCIAL MARKETS

N. LAZRIEVA AND T. TORONJADZE

Abstract. Optimal B-robust estimate is constructed for multidimensional parameter in drift
coefficient of diffusion type process with small noise. Optimal mean-variance robust (opti-
mal V-robust) trading strategy is find to hedge in mean-variance sense the contingent claim
in incomplete financial market with arbitrary information structure and misspecified volatility
of asset price, which is modelled by multidimensional continuous semimartingale. Obtained
results are applied to stochastic volatility model, where the model of latent volatility pro-
cess contains unknown multidimensional parameter in drift coefficient and small parameter in
diffusion term.

Key words and phrases: Stochastic volatility, small diffusion, robust parameter estimate,
optimal mean-variance robust hedging

MSC 2010: 60G22, 62F35, 91B28, 62F35, 62M05, 62M09

1. INTRODUCTION, MOTIVATION AND RESULTS

The hedging and pricing of contingent claims in incomplete financial markets, and dy-
namic portfolio selection problems are important issues in modern theory of finance. These
problems are associated due to the so-called mean-variance approach.

For determining a “good” hedging strategy in incomplete market with arbitrary informa-
tion structure F' = (F )OStST, one riskless asset and d, d > 1, risky assets, whose price
process is a semimartingale X, the mean-variance approach suggests to use the quadratic
criterion to measure the hedging error, i.e. to solve the mean-variance hedging problem in-
troduced by Follmer and Sondermann [10]:

2
T
minimize F H—a:—/ 0.d X, overall 0 € 0O, (1.1)
0

where contingent claim H is a Fp-measurable square-integrable random variable (1.v.), x is
an initial investment, O is a class of admissible trading strategies, 7 is an investment horizon.

The mean-variance formulation by Markowitz [26], provides a foundation for a single
period portfolio selection (see, also Merton [27]). In recent paper of Li and Ng [22] the
concept of Markowitz’s mean-variance formulation for finding the optimal portfolio policy
and determining the efficient frontier in analytical form has been extended to multiperiod
portfolio selection.

Published in J. Math. Sci. (N.Y.) 153 (2008), no. 3, 262-290.
1



2 Optimal Robust Mean-Variance Hedging in Incomplete Financial Markets

As it pointed out in Li and Ng [22] the results on multiperiod mean-variance formula-
tion with one riskless asset can be derived using the results of the mean-variance hedging
formulation.

Therefore, the mean-variance hedging is s powerful approach for both above mentioned
major problems.

The problem (1.1) was intensively investigated in last decade (see, e.g., Dufiie and Richard-
son [9], Schwezer [36], [37], [38], Delbaen et al. [8], Monat and Striker [28], Rheinldnder and
Schweizer [33], (RSch hereafter), Pham et al. [31], Gourieroux et al. [11] (GLP hereafter),
Laurent and Pham [18]).

A stochastic volatility model, proposed by Hull and White [13] and Scott [39], where the
stock price volatility is an random process, is a popular model of incomplete market, where
the mean-variance hedging approach can be used (see, e.g., Laurent and Pham [18], Biagini
et al. [13], Mania and Tevzadze [24], Pham et al. [31]).

Consider the stochastic volatility model described by the following system of SDE

dXt = Xt th, X() > 07
dR; = ui(Ry,Y;) dt + o.dwl, Ry =0,

o; = f(V),
dY; = a(t,Yy; o) dt + edwf, Yy =0,

(1.2)

where w = (w®,w?) is a standard two-dimensional Wiener process, defined on complete
probability space (2, F, P), F* = (F")o<i<r is the P-augmentation of the natural filtra-
tion F¥ = o(ws,0 < s <t),0 <t < T, generated by w, f(-) is a continuous one-to-one
positive locally bounded function (e.g., f(z) = €*), @ = (a1,...,Qm), m > 1, is a vector
of unknown parameters, and €, 0 < € < 1, is a small number. Assume that the system (1.2)
has an unique strong solution.

This model is analogous to the model proposed by Renault and Touzi [32] (RT hereafter).
The principal difference is the presence of small parameter £ in our model, which due to
the assumption that the volatility of randomly fluctuated volatility process is small (see, also
Sircar and Papanicolau [40]). Thus assumption enables us to use the prices of trading options
with short, nearest to the current time value maturities for volatility process filtration and
parameter estimation purposes (see below). In contrast, RT [32] needs to assume that there
exist trading derivatives with any (up to the infinity) maturities.

Important feature of the stochastic volatility models is that volatility process Y is unob-
servable (latent) process. To obtain explicit form of optimal trading strategy full knowledge
of the model of the process Y is necessary and hence one needs to estimate the unknown
parameter & = (a1, ..., Qy), m > 1.

A variety of estimation procedures are used, which involve either direct statistical analysis
of the historical data or the use of implied volatilities extracted from prices of existing traded
derivatives.

For example, one can use the following method based on historical data.

Fix the time variable ¢. From observations X, (), ..., X (), 0 = t(()n) <<t =y,
0 n

t
max [t§'1)1 — t;”)] — 0, as n — 0, calculate the realization of yield process R; = f Ug{ , and
0

J
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then calculate the sum

n—1

Sp(t) = Ry — R wl|?

(t) j;\ i, — By

It is well-known (see, e.g., Lipster and Shiryaev [23]) that

t
Sn(t) 5/ o2ds as n — oo.
0

Since 07 (w) = f(Y) is a continuous process we get

. Ft+Aw) — Ft,w
L

t
where F(t,w) = [ o%(w)ds.
0

Hence, the realization (y¢)o<i<7 of the process Y can be found by the formula y, =
fHo?),0<t<T.

More sofisticated methods using the same idea can be found, e.g., in Chesney et al. [5],
Pastorello [30].

We can use the reconstructed sample path (y;), 0 < ¢ < T. to estimate the unknown
parameter « in the drift coefficient of diffusion process Y.

The second, market price adjusted procedure of reconstruction the sample path of volatil-
ity process Y and parameter estimate was suggested by RT [32], where they used implied
volatility data.

We present a quick review of this method, adapted to our model (1.2).

Suppose that the volatility risk premium A\? = 0, meaning that the risk from the volatility
process is non-compensated (or can be diversified away). Then the price C; (o) of European
call option can be calculated by the Hull and White formula (see, e.g., RT [32]), and Black-
Scholes (BS) implied volatility o*(c) can be found as an unique solution of the equation

Ci(o) = CF¥(a'(0)),

where CB9 (o) denotes the standard BS formula written as a function of the volatility param-
eter o.

Here (for further estimational purposes) only at-the-money options are used.

Under some technical assumptions (see Proposition 5.1 of RT [32], and Bujeux and Rochet
[23] for general diffusion of volatility process)

doi(o, )
80’t

(remember that the drift coefficient of process Y depends on unknown parameter «).

Fix current value of time parameter ¢, 0 < ¢t < T,andlet0 < T} < Tp < --- < Tp_1 <
t < T}, be the maturity times of some traded at-the-money options.

Let O’% be the observations of an implied volatility at the time moments 0 = tj < t] <

~--<t[é]:t,mﬁx[t§+1—t§]—>0,ass—>0.

>0 (1.3)

Then, using (1.3), and solving the equation

U% (O-tj ) Oé) = O.tll‘: )
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one can obtained the realization {Et;} of the volatility (o;), and thus, using the formula

Y = f ~1(52), the realization {ysc } of volatility process (Y;), which can be viewed as the
J

realization of nonlinear AR(1) process:

Y;e

e Y;ﬁj = a(ts, Yt;;a)(t;‘?H —15) + 5(w%+1 —wg).

J

Using the data {ytj} one can construct the MLE &5 of parameter «, see, e.g., Chitashvili
et al. [25], [26], Lazrieva and Toronjadze [19].

Remember the scheme of construction of MLE. Rewrite the previous AR(1) process, using
obvious simple notation, in form

Yia1 = Yy = alt;, Vi o)A + e

Then
0 1 (y—Y; —a(t;, Yi;0)A)?
a*yP{YjJrl §y|Yj}:\/ﬁ€XP (— TN =t pj1(y,Yj;a),
and the log-derivative of the likelihood process ¢; = (EED, cey éim)) is given by the relation
62(57) :Zeﬁp i= 17m7
J
where

G (0) = 5= Mg, Y50) = 55 (0= 5 = alty, Vs ) A)a (1, Vs ) A,

Hence MLE is a solution (under some conditions) of the system of equations

1 Nz .
A Z(ijr] —y; —alty,y;a)A)aD (L, y;0)A =0, i=1,m,
J

where the reconstructed data {y;} = {y:} are substituted).
Following RT [32] let us introduce the functionals

. _ t
HW: ' a5 (p) — (y,f?“), 0<;j< H)
t
MLE. : (y£f+1)7 0<j< LD —az(p+1)
and

¢ = MLE.o HW "

Starting with some constant initial value (or preliminary estimate obtained, e.g., from
historical data) one can compute a sequence of estimates

ai(p+1) =o:(ai(p), p=1

If the operator ¢, is a strong contraction in the neighborhood of the true value of the pa-
rameter o2, for a small enough &, then one can define the estimate &5 as the limits of the
sequence {a5 (p)}p>1. It was proved in RT [32] that &5 is a strong consistent estimate of the
parameter .

Return to our consideration.
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Interpolating on some way the corresponding (to the estimate a5) realization {yt;} we get
the reconstructed continuous sample path (y,)o<s<: of the latent process Y, which can be
used for further analysis.

Unfortunately, both described statistical procedures are highly sensitive w.r.t errors in all
steps of parameter identification process.

Hence, this is a natural place for introducing the robust procedure of parameter estimates.

Suppose that the sample path (ys)o<s<: comes from the observation of process (Y )o<s<t
with distribution P from the shrinking contamination neighborhood of the distribution P

of the basic process Y = (Y;)o<s<¢. That is
dPe
dPs

FP =&(eN*), (1.4

where N = (NZ)o<s<: is a PS-square integrable martingale, £(M) is the Dolean expo-
nential of martingale M.

In the diffusion-type framework (1.4) represents the Huber gross error model (as it explain
in Remark 2.2). The model of type (1.4) of contamination of measures for statistical models
with filtration was suggested by Lazrieva and Toronjadze [20], [21].

In Section 2 we study the problem of construction of robust estimates for contamination
model (1.4).

In subsection 2.1 we give a description of the basic model and definition of consistent
uniformly linear asymptotically normal (CULAN) estimates, connected with the basic model
(Definition 2.1).

In subsection 2.2 we introduce a notion of shrinking contamination neighborhood, de-
scribed in terms of contamination of nominal distribution, which naturally leads to the class
of alternative measures (see (2.18) and (2.19)).

In subsection 2.3 we study the asymptotic behaviour of CULAN estimates under alterna-
tive measures (Proposition 2.2), which is the basis for the formulation of the optimization
problem.

In subsection 2.4 the optimization problem is solved which leads to construction of optimal
B-robust estimate (Theorem 2.1).

Based on the limit theorem (subsection 2.1), one can construct the asymptotic confidence
region of level y for unknown parameter o

. & -2 ke —1 *, K€ —_a") < 2\ 1 _
lim P (e (a— i)V (@0 (@ — o)) £33) = 1-7,

where X% is a quantile of order 1 — ~ of x?-distribution with m degree of freedom, and
V(¢*; «) is given by (2.17).

This region shrinks to the estimate a: oase — 0.

Now if the coefficient a(t, y; «) in (1.2) is such that the solution Y;*(«) of SDE (1.2) is
continuous w.r.t parameter « (see, e.g., Krylov [16]), then the confidence region of parameter
o is mapped to the confidence interval for Y, (c), which shrinks to Y;* = ("), Further,
by the function f, the latter interval is mapped to the confidence interval for oy, which shrinks
to o = f12(Y2(a;°)). Denote 0¥ the center of this interval. Then the interval can be
written in the form

0

g = 0'? + 6(E)ht,
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where §(¢) — 0,as ¢ — 0, and h € H (see (3.18)).

Thus, we arrive at the asset price model (1.2) with misspecified volatility, and it is natural
to consider the problem of construction of the robust trading strategy to hedge a contingent
claim H.

We investigate this problem in the mean-variance setting in Section 3. We consider the
general situation, when the asset price is modelled by d-dimensional continuous semimartin-
gale and the information structure is given by some general filtration.

In subsection 3.1 we give a description of the financial market model.

In subsection 3.2 we collect the facts concerning the variance-optimal equivalent local
martingale measure, which plays a key role in the mean-variance hedging approach.

In last subsection 3.3 we construct “optimal robust hedging strategy” (Theorem 3.1) by
approximating the optimization problem (3.25) by the problem (3.27). As it is mentioned
in Remark 3.2, such approach and term are common in robust statistic theory. In contact
to optimal B-robustness (see Section 2), here we develop the approach, known in robust
statistics as optimal V' -robustness, see Hampel et al. [12].

Note that our approach allows incorporating current information on the underlying model,
and hence is adaptive. Namely, passing from time value ¢ to t+7, 7 > 0, when more informa-
tion about market prices are available, the asymptotic variance-covariance of the constructed
estimate o’ becomes smaller, and hence the estimation procedure becomes more precise.

In the paper of Runggaldier and Zaccaria [35] the adaptive approach to risk management
under general uncertainty (restricted information) was developed. As it is mentioned in this
paper there exist a series of investigations dealt with various type of adaptive approaches (see
list of references in [35]). But in all these papers (except Runggaldier and Zaccaria [35]) the
uncertainty is only in the stock appreciation rate in contrast to our consideration, where the
model misspecification is due to the volatility parameter.

The consideration of misspecified asset price models was initiated by Avellaneda et al.
[1], Avellaneda and Paras [2].

Various authors in different settings attacked the robustness problem. The method used
in Section 3 was suggested by Toronjadze [41] for asset price process modelled by the one-
dimensional process. As it will be shown in Remark 3.2 below, in simplest case when asset
price process is a martingale w.r.t initial measure P, and it is possible to find the solution of
“exact” optimization problem (3.25), this solution coincides with the solution of an approx-
imating optimization problem (3.27). In more general situation (when asset price process
is not more the P-martingale) investigation of the problem (3.25) by, e.g., control theory
methods seems sufficiently difficult. Anyway, we do not know the solution of the problem
(3.25).

Return to the stochastic volatility model (1.2) and describe successive steps of our ap-
proach:

1) For each current time value ¢, 0 < ¢ < T', reconstruct the sample path (ys)o<s<¢, using
the historical data or the tradable derivatives prices;

2) Using the approach developed in Section 2, calculate the value ;" of the robust esti-
mate of parameter « (i.e. construct the deterministic function t — oz;k © € R™) and then find
the confidence region for parameter «;

3) Based on the volatility process model find the confidence interval for Y;(«);
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4) Denoting a*(t,y) = a(t,y;a;), where a(t,y; ) is a drift coefficient of volatility
process, consider the stochastic volatility model with misspecified asset price model and fully
specified volatility process model

dXt = Xt th, Xo > O,
dR; = (69 + 8(e)hy)dM?, Ry =0,
dY; =a*(t,Y2)dt + edwy, Yp=0, 0<t<T,

where
dM? = k; dt + dw,

h € H and o is the center of the confidence interval of volatility.
Using Theorem 3.1 construct the optimal robust hedging strategy by the formula (3.44),

1
0 = o5 [t G - ity U

where all objects are defined in Theorem 3.1. (]

It should be mentioned that if one constructs a hedging strategy gf by the above-given
formula with 0;°° = f1/2(Y# (%)) instead of ¢?, then the strategies §; and 6} would be
different, since o, "° # o2, in general. Hence the value A; = |0} *° —0? | defines the correction
term between the robust, §; and non-robust, 0* strategies.

In nontrivial case, when k; = k(Y;) the variance-optimal martingale measure Pis given
by (3.17), ¢; = —ki&(—k - M?) (see subsection 3.2), and the process (X, Y;)o<i<r is the
Markov process. If H = h(Xy, Yr) (h(x,y) is some function), then V;# = Eﬁ(H|]:§”) =
EP (WX, Y7)|F¥) = v(t, X7, Yr) and if, e.g., v(t,z,y) € C122, then v is an unique
solution of the following partial differential equation

Ov Lo 1, 0% 2 2 0%V
E—i-a 3y+2(5 — +tzv° = | =0,

with the boundary condition v(T', z,t) = h(x,y). More general situation with nonsmooth v
is considered in Laurent and Pham [18], Mania and Tevzadze [24].
Further, one can find the Galtchouck—Kunita—Watanabe decomposition of r.v. H (see, e.g.,
Pham et al. [31]) putting
X4, Y, T
g = e gt e [ 2 X Y dut,
and calculate /7, L and V;* using (4.13) and (4.14) of RSch [33].

Thus one get the explicit solution of the mean-variance hedging problem.

Finally, here is the short summary of approach:

a) Incorporate the robust procedure in statistical analysis of volatility process. That is
construct and use in the model optimal B-robust estimate of unknown parameter in drift
coefficient of volatility process.

Parameter estimation naturally leads to the asset price model misspecification.

b) Incorporate the second robust procedure in financial analysis of contingent claim hedg-
ing. That is construct and use for hedging purposes optimal V -robust trading strategy.
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In our opinion this “double robust” strategy should be more attractive to protect the hedger
against the possible errors.

The general asymptotic theory of estimation can be found in Ibragimov and Khas’miskii
[14]; the theory of robust statistics is developed in Hampel et al. [12] and in Rieder [34]; the
theory of the trend parameter estimates for diffusion process with small noise is developed
in Kutoyants [17]; the book of Musiela and Rutkowsky [29] is devoted to the mathematical
theory of finance and finally, the general theory of martingales can be found in Jacod and
Shiryaev [15].

2. OPTIMAL B-ROBUST ESTIMATES

2.1. Basic model. CULAN estimates. The basic model of observations is described by the
SDE
dYs =a(s,Y;a)ds +edws, Yo=0, 0<s<t, (2.1)

where ¢ is a fixed number, w = (w;)o<s<¢ is a standard Wiener process defined on the
filtered probability space (Q, F,F = (Fs)o<s<t, P) satisfying the usual conditions, o =
(a1,...,a4,), m > 1, is an unknown parameter to be estimated, « € A C R™, A is an
open subset of R™, ¢, 0 < € < 1, is a small parameter (index of series). In our further
considerations all limits correspond to € — 0.

Denote (C:,B;) a measurable space of continuous on [0,¢] functions
x = (Ts)o<s<t With o-algebra B, = o(z : 5,5 < t). Put Bs = o(x : 2y, u < 5).

Assume that for each o € A the drift coefficients a(s,z;a), 0 < s < ¢,z € Cyis a
known nonanticipative (i.e. Bs-measurable for each s, 0 < s < t) functional satisfying the
functional Lipshitz and linear growth conditions L:

S
la(s, z'; ) — a(s, 2% )| §L1/ |zl — 22| dky + Lo|z! — 22,
0

als,i)| < Lu [ (14 Lol diy + La(1 + 2],
0

where L, and Ly are constants, which do not depend on «, k = (k(s))o<s<¢ is a non-
decreasing right-continuous function, 0 < k(s) < ko, 0 : ko < oo, 2t 2? € C,.

Then, as it is well-known (see, e.g., Liptser and Shiryaev [23]), for each @ € A the
equation (2.1) has an unique strong solution Y¢(a) = (Y (a))o<s<¢. and in addition (see
Kutoyants [17])

sup |Ys(a) = Y (e)| < Ce sup |ws| P-as,
0<s<t 0<s<t
with some constant C' = C(Ly, L2, ko, t), where Y(a) = (Y?())o<s< is the solution of
the following nonperturbated differential equation

dYs =a(s,Y;a)ds, Yy =0. (2.2)

Change the initial problem of estimation of parameter a by the equivalent one, when the
observations are modelled according to the following SDE

dXs = ac(s, X;0a)ds + dws, X =0, (2.3)

where a. (s, z; ) = %a(s,ex;a), 0<s<t,xeC,acA



Stochastic Analysis: Applications to Statistics and Finance 9

It is clear that if X°(o) = (X5())o<s<t is the solution of SDE (2.3), then for each
s€0,t] eX:(a) = YE(w).

Denote by PZ the distribution of process X¢(«) on the space (Cy, By), i.e. PS is the
probability measure on (Cy, BB;) induced by the process X°(«). Let P* be a Wiener measure
on (Cy, B;). Denote X = (X;)o<s<: a coordinate process on (Cy, B;), that is X (z) = s,
r e Ch.

The conditions L guarantee that for each a € A the measures P and P" are equivalent
(P5 ~ Pv), and if we denote 25" = |B the density process (likelihood ratio process),
then

235 X) = Es(ae(a) - X) == exp{/ ae(u,X;a)qu—%/ a?(u,X;a)du}.
0 0

Introduce class ¥ of R™-valued nonanticipative functionals ), ¢ : [0,¢] x Cy x A — R™
such that for each « € Aand e > 0

de

t
E;/ [ (s, X;a)|*ds < oo, (2.4)
/ [v(s, YO(); a)2ds < oo, (2.5)
3) uniformly in & on each compact K C A
¢
P:—lim [ |[¢(s,eX;0) — (s, YO(a);a)?ds = 0, (2.6)
e—=0 Jo

where | - | is an Euclidean norm in R™, PS — lir% (e = ¢ denotes the convergence PS{|(. —
e—r

¢| >p}t—0,ase — 0, forall p, p > 0.

Assume that for each s € [0,t] and 2 € C; the functional a(s, z; a) is differentiable in «
and gradient @ = ( a) belongs to W (a € W), where the sign /" denoted a
transposition.

Then the Fisher information process

0 _0_
Bar B0 B

IE(X;a) = / ae(u, X5 ) ae (u, X;a))du, 0<s<t,
0

is well-defined and, moreover, uniformly in o on each compact

e _ 1 27e _ 70

P gg%s I (o) = I («), 2.7
where ,
%) = / a(s,Y°(a); a)a(s, YO (a); a) ds.
0

For each v € W, introduce the functional ¢ (s, x; @) := é ¥(s, ex; ) and matrices I'Y ()
and v o

I'Y(X;a) = /t e (s, X5 a) (s, X; o)) ds, (2.8)
0

¢
7(X; ) ::/ e (s, X5 a)|as(s, X; o)) ds. (2.9)
0
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Then from (2.6) it follows that uniformly in « on each compact

P; — lim ¥ (a) = I (w), (2.10)
Pg = lim e%72 () = 7' (a), 2.11)
where the matrices Fg(oz) and *yg’ () are defined as follows
t
% (a) ::/ W(s, YO(a); a) (s, YO(a); )] ds, 2.12)
0
t
Y (a) = / U(s,YO(a); )]s, YO(a); o)) ds. (2.13)
0

Note that,by virtue of (2.4), (2.5) and a € ¥, matrices given by (2.8), (2.9), (2.12) and
(2.13) are well-defined.

Denote U the subset of W such that for each i) € ¥ and o € A, rank Fff(oz) = m and
rank v () = m.

Assume that a € V.

For each 3 € W, define a P:-square integrable martingale LY<(a) =
(LY#(a))o<s<t as follows

L?’E(X;oz) = /S Ve (u, X; ) (dX,, — ae(u, X;a) du). (2.14)
0

Now we give a definition of CULAN M -estimates.
Definition 2.1. An estimate (o))~ = (a'ﬂf, . af;i)’oo, b € Wy, is called consistent
uniformly lineal asymptotically normal (CULAN) if it admits the following expansion

af”e =a+ [781)(&)]*152[12&’5(&) + ry (), (2.15)
where uniformly in o on each compact
E_ N -1 —_
P ilg(l) e ry () =0. (2.16)
Itis well-known (see Lazrieva, Toronjadze [19]) that under the above conditions uniformly
in o on each compact

L{e M af" =) | P} 5 N(0,V(¢sa)),

with

V(i) = [y (@] 7Ty (@) (b ()] 71 (2.17)
where £(¢|P) denotes the distribution of random vector ¢ calculated under measure P, sym-
bol «B denotes the weak convergence of measures,

N(0,V (3;«)) is a distribution of Gaussian vector with zero mean and covariance matrix
V(¥ a).

Remark 2.1. In context of diffusion type processes the M -estimate (ozf’s) e>0 1s defined as a
solution of the following stochastic equation

Ly (X;0) =0,
where LY°(X; a) is defined by (2.14), ¢ € Wy,
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The asymptotic theory of M -estimates for general statistical models with filtration is de-
veloped in Chitashvili et al. [7]. Namely, the problem of existence and global behaviour of
solutions is studied. In particular, the conditions of regularity and ergodicity type are estab-
lished, under which M -estimates have a CULAN property.

For our model, in case when .A = R™, the sufficient conditions for CULAN property take
the form:

(1) for all s, 0 < s < t, and z € C} the functionals ¥ (s, z; ) and a(s, x; ) are twice
continuously differentiable in o with bounded derivatives satisfying the functional Lipshitz
conditions with constants, which do not depend on «.

(2) the equation (w.r.t i)

Alony) = / (s, Y ();y)(als, YO(); @) — a(s, YO(a):y)) ds = 0,

has an unique solution y = «.
The MLE is a special case of M -estimates when 1) = a.

Remark 2.2. According to (2.7) the asymptotic covariance matrix of MLE (a5 ).~ is [Io(a)] L.
By the usual technique one can show that for each o € A and ¢ € Wy, I; (o) < V (¥, )
(see (2.17)), where for two symmetric matrices B and C' the relation B < C means that the
mattix C' — B is nonnegative definite.

Thus, the MLE has a minimal covariance matrix among all M -estimates.

2.2. Shrinking contamination neighborhoods. In this subsection we give a notion of a
contamination of the basic model (2.3), described in terms of shrinking neighborhoods of
basic measures { P, « € A, £ > 0}, which is an analog of the Huber gross error model (see,
e.g., Hampel et.al. [12] and also, Remark 2.3 below).

Let H be a family of bounded nonanticipative functionals h : [0,#] x C;y x A — R!
such that for all s € [0,¢] and o € A the functional h(s,z;«) is continuous at the point
o =Y%(a).

Let foreach h € H, a € Aand € > 0, PS" be a measure on (Cy, B;) such that

1) Py~ P

apy" h
2 gpe = &N, (2.18)
where ,
3) Nt ::/ hs(u, X5 ) (dXy, — ac(u, X; ) du), (2.19)
0

with he (s, z; ) 1= éh(s,sx;a), 0<s<t,xzelC.
Denote P%* a class of measures PS", h € H, that is
PEH — (P2t he ).

We call (P£;%).~. a shrinking contamination neighborhoods of the basic measures (P2).~0,
and the element (P5"").- of these neighborhoods is called alternative measure (or simply
alternative).
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Obviously for each b € H and « € A, the process N5 = (N5")o< < defined by (2.19)
is a P;-square integrable martingale. Since under measure P; the process W = (Ws)o<s<t
defined as

Es::Xs—/ ac(u, X;a)du, 0<s<t,
0

is a Wiener process, then by virtue of the Girsanov Theorem the process @ := w+ (w, e N5")
is a Wiener process under changed measure P<"*. But by the definition

@y = X, — / (ae(u, X; @) + ehe(u, X; ) du,
0

and hence, one can conclude that PS" is a weak solution of SDE
dXs = (ac(s, X;a) + ehe(s, X;a))ds + dws, Xo=0.
This SDE can be viewed as a “small” perturbation of the basic model (2.3).

Remark 2.3. 1) In the case of i.i.d. observations X1, Xo,...,X,, n > 1, the Huber gross
error model in shrinking setting is defined as follows

fri(@sa) = (1 en) f(25.0) + enh(z; ),

where f(x;«) is a basic (core) density of distribution of r.v. X; (w.r.t some dominating
measure /1), h(x; ) is a contaminating density, f™"(z; «) is a contaminated density, ¢,, =
O(n~'/2). If we denote by P™ and P™" the measures on (R"™, B(R")), generated by f(x; a)
and f™"(x; ), respectively, then

dPrt L (X )

aPy Lt f(Xia)

= [[Q +enH(Xi;0)) = Enlen - NI,
i=1
where H = =1

AL NEt = (NZh ) 1<mens Nt = 32 H(Xi5a), N2 is a Pl-martingale,

oF

=1

Enlen NP = T1(1 + e, AN h) is the Dolean exponential in discrete time case.

Thus =
d Pn h
dpP?
and the relation (2.18) is a direct analog of (2.20).
2) The concept of shrinking contamination neighborhoods, expressed in the form of (2.18)
was proposed in Lazrieva and Toronjadze [20] for more general situation, concerning with
the contamination areas for semimartingale statistical models with filtration. U

= E(en - N™™™), (2.20)

Note here that the power of the small parameter ¢ is crucial. One cannot consider the
perturbation of measure with different power of ¢ if he/she wish to get nontrivial result.

In the remainder of this subsection we study the asymptotic properties of CULAN esti-
mates under alternatives.

For this aim we first consider the problem of contiguity of measures (P5") .~ to (PS).>0.

Let (£n)n>1,€n 4 0, and (o )p>1, o € K, K C Ais a compact, be arbitrary sequences.
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Proposition 2.1. For each h € H the sequence of measures (P§Z7h) is contiguous to se-
quence of measures (P5"), i.e.
(Par™) < (Pan).

Qn

Proof. From the predictable criteria of contiguity (see, e.g., Jacod and Shiryaev [15]), follows
that we have to verify the relation

1
im limsup PS"" {h? <2> > N} =0, (2.21)

|
N—oo pnooo

where h"(3) = (hZ(%))o<s< is the Hellinger process of order 3.
By the definition of Hellinger process (see, e.g., Jacod and Shiryaev [15]) we have

o (LY —pe (L peen pen) 21 t[h( X:an))d
t 9]~ t 9 tan oy 78 o S, EpA;Qp S,

and since h € H, and hence is bounded, h?(%) is bounded too, which provides (2.21). O

Proposition 2.2. For each estimate (™).~ with ¢ € U and each alternative (P") .o €
(P~ the following relation holds true

c{eM s —a) | P} 5 N (18 (@) 70, hs ), V(,a))
where

b(1, h; a) ::/0 (s, YO (a);a)h(s, YO(a); @) ds.

Proof. Proposition 2.1 together with (2.16) provides that uniformly in v on each compact
eh _ 11 -1 _
P ili%s ry.e(a) =0,
and therefore we have to establish the limit distribution of random vector [y) ()]~ ‘e L{*
under the measures (P5")_<.

By virtue of the Girsanov Theorem the process L¥¢(a) = (LY°())o<s<; is a semi-
martingale with canonical decomposition

LY (o) = LY%(a) + bes(v, hsa), 0<s<t, (2.22)

where LV () = (L¥* (@))o<s<t is a PS-square integrable martingales defined as follows
LY (X a) ::/ e (u, X; ) (dXy — (ae(u, X; @) + ehe(u, X; ) du,
0

and

S
b6,8(¢7 h; Oé) = 5/ '@[Js(uﬂ X; a)he(u> X; a) du.
0
But (L¥(a)); = I'¥(a), where I'¥(a) is defined by (2.8). On the other hand, from
Proposition 2.1 and (2.10) it follows that
eh _ 1; Te _ psh _ 7 21 _ pe _ 7 27 _ 1Y
Pa gl_l’)r(l)<EL (a)>t Pa gl_l’)r(l)&f Fs (a) Pa gl_r}'(l)éf Fs (0[) FO (a)

uniformly in o on each compact, and hence

£{ by @) el (@) | P} 5 N0,V (w50). (2.23)
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Finally, relation (2.23) together with (2.22) and relation

t
Pyt — lim ebe ¢ (¢, h; ) = / U(s, YO (a);a)h(s, Y (a); ) ds = b(y), b ),
0
provides the desirable results. U

2.3. Optimization criteria. Construction of optimal B-robust estimates. In this subsec-
tion we state and solve an optimization problem, which results in construction of optimal
B-robust estimate. _

Initially, it should be stressed that the bias vector b(¢, h;a) := [vg’ ()]t x

b(1, h; ) can be viewed as the influence functional of the estimate (ai/”g)wo w.r.t. alter-
native (P¥"").~0.
Indeed, the expansion (2.15) together with (2.22) and (2.23) allows to conclude that
cfe M@l = a = h @) b (v, hsa)) | PE" | NO,V(6,0)),
and, hence, the expression
a+ 2y ()] e (v, s @) — a = 2[5 (@)] b (9, hi ),
plays the role of bias on the “fixed step £” and it seems natural to interpret the limit

P i @200 ()] b (¥, i) — o

e—0 e

= [y ()] 70, s ),

as the influence functional.

For each estimate (af”s)wo, 1 € Wy, define the risk functional w.r.t. alternative (P5") ..,

h € H, as follows:
D, h;a) = lim lim ES" ((5_2\04?5 —al?) A a) )

a—00 e—0

where z A @ = min(x, a), a > 0, ES" is an expectation w.r.t. measure P:".
Using Proposition 2.2 it is not hard to verify that

D, b; ) = [b(t), b; ) ? + tr V(1, ),

where tr A denotes the trace of matrix A.
By Proposition 2.2

e al — ) & N, h;a), V(i a)),

d o e . =
where % denotes the convergence by distribution (by distribution PS" in our case), N (b, V)
is a Gaussian random vector with mean b and covariation matrix V.

Butif &€ = (£1,...,&,)" is a Gaussian vector with parameters (1, 02), then
BIg* =Y Bel =) (B&)* + ) D& = |ul* + tro?,
i=1 i=1 i=1

as it was required.
Connect with each ) € ¥ the function v as follows

J(s,x;a) = [fyg(a)]_lw(s,x;a), 0<s<t, ze€C; acA
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Then 1:/; € ¥y and
%1)/; (o) = Id,
where Id is an unit matrix,

V(a) = V(i a) =T (a), b, h;a) = b, h;a) = b, h; ).
Therefore B
D(, h; @) = D(¥, hy @) = [b(ih, h; a)|? + tr T (a). (2.24)
Denote H.., a set of functions h € H such that for each « € A

t
/ Ih(s, YO(a); )| ds < 7,
0

where r, » > 0, is a constant.
Since, for each » > 0,
7 it 0
sup |b(¢¥, h; )| < const(r) sup |P(s,Y"(a); a)l,
hEH, 0<s<t
where constant depends on 7, we call the function 1Z an influence function of estimate (aff”a)wo
and a quantity

vi(a) = sup [(s, Y (a);a)l
0<s<t

is named as the (unstandardized) gross error sensitivity at point « of estimate (aip’e)oo.
Define

t
Vo, = {w €y : / (s, Y (a);a)a(s, YO (a); o)) ds = Id, (2.25)
0

Yila) < } (2.26)

where ¢ € [0, 00) is a generic constant.

Take into account the expression (2.24) for the risk functional we come to the following
optimization problem, known in robust estimation theory as Hampel’s optimization problem:
minimize the trace of the asymptotic covariance matrix of estimate (a?’a)wo over the class

Wy ., that is
t
minimize / (s, Y (a);a)[Y(s, YO (); )] ds (2.27)
0

under the side conditions (2.25) and (2.26).
Define the Huber function h.(z), z € R™, ¢ > 0, as follows

he(2) := 2 min <1, |Z|) .

For arbitrary nondegenerate matrix A denote ¥ = h.(Aa).

Theorem 2.1. Assume that for given constant c there exists a nondegenerate m X m-matrix

A% (), which solves the equation (w.r.t. matrix A)

t
(s, YOa); o) [a(s, YOa); o)) ds = Id. (2.28)
0
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Then the function wé“ﬁ(a) = h(A%(a)a) solves the optimization problem (2.27).

Proof. We follow Hampel et al. [12].
Let A be an arbitrary m x m-matrix.
Since for each ¢ € Wy ., [¥(a)’ = Id, [ala)’ = I°(c) (see (2.7)), then

/(1/) — Aa)(y — Aa) = /W/ —A— A+ AI%(a) A

(here and below we use simple evident notation for integrals).
Therefore since the trace is an additive functional instead of minimizing of tr [ 1y’ we
can minimize

e [(w - Ay~ Aa) = [ v - AaP
Note that for each z
arg min |z — y|? = he(2).
lyl<c

Indeed, it is evident that minimizing y has the form y = 5z, where 3, 0 < 8 < 1, is constant.
Then
: 2 . 212
min |z — = min (1 — 8)°|z]*.
min [ ~3f” = poin (1~ )7/
Thus we have to find
c
arg min (1 — Q:min(L—)
g min (1-6) "

= Izl

But last relation is trivially satisfied. Hence the minimizing y* =z min(1, é) and

arg min | — Aa|? = h.(A4a).
g i [0 — Adf? = he(44)

From the other side,

|2?
|hc(z)\2 = |Z|21{|z|§c} + W c? I(|z|20) < .
Hence
|he(2)| < ¢ forall z

and therefore h.(Aa) satisfies the condition (2.26) for each A.

Now it is evident that a function h.(Aa) minimizes the expression under integral sign, and
hence the integral itself over all functions 1) € ¥ satisfying (2.26).

At the same time the condition (2.25), generally speaking, can be violated. But, since a
matrix A is arbitrary, we can choose A = A*(«) from (2.28) which, of course, guarantees

the validity of (2.25) for ¢ = yie (). .

As we have seen the resulting optimal influence functions v is defined along the process
Y?(a) = (Y())o<s<t, which is a solution of equation (2.2).

But for constructing optimal estimate we need a function (s, z; «) defined on whole
space [0,1] x Cy x A.

For this purpose define ¢} (s, z; «) as follows;

Wr (s, m50) = Y@ (s,250) = he(AZ(@)a(s, ; ), (2.29)
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and as usual ¢} (s, x;0) = L4k (s,e250),0< s < t,x € Cr,a € A

Definition 2.2. We say that ¢ (s,z; ), 0 < s < t,z € C;, o € A, is an influence function
of optimal B-robust estimate (a;“).~0 = (af}c ")eso over the class of CULAN estimates
(¥ ) es0, Y € U, ., if the matrix A*(«) is differentiable in c.

From (2.9), (2.11), (2.28) and (2.29) it directly follows that

’Y(‘)p: (a) = P£ — lim 527;% (a) = /o (s, Ya);a)(a(s, YO ();a)) ds = Id.

« eto0
Besides, for each alternative (Pg’h)g <0, h € H, according to the Proposition 2.2 we have
L{e oy —a) | P} S NOW: hia), V(i;a)) as e — 0,
where

b(¢:7h;a):/0 Vs, Y(a);a)h(s, YO(a); o) ds,

and V(¥ a) = T (a).
Hence, the risk functional for estimate ()<~ is
D hia) = [b(wl hio)* + Tg", he,
and the (unstandardized) gross error sensitivity of (" )c~0 is

Yy (@) = sup [9i(s,Y%a);a)| <c
0<s<t

From above reasons, we may conclude that (o).~ is the optimal B-robust estimate
over the class of estimates (ozf”g)oo, 1 € ¥y in the following sense: the trace of asymp-

totic covariance matrix of (). is minimal among all estimates (o)) .~ with bounded

by constant gross error sensitivity, that is
TV () <T¥(a) forall ¢ € Vy,. O

Note that for each estimate (o)*).~¢ and alternatives (P5").s0, h € H, the influence
functional is bounded by const(r) - c. Indeed, we have for ¢ € ¥ .,

sup |b(¢, h; )| < const(r) - ¢ := C(r,c),
heH,

and since from (2.24)

inf  sup D(¢,h;a) < 02(7“7 c) +trI’g}:‘ (@),
PEYq ¢ hEH,

we can choose “optimal level” of truncation, minimizing the expression
C?*(r,c) + tr Fg}“ (@)

over all constants ¢, for which the equation (2.28) has a solution A%(«). This can be done
using the numerical methods.

For the problem of existence and uniqueness of solution of equation (2.28) we address to
Rieder [34].
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In the case of one-dimensional parameter « (i.e. m = 1) the optimal level c* of truncation
is given as an unique solution of the following equation (see Lazrieva and Toronjadze [20],

[21])
Tzczf tdS)OOé'a ¢ as 00['0&(157 t ds)oa'a ¢ 2 S
A [ ( ) ( )’ )}—c ( )Y ( )’ ) /0 ([ ( ) ( )7 )]—c) ds,

b:

where [z]

(x A b) V @ and the resulting function
V¥ (s, ;) = [als, x; )] 0<s<t, zeC,

—c*»
is (¥, H,-) optimal in the following minimax sense:

sup D(¢*, h;a) = inf sup D(3, h; a).
hEH, VEY heH,

3. OPTIMAL MEAN-VARIANCE ROBUST HEDGING

3.1. A financial market model. Let (0, F, F = (F;)o<i<7, P) be a filtered probability
space with filtration F' satisfying the usual conditions, where T € (0, 00| is a fixed time
horizon. Assume that Fj is a trivial and Fpr = F.

There exist d + 1, d > 1 primitive assets: one bound, whose price process is assumed to
be 1 at all times and d risky assets (stocks), whose R%-valued price process X = (X;)o<i<T
is a continuous semimartingale given by the relation:

dXt = dlag(Xt) th, XO > 0, (31)

where diag(X) denotes the diagonal d x d-matrix with diagonal elements X, ..., X%, and
the yield process R = (R;)o<i<7 is @ R?-valued continuous semimartingale satisfying the
stricture condition (SC). That is (see Schweizer [37])

dRy = d{(M);\ +dM,, Ry =0, (3.2)
where M = (M,)o<i<7 is a R%-valued continuous martingale, M € MG 1e(P), X =

()\t)ogth is a F'-predictable R%-valued process, and the mean-variance tradeoff (MVT)
process K = (Ky)o<i<r of process R

t
K, = / NA(V) Ay = (N - ), < 00 P-as., te[0,T). (33)
0

Remark 3.1. Remember that all vectors are assumed to be column vectors.
Suppose that the martingale M has the form
M=0c-M, (3.4)
where M = (M;)o<i<r is a R%valued continuous martingale, M € Mg,  (P) with
d{M?* M), = IngddC’t, I9%4 is the identity matrix, C' = (Cy)o<;<7 is a continuous in-
creasing bounded process with Cy = 0.

Further, let o = (0¢)o<¢<7 is a dxd-matrix valued, F-predictable process with rank(o;) =
d for any ¢, P-a.s., the process (Ofl)ogth is locally bounded, and

T
/ oy d{M)0o; < 0o P-a.s. (3.5)
0
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Assume now that the following condition be satisfied:
There exist fixed R?-valued, F-predictable process k = (k;)o<¢< such that

A= M\o) = (o) k. (3.6)
In the case from (3.2) we get
dR; = d(M)¢X, + dM,; = o4d(M),0 (o)) ke + odM,
= oy (d(M)ky + dMy), (3.7)

and
t _ t .
g, = / Nd(M) oA, = / K (o))" ord(M),0)(0}) e
0 0

t
:/ KLA(M)oky = (k- M)y = K.
0

From (3.3) we have

Ki < oo P-as. forall te0,T]. (3.8)
Thus, of we introduce the process M® = (M?)o<;<7 by the relarion
dM = d{M)k; + dM;, M =0, (3.9)

then the MVT process K = (K;)o<t< of R%-valued semimartingale M is finite, and hence
MPO satisfies SC.
Finally, the scheme (3.1), (3.2), (3.4), (3.6) and (3.9) can be rewritten in the following
form
dXt = dlag(Xt) th, X() > 0,
dR; = oy dMy, Ry =0, (3.10)
dMy = d(M)ik; + dM;, My =0,

where ¢ and k satisfy (3.5) and (3.8), respectively.
This is our financial market model.

3.2. Characterization of variance-optimal ELMM (equivalent local martingale mea-
sure). A key role in mean-variance hedging plays variance-optimal ELMM (see, e.g., RSch
[33], GLP [11]). Here we collect some facts characterizing this measure.

We start with remark that the sets ELMM s for processes X, R and M" form (3.10) coin-
cide. Hence we can and will consider the simplest process M.

Introduce the notation

d
5= {Q ~P: £ € L*(P), M" isaQ-local martingale},

and suppose that
(c.1) MS§ # 2.
The solution P of the optimization problem

EEEL(MP) — ot
2

is called variance-optimal ELMM.
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Here
dQ
dP |7y
and (&;(M®))g<¢<7 is the Dolean exponential of martingale M <.
It is well-known (see, e.g., Schweizer [37], [38]) that under condition (c.1) variance-
optimal ELMM P exist.
Denote

= Er(MQ9),

_dP
Zp = ——
= arlz
and introduce RCLL process z = (Z;)o<¢<7 by the relation
%, =EPGr/Fr), 0<t<T.
Then, by Schweizer [37], [38]

T
Ir=7% +/ ¢ dMy, (3.11)
0

where ¢ = ((;)o<t<T is the R?-valued F-predictable process with
T
/ G (M) < 00,
0

o<t<T 182 P-martingale.

t

and the process ( [ (LdM?)
0

Relation (3.11) easily implies that the process z is actually continuous.

Suppose, in addition to (c.1), that the following condition is satisfied:
(c.*) all P-local martingales are continuous.

This technical assumption is satisfied in stochastic volatility models, where ' = F' is
the natural filtration generated by the Wiener process.

It shown in Mania and Tevzadze [34], Mania et al. [25] that under conditions (c.1) and
(c*) density z7 of variance optimal ELMM is uniquely characterized by the relation

> Er(lp—k) - M)

= 3.12
T E(S‘T((QD—]C)/MO) 9 ( )
where ¢ together with the pair (L, ¢) is the unique solution of the following equation
& —2k) - M
e 22K M) _ oo gy, (3.13)

Er(L)

where L € M ,.(P), (L, M) = 0, cis a constant.
Moreover, the process ( = (;)o<i<7 from (3.11) has the form

G = (e — k) &ul(0 = k) - MP). (3.14)
Here ¢ = (¢1)o<t<T is @ R%-valued, F-predictable process with
T
/ @y (M) 1y < 00.
0

Let 7 be F'-stopping time.
Denote (k' - M)yp, = (k' - M)r — (k' - M) .
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Proposition 3.1 (see also Biagini et al. [3], LLaurent and Pham [18]).
1. Equation (3.13) is equivalent to equation
Er(¢’ - M*) (kM)
— 0~ =ce T, (3.15)
Er(L)
where the R%-valued process M* = (M )o<i< is given by the relation
dM; = 2d{M) ks + dM,, Mg =0.
2. a) If there exists the martingale m = (my)o<i<r, M € ./\/l0 loe (P) such that
e FMr — o fmp (m, M) =0, (3.16)
T
then o = 0and Ly = [ —2 o, dms solve the equation (3.15).
0
In this case ) o
~ Er(—k - M?)
= 3.17
T EgT(_k, : MO) ) ( )

process ¢ = (Ci)o<i<r from (3.11) is equal to
G = —ki& (=K - M),

5[(2) /7] = ey

and

T
b) If there exist R*-valued F-predictable process { = ({;)o<i<T, [ d(M)l, < oo and
0

T
ek M) c+/ G dMy,
0

then L = 0 and ¢, =

In this case

WW solve the equation (3.15).

Zr = Ep(=k' - M) (:=Zr, the density of minimal martingale measure 13),

and

P((2) /7)o

where dP* = Ep(—2k' - M)dP.
Proof. 1. By the Yor formula
Er(p—2k) -M)=Er(' - M —2k" - M)

5T<¢’.<M+2/0 >2/¢f kt2k’~M>
)

=&r(¢' - M*)Er( M),

and
E2(—K - M) = Ep(=2k" - M)elk Mt
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Assertion follows.
2. a) Note at first that (L, M) = 0. Further, by the formula we can write

et —tne= [ L [
c+my c= o m Mg 2 ), e m)? m)s.

eln(c+mT)—ln c_ gT(L)7

Hence

and thus

c+mp e WM

Finally, by the Bayes rule and the Girasnov Theorem

\? /. _ E(Er(=2K - M)e~ M7 /F )
3 ((Z) /F> T BAEr(—K - M)e W1 F,)

C

_ E*(c+mp/F)E2(—kK - M) __ctmyg kM),
(E(c+m, [ F,))2E2(—2k - M)  (c+m:)?
1
- E(eK - M)rs ) Fr)
The proof of case 2 b) is quite analogous. O

3.3. Misspecified asset price model and robust hedging. Denote by Ball;(0,7), r €
[0, 00) the closed r-radius ball in the space L = Lo (dt x dP), with the center at the origin,
and let

H = {h = {hy;}, i,j = 1,d : his F-predictable d x d-matrix
valued process, rank(h) =d, h;; € Ball(0,7), r € [0,00)}. (3.18)

Class H is called the class of alternatives.

Fix the value of small parameter § > 0, as well as d X d-matrix valued, F-predictable
process 0 = (0 Jo<i<r = ({09;,}, 1 < 4,j < d); such that |of; ,| < const, Vi, j,t, the
matrix (0°)2 = 0%(¢) is uniformly elliptic, i.e. for each vector v; = (v}, ...,v{) with
probability 1

d d
> (@3 il = e i, e>0, 0<t<T, (3.19)
i,j=1 i=1

and denote
As={0:0=0"+6h, hcH} (3.20)

Proposition 3.2. Every o from the class As for sufficiently small § is F-predictable d x d-
valued process with bounded elements and the matrix 02> = oo’ is uniformly elliptic.

Proof. The process o is F'-predictable as linear combination of F'-predictable processes. Fur-
ther,

|03j.t] = |of;. + Ohije| < const+dr, 0<d< 1.
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From (3.19) and (3.20) for each vector v; = (v}, ..., v{) we have
> (0)ijavivi = Y (0% + 6)(0° + 6h)j; wivi
,j=1 ,j=1
=D (0N )igavivi +6 Y (0°W)iyvivi
ij=1 ij=1
+6>  (h(0®))ijavivi + 62 (hh)ijavivi. (3.21)
i,j=1 1,5=1

Note now that the elements of matrices ¢° and h are bounded. Hence choosing & suffi-
ciently small we get

max (6](a°")iji¢l, 6|(h(0°))ijiel, 62 [(RR)ije]) <

Wl ™

Therefore from (3.19) and (3.21) we get
d ' d
Z o} vivi > (¢ — const - €) Z |vj|* foreache > 0.
i,j=1 i,j=1

Proposition is proved. O

Consider the set of processes {R? (or X7), 0 € As}, which represents the misspecified
of asset price model.
Define the class of admissible trading strategies © = O(aY).

Proposition 3.3. For each R*-valued F-predictable process 6 = (0¢)o<t<T and for each
(RS A(s, 0 >0,

T T T T
GE/ |9t|2dCt S E/ Hgatd<M>tU,’59t = E/ HgatagﬁtdCt S AE/ |9t|2d0t7
0 0 0 0

where the constants a, A are such that 0 < a < A < oo, and the parameter 6 > 0 is
sufficiently small.

Proof. Remember that d(M), = d{M*, M7}, = I;inddCt. Hence
T T
E/ 920’td<M>tU£9t = E/ 920’,50'2915 dCt
0 0
Further, since ¢ = ¢° + §h and elements of matrices ¢° and h are bounded, then the
same is true for the elements of matrix ¢ with 0 < 6 < const. Thus using the inequality
ab < 2(a? + b?) we get

T T
E/ Hgotaéet dCt S AE/ |6t|2dCt.
0 0

On the other hand, by Proposition 3.2 the matrix 02> = oo’ is uniformly elliptic for suffi-
ciently small §, which yields the first inequality. (I
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Definition 3.1. The class © = O(c?) is a class of R%-valued F-predictable processes 6 =
(6¢)o<t<T such that

T
E/ 10,]2dC, < 0. (3.22)
0

Let 6 € O be the dollar amount (rather than the number of shares) invested in the stock
X7, 0 € As. Then for each o € Aj; the trading gains induced by the self-financing portfolio
strategy associated to 6 has the form

t
Gt(a,H):/ 0.dR°, 0<t<T, (3.23)
0

where R? = (R{)o<;<7 is the yield process given by (3.10).

Introduce the condition:

(c.2) There exists ELMM @ such that the density process z = 2% satisfies the reverse
Holder inequality Ro(P), see definition in RSch [33].

It is well-known that under the conditions (c.1) and (c.2) the density process z = (Z;)<i<T
of the variance-optimal ELMM satisfies Ry (P) as well, see Dolean et al. [8].

Now under the conditions (c.1) and (c.2) the r.v. Gr(0,0) € L?(P), Yo € As, and the
space G (o, ©) is closed in L2(P), Vo € Ajs (see, e.g., Theorem 2 of RSch [33]).

A contingent claim is an Fp-measurable square-integrable r.v. H, which models the pay-
off from a financial product at the maturity date 7.

The problem we are interested in is to find the robust hedging strategy for a contingent
claim H in the above described incomplete financial market model with misspecified asset
price process X7, o € Ay, using mean-variance approach.

For each o € Ay, the total loss of a hedger, who starts with the initial capital x, uses the
strategy 6, believes that the stock price process follows X 7, and has to pay a random amount
H atthe date T', is H-z-Gr (0, 0).

Denote

J(0,0) := BE(H — 2z — Gr(0,0))%. (3.24)

One setting of the robust mean-variance hedging problem consist in solving the optimiza-

tion problem

minimize sup J(o,6) over all strategies 6 € O. (3.25)
oEA;

We “slightly” change this problem using the approach developed in Toronjadze [41] which
based on the following approximation

sup J(o,6) = exp { sup In 7 (a° + 8h, 9)}
oc€As heH

~ exp{ sup [IHJ(JO,G) + 5%} }

heH
_ 70 o, DI (0% 1,0)
=J(o ,Q)exp{ézgg 7(00,0) ,
where
J(0° +6h,0) — T (0°,0)
6 )

d
0 = — 0 p— 1
DJ(c",h,0):= pr J(c” + 6h,0)|s5=0 (%Lmo
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is the Gateaux differential of the functional 7 at the point &9 in the direction h.
Approximate (in leading order ) the optimization problem (3.25) by the problem

. Dj(ao,h,ﬁ)}
minimize 7 (0, 6)ex {6 sup ———————
(70 D0 = 7(00.0)
over all strategies 6 € O. (3.26)

Note that each solution 6* of the problem (3.26) minimizes 7 (o, §) under the constraint

0 0 *
sup 7DJ(U .1, 9) < c¢:= sup 7DJ(U h,67)

hew  J(0%0) nen  J(0%,0%)
This characterization of an optimal strategy 6* of the problem (3.26) leads to the

Definition 3.2. The trading strategy 6* € O is called optimal mean-variance robust trading
strategy against the class of alternatives H if it is a solution of the optimization problem

minimize 7 (o, 6) over all strategies # € ©, subject to constraint

DJ(JO, h, 9)
(000 - ° 627

where c is some generic constant.
Remark 3.2. In contrast to “mean-variance robust” trading strategy which associates with
optimization problem (3.25) and control theory, we find the “optimal mean-variance robust”
strategy in the sense of Definition 3.2. Such approach and term are common in robust statis-
tics theory (see, e.g., Hampel et al. [12], Rieder [34]).

Does the suggested approach provide “good” approximation? Consider the case.

Diffusion model with zero drift. Let a standard Wiener process w = (wi)o<¢<T be
given on the complete probability space (£2, F, P). Denote by F* = (F*,0 <t < T) the
P-augmentation of the natural filtration 7' = o(ws, 0 < s < t), 0 < t < T, generated
by w.

Let the stock price process be modeled by the equation

dXto-:Xg'O'tdwt, Xg>0, 0<t<T,

where o € As with
T

/(02)2 dt < oo
0

and h € Bally,__(4¢xap)(0,7), 0 < 7 < oco. All considered processes are real-valued.
Denote by R the yield process, i.e.,

deg :Utdwt, Rg :O, OStST
The wealth at maturity 7', with the initial endowment z, is equal to

T
V]’f’e(a)zx—i—/ 0, dRY.
0

Let, further, the contingent claim H be F;'-measurable P-square-integrable r.v.
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Consider the optimization problem (3.25). It is easy to see that if o € As; then
0?—57“ < oy SU?—HST, 0<t<T, P-as.,

By the martingale representation theorem
T
H=EH +/ o dw;, P-a.s.,
0

where ! is the F*’-predictable process with

T

E [ (pf)?dt < . (3.28)
0

Hence .
E(H - V;’e(a))Q =(EH —2)* + E/ (oF — 5,60,)% dt.
0
From this it directly follows that the process
* . 0 _
o;(0) = (oy 57‘)1{%20?}1{9#0}

+ (o) + 57~)1{ o

G- <o}

Itg, 20y, 0<t<T, (3.29)

is a solution of the optimization problem
maximize E(H — V;f’e(a))2 overall o € A;, withagiven 6 € O.

It remains to minimize (w.r.t. §) the expression

E/OT (o — o7(6)6:)° dt.
From (3.29) it easily follows that the equation (w.r.t. 8)
il — a7 (0)6: =0,
has no solution, but
0 = P iy, 0<I<T, (330)
o i

solves problem. We assume that 0/0 := 0.
Consider now the optimization problem (3.27).
For each fixed h

J(0,0) :E(H—x—/OTthRf)z

T T 2
= E(H — X — / 9,50'? dwt — 5/ atht dwt)
0 0

T T
= J(O_O’ 9) —20F |:(EH —x+ / ((,0{{ - tgtO'?) dwt) / cht dwt}
0 0

T
+ 62E/ 02h? dt,
0
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and hence .
DJ(c° h;0) = 2E/ (007 — ;1) 0:hy dt, (3.31)
0

as follows from (3.28), the definition of the class 7 and the estimation
T 9 T ) T
(E/ (0,09 — o) 0:hy dt) < E/ (0,00 — 01)? E/ 0212 dt
0 0 0

T T T
< const -1 (E/ 02 (c)? dt+E/ (<pff)2dt>E/ 02 dt < oco. (3.32)
0 0 0

Since, further, D.J(c°, h;6) = 0 for h = 0, using (3.32) we get

0 < sup DJ(0", h;0) < .

heH
Hence we can take 0
0

<c
(3.31), we get DJ(c°, h; 0

< oo in problem (6). Now if we substitute 8* from (3.30) into
*) = 0 for each h, and thus
sup DJ(aY, h; 0%)
heH
J (00, 6%)
If we recall that 8* = arg angn J(0°,0), we get that * defined by (3.30) is a solution of
€045
this optimization problem as well.
Thus we prove that
(a) the mean-variance robust trading strategy 6* = (0; )o<i< for the optimization prob-
lem (3.25) is given by the formula

=0.

H
* @t
0 = L1 ;
t o0 {of#0}>

(b) at the same time this strategy is an optimal mean-variance robust trading strategy for
the optimization problem (3.27).

Hence in this case the suggested approach leads to the perfect solution of initial problem
(3.25).

To solve the problem (3.27) in general case we need to calculate D7 (0, h, 6). Suppose
that &k = (kt)OStST = (ki,ta 1<+ < d)QStST from (3.10) is such that |ki7t| < const Vi, t.

Following RSch [33] and GLP [11] introduce the probability measure @ ~ P on Fr by
the relation

a0 = L ap (and hence dQ = 2L dP). (3.33)
20 20
Using Proposition 5.1 of GLP [11] we can write
2 2 2 T ’
J(0,0)=E % 9 —33—/ 0, dRY —zolEQ% H—w—/ 0,00 dM,
c # AT 0

i 2t

. H =2 T MO~ 2
= 1EQ Zzo—m—/ th d%—/o (zbt()) tz())

yA
=T (0,°,0") (or T(o,9) with ¢ = (4°, ")), (3.34)
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where
'(/Jtl = ¢tl(a) = 0',/5615,
t (3.35)
) =y¥(0) = / 0.0 dM? — 0,0, MP, 0<t<T.
0
Thus
Ui (o) =l (0) + 0t (R), (o) = ¥P(a°) + 6y (h).
Let (following RSch [33])
H _ H _ Ty
L %=E (~ ZO) + / (7Y dU, + Lo, (3.36)
2T T 0

be the Galtchouk—Kunita—Watanabe decomposition of r.v. % Zo w.rt. R valued @—
local martingale U = (2, %0 ZO)/, where " = (pOH LHY e [2(U,Q), the space of

z ~

F-predictable processes ¢ such that [ ¢'dU € M?(Q) of martingale, and L € Mg ,,.(Q),

Lis @—strongly orthogonal to U.
Remember that

b= (3.37)
Then, using (3.34), (3.35) and (3.36) we can write for each h

T (0% + 8h,p) = T (0%, 9) + 6 - 255"
o { [( -2 zo) ~Lr+ [ o) — ol >’dUt} / th(h))’dUt}

+022, B9

T J—
/0 (T, (h))dU,

T*

T
/ (e(0°) — i) dU, / (@ (h))dU,
0 0

2

= J(0°0) +6- 25 B2

- T
+0%2, B9 /0 (¥, (h)) dU, (3.38)

Using Proposition 8 of RSch [33] we have for each h
= T
Z , ~
= G, (h,©) = {/ (¥(h))'dU, : (h) € L*(U, Q)}7
0

cT

and hence by (3.23)

_ T 2 _~ T 2
E9 ( / <wt<h))’dUt> = E° ;—0 G7(h,0) = 20EGT(h,0) = M( / 0, dR?)
0 T 0

T 2 T T 2
=% F / O,hdM? | =ZE / O, hed(M) ks + / 0, hdM,
0 0 0
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< const

T 2 T 2
E(/ |e;htd<M>tkt> +E</ 9;htht> ]
0 0

T
< const rzE/ |9t|2dC’t < 0.
0

Further,

Q g o0) — HY ’ ’ ’
(E /0 (4(0%) — Y dU, /0 (e(h)) dUt>
2

_ T 2 T
< EQ< /O (¢e(a®) — " )’dUt) EQ< /O (wt(h»’dUt) < o0.

From these estimates we conclude that:
T
D) DT ) =25 B9 [ (0u(o) — vl AU nh) < .
0

thanks tg(3.39).
2) DI (0, h,9)|n=0 = 0, since 1»(0) = 0 by (3.37) and (3.35).
Thus

sup D?(O’O, h,v) > 0.
heH
3) From (3.40) and (3.39) we get

(DT (0%, h,))? < const Z, *r?

_ rT T
x B9 /O (e(0°) = 1) d(U) (1 (0°) — {1 E /O 16,12dC; < 0.

(3.39)

(3.40)

(3.41)

(3.42)

Thus |DJ (", h, )| is estimated by the expression which does not depend on &, and is equal

to zero if we substitute ¢, (0%) =, 0 <t < T.
Hence, by (3.42)

0 < sup DT (0%, h, )| y=yn < sup DT (o, h, W”w:wf =0
heH -

heH

Further, from (3.42) follows that we can take ¢ 67[0, 00) in (3.27).
Now substituting 1) = ¥ into 7 (c°,v) and DT (c°, h, 1)) we get

T ") = minT (0" ) = 3 (EPH —2)” + % ' EOL}

(see Lemma 5.1 of GLP [11]) and
DJ (0 h, ")

sup ——— =0

nen  J (o0 pH)

Hence the constraint of problem (3.27) is satisfied.

Remark 3.3. If x = EﬁH and L7 = 0, then we get
DJ(c% h,p™) 0

T (a0, M) 0

(3.43)
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which is assumed to be zero, since if we consider the shifted risk functional Z =7 + 1, the
optimization problem and the optimal trading strategy will not change, but D.7 (¢, h, ) =
DJ (0 h,y) =0and J (0%, ") = 1.

Finally, using Proposition 8 of RSch [33] we arrive at the following

Theorem 3.1. In Model (3.10) under conditions (c.1) and (c.2) the optimal mean-variance
robust trading strategy (in the sense of Definition 3.1) is given by the formula

P = ((0)) e+ GV = () UY)], 0<t<T, (3.44)

where
~ 0 /
H 0,H ,1,H zo M, .
'(/Jt :( » Wi )/7 Ut:(~a = ZO)a

~ t
Z !/
=20 x+/<w{’>dUt ,
0

2t
Yl and ¢ are given by the relations (3.36) and (3.11), respectively, Z; is defined in (3.11).
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MEAN-VARIANCE HEDGING UNDER PARTIAL INFORMATION

M. MANIA, R. TEVZADZE AND T. TORONJADZE

Abstract. We consider the mean-variance hedging problem under partial information. The
underlying asset price process follows a continuous semimartingale, and strategies have to be
constructed when only part of the information in the market is available. We show that the
initial mean-variance hedging problem is equivalent to a new mean-variance hedging problem
with an additional correction term, which is formulated in terms of observable processes. We
prove that the value process of the reduced problem is a square trinomial with coefficients sat-
isfying a triangle system of backward stochastic differential equations and the filtered wealth
process of the optimal hedging strategy is characterized as a solution of a linear forward equa-
tion.

Key words and phrases: Backward stochastic differential equation, semimartingale market

model, incomplete markets, mean-variance hedging, partial information
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1. INTRODUCTION

In the problem of derivative pricing and hedging it is usually assumed that the hedging
strategies have to be constructed by using all market information. However, in reality, in-
vestors acting in a market have limited access to the information flow. For example, an
investor may observe just stock prices, but stock appreciation rates depend on some unob-
servable factors; one may think that stock prices can be observed only at some time intervals
or up to some random moment before an expiration date, or an investor would like to price
and hedge a contingent claim whose payoff depends on an unobservable asset, and he ob-
serves the prices of an asset correlated with the underlying asset. Besides, investors may
not be able to use all available information even if they have access to the full market flow.
In all such cases, investors are forced to make decisions based on only a part of the market
information.

We study a mean-variance hedging problem under partial information when the asset price
process is a continuous semimartingale and the flow of observable events do not necessarily
contain all information on prices of the underlying asset.

We assume that the dynamics of the price process of the asset traded on the market is
described by a continuous semimartingale S = (S, t € [0,7T]) defined on a filtered proba-
bility space (€2, A, (As, t € [0,T]), P), satisfying the usual conditions, where A = Az and
T < oo is the fixed time horizon. Suppose that the interest rate is equal to zero and the asset
price process satisfies the structure condition; i.e., the process .S admits the decomposition

t
Sy = Sp + Ny +/ )\ud<N>u, </\ . N>T < oo a.s., (1.1)
0

Published in SIAM J. Control Optim. 47 (2008), no. 5, 2381-2409.
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where N is a continuous .4-local martingale and A is an A-predictable process.
Let G be a filtration smaller than .A:

Gy C A, forevery tel0,T].

The filtration G represents the information that the hedger has at his disposal; i.e., hedging
strategies have to be constructed using only information available in G.

Let H be a P-square integrable .Ap-measurable random variable, representing the payoff
of a contingent claim at time 7.

We consider the mean-variance hedging problem

to minimize E[(X7™ — H)?] overall € II(G), (1.2)

where II(G) is a class of G-predictable S-integrable processes. Here X" = z + fot Ty, dSy
is the wealth process starting from initial capital x, determined by the self-financing trading
strategy 7 € II(G).

In the case G = A of complete information, the mean-variance hedging problem was
introduced by Follmer and Sondermann [8] in the case when S is a martingale and then
developed by several authors for a price process admitting a trend (see, e.g., [6], [12], [25],
[26], [24], [10], [11]).

Asset pricing with partial information under various setups has been considered. The
mean-variance hedging problem under partial information was first studied by Di Masi,
Platen, and Runggaldier [3] when the stock price process is a martingale and the prices are
observed only at discrete time moments. For general filtrations and when the asset price pro-
cess is a martingale, this problem was solved by Schweizer [27] in terms of G-predictable
projections. Pham [22] considered the mean-variance hedging problem for a general semi-
martingale model, assuming that the observable filtration contains the augmented filtration
F*S generated by the asset price process S

FSC @G, forevery te|0,T). (1.3)

In this paper, using the variance-optimal martingale measure with respect to the filtration G
and suitable Kunita—Watanabe decomposition, the theory developed by Gourieroux, Laurent,
and Pham [10] and Rheinldnder and Schweizer [23] to the case of partial information was
extended.

If G is not containing F'°, then S is not a G-semimartingale and the problem is more in-
volved. Let us introduce an additional filtration F' = (F;,t € [0, T]), which is an augmented
filtration generated by F'° and G.

Then the price process S is a continuous F-semimartingale, and the canonical decompo-
sition of .S with respect to the filtration F' is of the form

t
Sy =Sy + / NEA(MYy, + M, (1.4)
0
where \F is the F-predictable projection of A and
t
M, = Ny + / D — AFJA(N).,
0

is a continuous F-local martingale. Besides (M) = (N), and these brackets are F°-
predictable.
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Throughout the paper we shall make the following assumptions:
(A) (M) is G-predictable and d(M);dP a.e. \F = \“; hence P-a.s. for each ¢

(B) any G-martingale is an F'-local martingale;

(C) the filtration G is continuous; i.e., all G-local martingales are continuous;

(D) there exists a martingale measure for S (on Frr) that satisfies the reverse Holder con-
dition.

Remark. Tt is evident that if F¥ C G, then (M) is G-predictable. Besides, in this case
G = F, and conditions (A) an(l (B) are satisfied.

We shall use the notation Y; for the process of the G-projection of Y. Condition (A)

implies that
t
0
Let

t
H,=E(H|F,)=FEH +/ hydM, + L;
0
and

t
H, = EH+/ hGdM, + LS
0
be the Galtchouk—Kunita—Watanabe (GKW) decompositions of H; = F(H|F;) with respect
to local martingales M and M , where h and h& are F-predictable processes and L and LY

are local martingales strongly orthogonal to M and M , respectively.
We show (Theorem 3.1) that the initial mean-variance hedging problem (1.2) is equivalent
to the problem to minimize the expression

T . . 2
E|:<IE + / 71—udsu - HT)
0

over all 7 € II(G), where

+ /OT (ﬁ (1—p2)+ 2wuﬁu) d(M}u] (1.5)

d(M),
d{M);

Thus, the problem (1.5), equivalent to (1.2), is formulated in terms of G-adapted processes.
One can say that (1.5) is the mean-variance hedging problem under complete information

with an additional correction term.
Let us introduce the value process of the problem (1.5):

T 2
VH(t, x) = essinf F Km + / TudSy — HT)
T€ll(G) t

TLt = htpr — h,t and pt2 =

T
+/ [wz (1-p2) +2wuhu} d<M>u|Gt} (1.6)
t
We show in Theorem 4.1 that the value function of the problem (1.5) admits a representation

VAt x) = Vi (0) = 2Vi(1)z + Vi(2)2,
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where the coefficients V;(0), V;(1), and V;(2) satisfy a triangle system of backward stochastic
differential equations (BSDEs). Besides, the filtered wealth process of the optimal hedging
strategy is characterized as a solution of the linear forward equation

-~ E020u(2) FAVu(2) o~ [ 0200 (1) NV (1) + By o~
X;:g;_/ Putu(2) F AuVul )X;;dsu+/ pupuD) T AVl T 5 (g 5,
Note that if £ C G, then
p=1 h=0, M=M, and S=S5. (1.8)

In the case of complete information (G = .A), in addition to (1.8) we have X = \and
M=N , and (1.7) gives equations for the optimal wealth process from [19].

In section 5 we consider a diffusion market model, which consists of two assets .S and 7,
where S; is a state of a process being controlled and 7 is the observation process. Suppose
that S; and 7, are governed by

dSt = ,utdt + otdw?,

d?’]t = atdt + btdwt,
where w” and w are Brownian motions with correlation p and the coefficients y, o, a, and b
are F"-adapted. In this case A; = F; = }"tS "1, and the flow of observable events is G; = F,'.
As an application of Theorem 4.1 we also consider a diffusion market model with constant

coefficients and assume that an investor observes the price process S only up to a random
moment 7 before the expiration date 7'. In this case we give an explicit solution of (1.2).

2. MAIN DEFINITIONS AND AUXILIARY FACTS

Denote by M¢(F) the set of equivalent martingale measures for S, i.e., the set of proba-
bility measures () equivalent to P such that S is a F'-local martingale under Q).
Let
MG(F) = {Q € M*(F) : BZ}(Q) < o<},
where Z;(Q)) is the density process (with respect to the filtration F') of @ relative to P. We
assume that M§(F) # 0.

Remark 2.1. Note that M§(A) # 0 implies that M5(F) # () (see Remark 2.1 from Pham
[22].
It follows from (1.4) and condition (A), that the density process Z;((Q) of any element @
of M¢(F) is expressed as an exponential martingale of the form
575(—/): M+ L),

where L is a F'-local martingale strongly orthogonal to M and &;(X) is the Doleans—Dade
exponential of X.

If the local martingale Z"" = &, (—X - M) is a true martingale, dQ™"/dP = Zmn
defines the minimal martingale measure for S.
Recall that a measure @ satisfies the reverse Holder inequality Ro(P) if there exists a

constant C' such that ) ©
Z4(Q )
E|ZL X ) <C, P-as.
(@
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for every F'-stopping time 7.

Remark 2.2. If there exists a measure Q € M€(F') that satisfies the reverse Holder inequality
Ry (P), then according to Theorem 3.4 of Kazamaki [14] the martingale M@ = —\- M + L
belongs to the class BM O and hence —\ - M also belongs to BMO, i.e.,

T
E (/ X3d<M>u|FT> < const 2.1)

for every stopping time 7. Therefore, it follows from Theorem 2.3 of [14] that St(—:\\ - M) is
a true martingale. So, condition (D) implies that the minimal martingale measure exists (but
Z™™ is not necessarily square integrable).

Let us make some remarks on conditions (B) and (C).

Remark 2.3. Condition (B) is satisfied if and only if the o-algebras F° VV G; and G are
conditionally independent given G for all ¢ € [0, T] (see Theorem 9.29 from Jacod [13]).

Remark 2.4. Condition (C) is weaker than the assumption that the filtration F' is continuous.
The continuity of the filtration F' and condition (B) imply the continuity of the filtration G,
but the converse is not true in general. Note that filtrations F' and F'° can be discontinuous.
Recall that the continuity of a filtration means that all local martingales with respect to this
filtration are continuous.

By € we denote the Dolean measure of an increasing process /. For all unexplained
notations concerning the martingale theory used below, we refer the reader to [5], [18], [13].

Let II(F') be the space of all F-predictable S-integrable processes 7 such that the stochas-
tic integral

t
(W'S)tZ/ TudSy, t€1[0,7T],
0

is in the S? space of semimartingales, i.e.,

T T 2
E(/O 7Tsd<M>s>+E</0 |7Ts/\s|d<M>s> < 0.

Denote by II(G) the subspace of II(F') of G-predictable strategies.

Remark 2.5. Since \-M € BMO (see Remark 2.2), it follows from the proof of Theorem 2.5
of Kazamaki [14] that

2
E ( / ' miu|d<M>u> = Ejn|- M, A - M)7 < 2|3 Ml[pyo E / "), < .
Therefore, under condition (D) the G-predictable (resp., F-predictable) strategy 7 belongs to
the class IT1(G) (resp., [I(F)) if and only if F¥ fOT m2d(M), < oo.
Define J%(F') and J2(G) as spaces of terminal values of stochastic integrals, i.e.,
J2(F) = {(- 8)r : = € TI(F)}.
JH(G) ={(m - S)r : m € TG}
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For convenience we give some assertions from [4], which establishes necessary and suffi-
cient conditions for the closedness of the space J#(F) in L.

Proposition 2.1. Let S be a continuous semimartingale. Then the following assertions are
equivalent:

(1) There is a martingale measure Q € M(F), and J2(F) is closed in L*.

(2) There is a martingale measure QQ € M°(F) that satisfies the reverse Holder condi-
tion Ry (P).

(3) There is a constant C' such that for all T € I1(F') we have

[Isup(m - S)ell 2Py < Cll(7 - S)rllL2(p)-
t<T
(4) There is a constant c such that for every stopping time T, every A € F,, and every
7 € II(F), with m = w1} ), we have
114 = (7 S)rllL2(p) > cP(A)Y/2.
Note that assertion (4) implies that for every stopping time 7 and for every = € II(G) we

have
T 2
E<<1+/ wud5u> /FT> > c. 2.2)

Now we recall some known assertions from the filtering theory. The following proposition
can be proved similarly to [18].

Proposition 2.2. If conditions (A), (B), and (C) are satisfied, then for any continuous F'-local
martingale M, with My = 0, and any G-local martingale m©
L
dM,m%), . & G
— 1 =d L 2.3
d<mG>u mu + £ ( )

where L is a local martingale orthogonal to m©.

i, = BE(M,|G,) = /
0

It follows from this proposition that for any G-predictable, M -integrable process 7 and
any G-martingale m@

Gy — [ HMm
(x - 30), m%, / d(m),

Hence, for any G-predictable, M -integrable process 7

(m-M)y=FE (/ WSdMSGt) = / medMs. (2.4)
0 0

Since 7, A, and (M) are G-predictable, from (2.4) we have
(m-Sy=FE </ ’/TudSu|Gt> :/ TudSy, (2.5)
0 0

t
S, =So+ [ Xed(M), + M,
0

where
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3. SEPARATION PRINCIPLE: THE OPTIMALITY PRINCIPLE

Let us introduce the value function of the problem (1.2) defined as

T 2
UA(t,z) = essinfE((x—i—/ Ty dSy — H) Gt). 3.1
t

Tell(G)

By the GKW decomposition
t
H,=FE(H|F,)=FEH +/ hydM,, + Ly (3.2)
0

for a F-predictable, M -integrable process h and a local martingale L strongly orthogonal to
M. We shall use also the GKW decompositions of H; = E(H |F}) with respect to the local

martingale M
t —
H,=EH + / hEdM, + LY, (3.3)
0

where h is a F-predictable process and L is a F-local martingale strongly orthogonal
to M. -
It follows from Proposition 2.2 (applied for m® = M) and Lemma A.1 that

t —~
(B(HIG), ). = [ WGad(0)., (3.4)
0
We shall use the notation
By = hGp? — Ty (3.5)

Note that / belongs to the class II(G) by Lemma A.2.
Let us introduce now a new optimization problem, equivalent to the initial mean-variance
hedging problem (1.2), to minimize the expression

T o~ o~
(:17 + / TudSy — HT>
0

over all 7 € II(@). Recall that S, = E(S;|Gy) = So + fot Nud (M), + M,.

2
E

T ~
+ / (wi(lpi)+2mu)d<M>u] (3.6)
0

Theorem 3.1. Let conditions (A), (B), and (C) be satisfied. Then the initial mean-variance
hedging problem (1.2) is equivalent to the problem (3.6). In particular, for any © € TI(G)

andt € [0,T]
N2
(H - HT) G,

T -
+/ (Tl'i (1 — pi) + 27Tuhu> d(M).|Gy
t

2

T

t

T R o\ 2
<x+/ WudSuHT>

t

E =B

\E NN
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Proof. We have

T 2
<£L’ =+ / wudSu — H) IGt‘|
t

E

T N T L 2
—E <x+/ wudSufHJr/ wud(MuMu)> G,
t t
T =R 2
=F <x—|—/ 7rudSu—H) |Gy
t
T N T -
+2F <x+/ wudSu—H></ ud (Mu—Mu)>|Gt
t t
T - 2
v E (/ Tud (Mu—Mu)) G| = I + 21, + L. (3.8)
t
It is evident that
L=E (w—i—/ wudSu—HT) G, +E[(H—HT) Gt] (3.9)
t

Since T, X, and <]T4\ ) are Gp-measurable and the o-algebras F;° VG and G- are conditionally
independent given G (see Remark 2.3), it follows from (2.4) that

E[/tT Tadad (M), /tT ud (Mu - ]\//fu) Gt}
—E [/tT Tadad (M), /OT ud (Mu - J\Z) |Gt}
- E[/tT Tadad(M)y /Ot Tud (Mu - J\Z) |Gt]
-y MT TruXud<M>uE</0T ud (Mu - J\Yu) |GT> |Gt]

T =R t -
_ E[/ quud<M>u|Gt]E[/ Tud (Mu - Mu> |Gt}
t 0
~ 0. (3.10)

On the other hand, by using decomposition (3.2), equality (3.4), properties of square char-
acteristics of martingales, and the projection theorem, we obtain

T —~
E {H/ mud (Mu _ Mu) Gt}
t
T o
_ E[H / wudMu|Gt] —E[HT / wudMuGt}
t t

E[/tT wud<M,E(H|F.))uGt} —E[/tTwudU?,Z\?)uGt}
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_ E[/tT wuhud<M)u|Gt} _ EuT wungpgd<M>u|Gt]

T . P T _
:E[/ T (hu—hgpi) d<M>u|Gt} _ _EU wuhud<M>u|Gt]. G.11)
t t

Finally, it is easy to verify that

QE[/tTﬁu]/W\u/tTﬁud (Mu—]/\/[\u> |Gt] +E[(/tT7rud (Mu—m)>2|c:t}

T T T
:E|:</ Wid<M>u_/ 7T12Ld<M>u)|Gt} :E{/ TI'Z (1—pi) d<M>u|Gt:|. (3.12)
t t ‘
Therefore (3.8), (3.9). (3.10), (3.11), and (3.12) imply the validity of equality 3.7). I

Thus, it follows from Theorem 3.1 that the optimization problems (1.2) and (3.6) are
equivalent. Therefore it is sufficient to solve the problem (3.6), which is formulated in terms
of G-adapted processes. One can say that (3.6) is a mean-variance hedging problem under
complete information with a correction term and can be solved by using methods for complete
information.

Let us introduce the value process of the problem (3.6)

T o~ ~
((E + / TudSy — HT>
t

2
VH(t,x) = essinf E

Tell(G)
T ~
+/ [wﬁ (1-p2) +2wuhu} d(M),|G|. (3.13)
t
It follows from Theorem 3.1 that
U (t,2) = VE(t,2) + E[(H — Hr)?|Gy]. (3.14)

The optimality principle takes in this case the following form.

Proposition 3.1 (optimality principle). Let conditions (A), (B) and (C) be satisfied. Then
(@) forallx € R, m € II(G), and s € [0,T] the process

t t
VvH (t,a: +/ Wudgu) —I—/ {7‘(‘3 (1—p2)+ 27Tul~1u)} d{M),,

is a submartingale on [s,T), admitting an right continuous with left limits (RCLL)
modification.
(b) ©* is optimal if and only if the process

t t
v (t,x+/ deSu) +/ [(w;;)Q (1—p2) +27r;;hu} d(M),
is a martingale.

This assertion can be proved in a standard manner (see, e.g., [7], [15]). The proof more
adapted to this case one can see in [19].
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Let

V(t,z) = essinf £
T€ell(G)

T N\ 2 T
<x+/ wudSu) +/ mo (1= p2) d(M),|Gy
t t

and

Vi(2) = essinf &/
H2) = sl

T \2 T
<1+/ wudSu> +/ mo (1= pi) d(M),|Gy
t t

It is evident that V (¢, x) (resp., V¢(2)) is the value process of the optimization problem (3.6)
in the case H = 0 (resp., H =0 and x = 1), i.e.,

V(t,z) =VO(tz) and V;4(2) = VO(t,1).

Since II(G) is a cone, we have

(1 + / ' j‘déu)z + / ' (%)2 (1 p2) d(M). |G

— CCQVt(Q). (3.15)

V(t,r) = z*essinf £
T€ll(G)

Therefore from Proposition 3.1 and equality (3.15) we have the following.

Corollary 3.1. (a) The process

v (1+ [ wudﬁu)z + [ w20 it

t > s, is a submartingale for all m € TI(G) and s € [0,T].
(b) 7 is optimal if and only if

Vi(2) (1 + /: W;d§u>

t > s, is a martingale.

2

+ / (22 (1 — p2)d(M).,

Note that in the case H = 0 from Theorem 3.1 we have
2

T
t
T N 2 T
=FE <1+/ WudSu> +/ T (1= p2) d(M),|Gy (3.16)
t t
and, hence,
Vi(2) = U, 1). (3.17)

Lemma 3.1. Let conditions (A)—(D) be satisfied. Then there is a constant 1 > ¢ > 0 such
that V;(2) > cforallt € [0,T] a.s. and

1—p2 +p2Vi(2) > ¢ pMae. (3.18)
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T 2
t

It follows from assertion (4) of Proposition 2.1 that there is a constant ¢ > 0 such that
VE(2) > cforallt € [0,T] a.s. Note that ¢ < 1 since V¥ < 1. Then by (3.17)

T 2
< / Wudsu> |Gt
t
T 2
E<(1+/‘mﬂ&JE)W4
t

> BE(V"(2)|Gy) > e

Proof. Let

VE(2) = essinf E
well(F)

V; U, 1) = fE
(2) =U(t 1) = essinf

= essinf £
7€ell(G)

Therefore, since p? < 1 by Lemma A.1,

1—pf + piVi(2) > 1 — p} + pic > n[%)f](1_r+rc):c_ 0
rel0,1

4. BSDES FOR THE VALUE PROCESS

Let us consider the semimartingale backward equation

Yi = Yo + /quu,wu Y /wudmuut @.1)

with the boundary condition
Yp =n, (4.2)

where 7 is an integrable Gr-measurable random variable, f : Q x [0,7] x R*? — R is
P x B(R?) measurable, and m is a local martingale. A solution of (4.1)~(4.2) is a triple
(Y, 4, L), where Y is a special semimartingale, 1) is a predictable m-integrable process, and
L a local martingale strongly orthogonal to m. Sometimes we call Y alone the solution of
(4.1)-(4.2), keeping in mind that 1) - m + L is the martingale part of Y.

Backward stochastic differential equations have been introduced in [1] for the linear case
as the equations for the adjoint process in the stochastic maximum principle. The semimartin-
gale backward equation, as a stochastic version of the Bellman equation in an optimal control
problem, was first derived in [2]. The BSDE with more general nonlinear generators was in-
troduced in [21] for the case of Brownian filtration, where the existence and uniqueness of a
solution of BSDEs with generators satisfying the global Lifschitz condition was established.
These results were generalized for generators with quadratic growth in [16], [17] for BSDEs
driven by a Brownian motion and in [20], [28] for BSDEs driven by martingales. But condi-
tions imposed in these papers are too restrictive for our needs. We prove here the existence
and uniqueness of a solution by directly showing that the unique solution of the BSDE that
we consider is the value of the problem.

In this section we characterize optimal strategies in terms of solutions of suitable semi-
martingale backward equations.
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Theorem 4.1. Let H be a square integrable Frp-measurable random variable, and let condi-
tions (A), (B), (C), and (D) be satisfied. Then the value function of the problem (3.6) admits
a representation

VE(t, z) = V,(0) — 2Vi (1) + Vi (2)2?, (4.3)
where the processes Vi(0), V;(1), and V;(2) satisfy the following system of backward equa-
tions:

B L (0s(2)p2 + 2, Y4(2)
e =30)+ [
+/ wS(Q)dJ\//TS +Li(2), Yr(2)=1, (4.4)
0
Y,(1) = Yo(1) +/0 2ol + A}I?)gz(:b_ﬁiif(; AV =) gy,
+A¢Mﬂﬂﬁ£ﬂ%1ﬂanWWﬂa 4.5)
o ¢ (¢s(1)ﬂ§ + 3\\sYts(l) - iLs)Q
0 =30+ [
+ /O s (0)dM, + Ly(0), Yy (0) = E*(H|Gr), (4.6)

where L(2), L(1), and L(0) are G-local martingales orthogonal to M.

. . G, t 5 .
Besides, the optimal filtered wealth process X;"" = x + fo mhdS,, is a solution of the
linear equation

e /t Piu(2) + XuYu(2) %43,
o L—pi+piYu(2)
. /t Yu (D £ MYu(l) b
o L=pi+piYu(?) v
Proof. Similarly to the case of complete information one can show that the optimal strategy

exists and that V7 (¢, x) is a square trinomial of the form (4.3) (see, e.g., [19]). More precisely
the space of stochastic integrals

T20(G) = { /t DSy 7 e H(G)}

is closed by Proposition 2.1, since (M) is G-predictable.

Hence there exists optimal strategy 7*(t,z) € II(G) and U (t,2) = E[|H — z —
[T et 2)dS, 2 |Gy

Since | tT 7 (t,2)dS, coincides with the orthogonal projection of H — x € L? on the
closed subspace of stochastic integrals, then the optimal strategy is linear with respect to x,
ie., 75 (t,r) = 7w0(t) + zml(t). This implies that the value function U (¢,z) is a square

)

.7



Stochastic Analysis: Applications to Statistics and Finance 45

trinomial. It follows from the equality (3.14) that V' (¢, z) is also a square trinomial, and it
admits the representation (4.3).
Let us show that V;(0), V;(1), and V;(2) satisfy the system (4.4)—(4.6). It is evident that

T R R 2
</ WudSu — HT)
t

Vi(0) = VI (t,0) = Sz%i(%f)E

T
+/ (72 (1= p2) + 2muhy)d{M). |G, (4.8)
t
and
T \? T
Vi(2) = VO(t,1) = essinf E 1+/ TudS, +/ T (1= p2) d(M)y|Ge|. (4.9)
Tell(G) t ¢

Therefore, it follows from the optimality principle (taking = = 0) that V;(0) and V;(2) are
RCLL G-submartingales and

Vi(2) < E(Vr(2)|Gy) < 1,
Vi(0) < E(E*(H|Gr)|Gy) < E(H?|G,).
Since
1
Vi(1) = 5 (Vi(0) + Vi(2) = V(£ 1)), (4.10)
the process V; (1) is also a special semimartingale, and since V;(0) — 2V (1)z + V;(2)z? =
VH(t,x) > 0forall x € R, we have V,2(1) < V;(0)V;(2); hence
Vi) <E (H2|Gt) .
Expressions (4.8), (4.9), and (3.13) imply that Vr(0) = E?(H|G7), Vr(2) = 1, and
VH(T,z) = (x — E(H|Gr))?. Therefore from (4.10) we have V(1) = E(H|Gr), and
V(0),V (1), and V'(2) satisfy the boundary conditions.

Thus, the coefficients V;(i),i = 0,1, 2, are special semimartingales, and they admit the
decomposition

t —~
Vi(i) = Voli) + Au(i) + / o (D)ANL, +my(i), i=0,1,2, @11
0

where m(0), m(1), and m(2) are G-local martingales strongly orthogonal to M and A(0),
A(1), and A(2) are G-predictable processes of finite variation.
There exists an increasing continuous G-predictable process K such that

t t
(M}t:/ vudK,, At(z‘):/ au(i)dK,, i=0,1,2,
0 0

where v and a(7), 7 = 0, 1, 2, are G-predictable processes.
Let X =2+ f: Ty dS,, and

st —

t
ver = v (LX) +/ (72 (1= p2) + 2muh | d(M),.
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Then by using (4.3), (4.11), and the Itd formula for any ¢ > s we have
~ 2 t ~ ~ t —
(X;cf) —ry / [2quuX§g + ﬂ'ipi} d(M), +2 / m XETdM,  (4.12)
and

t N 2 R
v -V = [ (%) e - 285 (0) + 0,(0)] K,

t
+ / [ﬂi (1= 2+ P2V (2)) +2m X277 (x\uVu_(2) + %(2)[)3)

~om, (Vu_(1)Xu +ou(1)p? — Bu) }z/udKu Y —ms,  (413)

where m is a local martingale.
Let

G(m ) = G(w,u,m,z) =12 (1 — p2 + p2V,_(2)) + 272 (//\\uVu_(Z) + <pu(2)pi)

— 21 (Vae (DA + 9u(1)p} = ).
It follows from the optimality principle that for each = € TI(G) the process

/t [()?;;)2 au(2) = 2X 5T a, (1) + au(O)] dEK, + /t G (m, f(%;) vedK, (4.14)

is increasing for any s on s < ¢t < T, and for the optimal strategy 7* we have the equality
t

/t[()?;’)’J*)zau(2)—2)?§’f*au(1)+au(0)} dK, = —/G (w;,)?;iv;;*) VedE,. (4.15)

Since v, dK,, = d{M), is continuous, without loss of generality one can assume that the
process K is continuous (see [19] for details). Therefore, by taking in (4.14) 75(¢) = inf{¢ >
s: Ky — K, > ¢} instead of ¢, we have that for any £ > 0 and s > 0

1 7s(€) Y 2 ,\
LU (R) 0@ - 2R + )| ax,

1 [m© N
> —— / G (wu, X;{;j) VudK,. (4.16)
By passing to the limit in (4.16) as € — 0, from Proposition B of [19] we obtain
220, (2) — 220, (1) + ay(0) > —G(1my, 7)1, pfae.,
for all 7 € TI(G). Similarly from (4.15) we have that u*-a.e.
224, (2) — 2xa, (1) + a,(0) = —G(7}, 2)v,
and hence

220, (2) — 2xay (1) + a,(0) = —vyessinf G(m,, x). 4.17)
Tell(G)

The infimum in (4.17) is attained for the strategy
- _ VWMt (Do} — b — (V)M + 01(2)p})
. =
L—pf + p7Vi(2)

. (4.18)
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From here we can conclude that

inf G(my, z) > G(7y,
2t O = Gl

(Vt(l);\\t +@i(1)pf - he — (Vt(Q)Xt + @t(z)P%»z
- 1—pf + pVa(2)

Let 7} = Ijo 7, [(t)7, where 7, = inf{t : [V;(1)] > n}.
It follows from Lemmas A.2, 3.1, and A.3 that 7" € II(G) for every n > 1 and hence

(4.19)

essinf G(m, z) < G(my, x)

T€ell(G)
for all n > 1. Therefore
gg%i(%f)(?(m,x) < nlgr;@ G(m, x) = G(7ty, ). (4.20)

Thus (4.17), (4.19), and (4.20) imply that
x2ay(2) — 2xa,(1) + a;(0)

(Vt(l)/):t + @i (1)p? — he — z(Vi(2)M + ©i(2)p7))? K
_ e, (421
g 1=+ A) o pmes (32D

and by equalizing the coefficients of square trinomials in (4.21) (and integrating with respect
to dK) we obtain

Ay(2) = /0 (@;(2);’;1 ;25((22))) d(M),, 4.22)
¢ s 2 % /):sv:s 2 s ]- % /):svrs ]- - ﬁs
A - [ CDE IRV A RN )y

t 2 .y 7 \2
_ ((ps(l)ps + /\s‘/s<1) _ hs)
4(0) = /0 1 —p2 +p3Vs(2) HM)s. 29

which, together with (4.11), implies that the triples (V' (i), ¢(i), m(7)), i = 0, 1, 2, satisfy the
system (4.4)—(4.6).

Note that A(0) and A(2) are integrable increasing processes and relations (4.22) and (4.24)
imply that the strategy 7 defined by (4.18) belongs to the class II(G).

Let us show now that if the strategy 7* € II(G) is optimal, then the corresponding filtered
wealth process )?t” =z+ fg ﬂZd@u is a solution of (4.7).

By the optimality principle the process

(4.23)

t

v v (R )+ [ [ (- o)+ 2mih] doa).
0
is a martingale. By using the It6 formula we have

" b 2 b ¢ A«
v = [ (&) @ -2 [ X5+ a0+ [ 6 (7 X5 dn.
0 0 0
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where N is a martingale. Therefore by applying equalities (4.22), (4.23), and (4.24) we
obtain

. ¢ V(DA + 0u(1)p2 — hy
v :/ e (1) ;Hp(Q)pu

+ )’fﬂ* Vu(2)>‘u + Sﬁu(2)pi
R V)

(M)

2
) (1 - p’i + pi‘/u(2)) d<M>u + Nt7

which implies that p'\*"'/-a.e.

VWt =y o, (@Rt 020}
Y 1= V) 1= 2+ p2Va(2)

By integrating both parts of this equality with respect to ds (and adding then z to the both
parts), we obtain that X ™ satisfies “4.7). [l

The uniqueness of the system (4.4)—(4.6) we shall prove under following condition (D*),
stronger than condition (D).
Assume that
(D)
T 3\\2
/ gy, < C.
0 Pu
Since p?> < 1 (Lemma A.1), it follows from (D*) that the mean-variance tradeoff of S is
bounded, i.e.,

T/\
/ Nd(M), < C,
0

which implies (see, e.g., Kazamaki [14]) that the minimal martingale measure for S exists
and satisfies the reverse Holder condition Rs(P). So, condition (D*) implies condition (D).
Besides, it follows from condition (D*) that the minimal martingale measure Q™" for S

o A~
- 5.5)

also exists and satisfies the reverse Holder condition. Indeed, condition (D*) implies that
Et(—2p—’\2 - M) is a G-martingale and hence

5 5o\ e,
E(thT(_f)Q'M)Gt) :E(gtT(_2p2'M)€ A Gt) <eC.

Recall that the process Z belongs to the class D if the family of random variables Z; I, <)
for all stopping times 7 is uniformly integrable.

Theorem 4.2. Let conditions (A), (B), (C), and (D*) be satisfied. If a triple (Y (0), Y (1),
Y (2)), where Y(0) € D, Y%(1) € D, and ¢ < Y (2) < C for some constants 0 < ¢ < C,
is a solution of the system (4.4)—(4.6), then such a solution is unique and coincides with the
triple (V(0),V (1),V (2)).
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Proof. Let Y(2) be a bounded strictly positive solution of (4.4), and let

/ t Vo (2)dM, + Ly(2)
0

be the martingale part of Y (2).
Since Y (2) solves (4.4), it follows from the It6 formula that for any = € II(G) the process

t
Y = Y,(2) <1 +/ wudSu)

t > s, is a local submartingale.
Since 7 € II(G), from Lemma A.1 and the Doob inequality we have

t
FE sup (1 —l—/ WudS)
t<T 0
T T 2
< const<1 +E/ w3p3d<M>u) +E</ |mu|d<M>u) <oo.  (4.26)
0 0

Therefore, by taking in mind that Y'(2) is bounded and 7 € II(G) we obtain

2 t
b [ m - ) da)., (4.25)

2

E( sup Yu”)2 < 00,
s<u<T

which implies that Y™ € D. Thus Y™ is a submartingale (as a local submartingale from the
class D), and by the boundary condition Y7 (2) = 1 we obtain

v <e((1+ : wudﬁu)2+ / Twz(l -2 )aanc.)

for all 7 € II(G) and hence
Yi(2) < Vi(2). (4.27)
Let

e =

MY+ (20 ( Y (2) +$(2)p* A)
1 — pf + p7Y:(2) 1L—p2+p2Y(2) ")

Since 1 + fg ﬁudgu = 6}(—%;@%25;2 . §), it follows from (4.4) and the It6 formula that

the process Y7 defined by (4.25) is a positive local martingale and hence a supermartingale.

Therefore
T o~
Y5(2) > E((l +/ ﬁud5u>

Let us show that 7 belongs to the class II(G).
From (4.28) and (4.27) we have for every s € [0, 7

2

T
+/ o (1 —pg)d<M>u|Gs>. (4.28)

T 2 T
E<(1+/ frud§u) +/ 72 (1—p2) d<M>u|Gs> <Y.(2)<VA(2) <1 (429)
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and hence
T . 2
E<1+/ ﬁudSu> <1, (4.30)
0
T
E/ 7o (1= p2) d(M), < 1. 4.31)
0

By (D*) the minimal martingale measure @mm for S satisfies the reverse Holder condition,
and hence all conditions of Proposition 2.1 are satisfied. Therefore the norm

E(/()Tﬁ§p§d<M>s> +E</OT |ﬁSXS|d<M>S>

is estimated by F (1 + fOT ﬁudg’u)2 and hence

2

T T 2
E / Tapad(M), < oo, E( / |frsAs|d<M>s) < 0.
0 0
It follows from (4.31) and the latter inequality that 7 € TI(G), and from (4.28) we obtain
Yi(2) 2 Vi(2),

which together with (4.27) gives the equality Y;(2) = V;(2).
Thus V'(2) is a unique bounded strictly positive solution of (4.4). Besides,

/t Vo (2)dM, = /t 0u(2)dM,,  Li(2) = my(2) 4.32)
0 0

for all ¢, P-a.s.
Let Y (1) be a solution of (4.5) such that Y2(1) € D. By the It6 formula the process

(2P +AV(2) 4
" :Yt(l)&(_ 1—p2+p2v<2>'5>
' P20 +AV(2) =\ (2u(2)9% + DaVir(2)) o
+/0 é’u(— 1— o2 1 2V (2) ~S> v M @33)

is a local martingale. Let us show that R, is a martingale.
As was already shown, the strategy

- @+ Y2, ( $(2)p* +AY(2) g)
Y1242 T\ 12407V (2)

belongs to the class II(G).
Therefore (see (4.26)),

Y(2)p* +AY (2) A> ( / A>2
Esup&?| - 2L 2 . G| =F 1+ LdS ) < oo, 4.34
rer ( 12+ p2Y (2) rer - > @39

and hence R
2)p° +AV(2) &
_ D+ V) ()~S>€D.

Ytu)&( =77V ()
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On the other hr«;md, the second term of (4.33) is the process of integrable variation, since
7 € II(G) and h € TI(G) (see Lemma A.2) imply that

202 +AV(2) 2 (0u(2)0% + NuVa(2))
E/ ( 1—p2+p2V(2) S) L —p2 +p2Vau(2)

:E/ |ﬁuﬁu|d<M>u§E1/2/ F2d(M E1/2/ R2d(
0 0

Therefore, the process R; belongs to the class D, and hence it is a true martingale. By
using the martingale property and the boundary condition we obtain

5 P(2)p* + AV (2) A)
Y:(1) = E{ Hré& — S
W ( TtT< 1—p*+p?V(2)
o222 FAV () 5)tet L RSAACIL
¢\ 1=p2+p?V(2) 1—p2 + p2Va(2)
Thus, any solution of (4.5) is expressed explicitly in terms of (V' (2), ¢(2)) in the form (4.35).

Hence the solution of (4.5) is unique, and it coincides with V;(1).
It is evident that the solution of (4.6) is also unique. (I

d{M )

<M>u|Gt>. (435)

Remark 4.1. In the case F° C G we have p; = 1, hs = 0, and §t = S, and (4.7) takes the

form
t N t N
~ Yy (2) + A Yu(2) o / Uy (1) + A, Yo (1)
X =z— / —t XS, + — 2 dS,.
' 0 Y (2) 0 Y. (2)

Corollary 4.1. In addition to conditions (A)—(C) assume that p is a constant and the mean-

variance tradeoff (X - M)r is deterministic. Then the solution of (4.4) is the triple
(Y (2),0(2), L(2)), with (2) = 0, L(2) = 0, and

Yi(2) = Vi(2) = v (p, 1= p + (X M)r = (A= M)y, (4.36)
where v(p, ) is the root of the equation
1— 2
I p’lnz = a. (4.37)
x
Besides,
AV (2) R
v1)=EB(HE - — 28 g
=5 (Hen (- T )

r AV (2) N\ AVu(2)hy
+ [ (- v ) T e 3

uniquely solves (4.5), and the optimal filtered wealth process satisfies the linear equation

S AR sas o [feu@pP + AVa(1) = hy g
=y uVu X*dS, u uu 2dS,. (4.39
¢ /0 1—p+p?V,(2) " +/o 1—p? + p?V,(2) 39

Proof. The function f(z) = T’? — p? In x is differentiable and strictly decreasing on ]0, oo
and takes all values from | — 0o, +00[. So (4.37) admits a unique solution for all c. Besides,
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the inverse function «(z) is differentiable. Therefore Y;(2) is a process of finite variation,
and it is adapted since (\ - M) is deterministic.

By definition of Y;(2) we have that for all ¢t € [0, T
2

1—p

Y,(2) —pPInYy(2) =1—p? + (A~ M)7 — (A~ M),

It is evident that for &« = 1 — p? the solution of (4.37) is equal to 1, and it follows from (4.36)
that Y'(2) satisfies the boundary condition Y7 (2) = 1. Therefore

— 92 T ’
1}4(2’3 7p21nYt(2)7(1*,02):*(1*P2)/t dyul(2>+p2/t dInY,(2)

- /tT (725 + 7

Tq1_ 2 2 0N h)
/t : pyg(g)yu@)dn@)<A'M>T<A'M>t

and

forall ¢ € [0, T]. Hence

"1+ pY(2) N
dY,(2) = (X - M),,
| =5 (2)= (- M),
and, by integrating both parts of this equality with respect to Y (2)/(1 — p? + p?Y (2)), we
obtain that Y (2) satisfies
t 2(9\)2
Y2(2)X

Yi(2) =Yo(2) + / L o
=N | T v
which implies that the triple (Y(2),4(2) = 0, L(2) = 0) satisfies (4.4) and Y (2) = V(2)
by Theorem 4.2. Equations (4.38) and (4.39) follow from (4.35) and (4.7), respectively, by
taking ¢(2) = 0. O

d(M),, (4.40)

Remark 4.2. In case FS C G we have M = M and p = 1. Therefore (4.40) is lin-
ear and Y;(2) = e Mie—(AM)r p the case A = G of complete information, Y;(2) =

AN = (A-N) 1
5. DIFFUSION MARKET MODEL
Example 1. Let us consider the financial market model
dS; = Sy (n)dt + Syoe(n)dwy),
dne = a(n)dt + by (n)dw,

subjected to initial conditions. Here w® and w are correlated Brownian motions with
Edwldw, = pdt,p € (—1,1).

Let us write

wt:pw?+ 1_p2wtla
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where w? and w' are independent Brownian motions. It is evident that w' = —+/1 — p2w’+
pw! is a Brownian motion independent of w, and one can express Brownian motions w" and
w' in terms of w and w as

w) = pw; — /1 — p2wit, w=+/1- ptw, + pwi. (5.1

Suppose that b2 > 0, o2 > 0, and coefficients 1, o, a, and b are such that "7 = Ftwo’w
and F)' = F}".

We assume that an agent would like to hedge a contingent claim H (which can be a func-
tion of St and 7r) using only observations based on the process 7. So the stochastic basis
will be (2, F, F}y, P), where F; is the natural filtration of (w®, w) and the flow of observable
events is G = F}*.

Also denote dS; = pdt + oydw?, so that dS; = S,dS, and S is the return of the stock.

Let 7; be the number of shares of the stock at time ¢t. Then m; = frtgt represents an
amount of money invested in the stock at the time ¢ € [0, T']. We consider the mean-variance
hedging problem

T 2
to minimize E|:<x+/ 7,dS, H) } overall # forwhich #S e I(G), (5.2)
0

which is equivalent to studying the mean-variance hedging problem
T 2
to minimize E Kx + / mdSy — H> } overall = € II(G).
0

Remark 5.1. Since S is not G-adapted, 7; and 7¢ S, cannot be simultaneously G-predictable
and the problem

T 2
to minimize E [(x + / TydSy — H) ] overall 7 €II(G)
0

is not equivalent to the problem (5.2). In this setting, condition (A) is not satisfied, and it
needs separate consideration.

By comparing with (1.1) we get that in this case

¢ t
M, z/ osdw?, (M); = / ods, N\ = 'u—;
0 0

0%

It is evident that w is a Brownian motion also with respect to the filtration Fv” " and con-
dition (B) is satisfied. Therefore by Proposition 2.2

t
M; = p/ osdws.
0

By the integral representation theorem the GKW decompositions (3.2) and (3.3) take the
following forms:

t t
cy =FEH, H, =cy +/ hsogduw® +/ hldw!, (5.3)
0 0

t t
H, =cy + p/ hE o ydw, +/ htdw?. (5.4)
0 0
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By putting expressions (5.1) for w® and w! in (5.3) and equalizing integrands of (5.3) and
(5.4), we obtain

hJ_
hy :p2h? — /1 _p27t
Ot
and hence N
~ — hi
b= p?h¥ — VT= 2 2L,
Ot
Therefore by the definition of h
. L
hy = p>h¢ — hy = /1 — p2 =& (5.5)
Ot

By using notations
i
Z5(0) = posps(0), Zs(1) = posps(l), Zs(2) = posps(2), Os = =,

Os

we obtain the following corollary of Theorem 4.1.

Corollary 5.1. Let H be a square integrable Frr-measurable random variable. Then the pro-
cesses Vi(0), V4(1), and V;(2) from (4.3) satisfy the following system of backward equations:

! 2

¢ _ — 27l
V(1) = Vo(1) + /0 <PZS<2>+08%(2>>1<;:Z;2(1+) :2%51) VIZP )

t
ds+/ Z(2)dws, Vr(2)=1, (5.6)
0

+/O Z(Wdw,, Vr(1) = E(H|Gr), 5.7)
_ " (pZs(1) +0.Va(1) — /1= p? h)?
+/ Z4(0)dw,, Vr(0) = E*(H|G7). (5.8)
0

Besides, the optimal wealth process X* satisfies the linear equation
t
T pZs(2) +65Vs(2) 5.
Xf=x— X*(0.d dw,
t =T A 1—p2 + p2V,(2) s (0sds + pdwy)
Y pZ,(1) + 0,Vi(1) — /T — p? h-
+/ pZs(1) +9 é( ) _ PR (Gyds + pduw,). (5.9)
0 L —p%+ p2Vs(2)

Suppose now that 6; and o; are deterministic. Then the solution of (5.6) is the pair
(Vi(2), Z1(2)), where Z(2) = 0 and V' (2) satisfies the ordinary differential equation

avi(2) _ BV2(2)
dt - 1—p2+p2V,(2)
By solving this equation we obtain

T
Vt(2):u(p,1—p2+/ 9?ds> =", (5.11)
¢

Vr(2) = 1. (5.10)
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where v(p, «) is the solution of (4.37). From (5.10) it follows that
/ 92,9-r 0,p s 92,04
(nef?) = —F o and = / AT (51
1— p2 + p2f* P ¢ 1— p2+ p20P
If we solve the linear BSDE (5.7) and use (5.12), we obtain

N : grl,f,p
Vi(1)=F [HT(w)EtT </ ————— (Opdr + pdwr)> Gt} ,
o 1—p2+p2p?

T 0,0 ~ . 0P
/ 0”—"0E [hs(w)&s (—/ M)(Grd“rpdwr)) |Gt] ds
o T g2+ g2l 0 1= p?+ 2w

0,p 77 ' QTVf,p
=V E HT('LU)EtT — A mpdwr |Gt

T : 4
s B 9 75P
+ z/f"’/ H—OE [hs(w)gts (—/ Mapd“%) Gt} ds.
v 1—p? 4 pus” 0 1—p*+p2n”

By using the Girsanov theorem we finally get

0,p =~ ’ erfvp
W(l) :I/t7 FE HT p/o Wd’f‘"‘w |Gt

T . 7
s - 0,19°
+uf*ﬁ/ — g {hs (p/ Vedr+w) |Gt] ds.  (5.13)
t 1—p2+p2ug” 0o 1—p2+p2”

Besides, the optimal strategy is of the form
e 0:Vi(2) o P2 +0Vi(1) — V1= p? it
f A= V(@) (1= p? + p?Vi(2))
If, in addition, 1 and o are constants and the contingent claim is of the form H =H(St, nr),
then one can give an explicit expressions also for h, ht, H, and Z(1).

O

Example 2. In Frey and Runggaldier [9] the incomplete-information situation arises, assum-
ing that the hedger is unable to monitor the asset continuously but is confined to observations
at discrete random points in time 7y, 7s, . . . , T,. Perhaps it is more natural to assume that the
hedger has access to price information on full intervals [o1, 71], [02, T2], . . . , [0, T»]. For the
models with nonzero drifts, even the case n = 1 is nontrivial. Here we consider this case in
detail.

Let us consider the financial market model
dS; = pSydt + 0S;dWy, So =S,
where W is a standard Brownian motion and the coefficients ;1 and o are constants. Assume
that an investor observes only the returns S; — Sy = fot %dsu of the stock prices up to a

random moment 7 before the expiration date T'. Let A; = F;°, and let 7 be a stopping time
with respect to /. Then the filtration G of observable events is equal to the filtration £ .
Consider the mean-variance hedging problem

T 2
to minimize FE [(x + / mdSy — H) } overall =« e€TI(G),
0



56 Mean-Variance Hedging under Partial Information

where 7; is a dollar amount invested in the stock at time ¢.
By comparing with (1.1) we get that in this case

Nt:Mt:UWt, <M>t20'2t, )\t: K

; .

Let 0 = L. The measure () defined by dQ = E7(6W)dP is a unique martingale measure for
S, and it is evident that @) satisfies the reverse Holder condition. It is also evident that any
G-martingale is F’ o -martingale and that conditions (A)—(C) are satisfied. Besides,

E(Wi|Gy) = Wine, Sy=put+oWin, and py = Ijcny. (5.14)

By the integral representation theorem
t
E(H|F?) = EH+/ hyodW, (5.15)
0

for F-predictable W -integrable process h. On the other hand, by the GKW decomposition
with respect to the martingale W™ = (Wya ., t € [0,T]),

t
E(H|Ff) = EH + /O hSodw] + LE (5.16)

for F'*-predictable process h¥ and F'® martingale L strongly orthogonal to W ™. Therefore,

by equalizing the right-hand sides of (5.15) and (5.16) and taking the mutual characteristics
tAT

of both parts with W7, we obtain fo (hGp2 — h,)du = 0 and hence

t t t
/ hrudu = / (A Tusr) — hu) du = —/ Ttusn E (hu|F5) du. (5.17)
0 0 0
Therefore, by using notations
Z5(0) = pops(0), Zs(1) = pops(1), Zs(2) ops(2),

=p
it follows from Theorem 4.1 that the processes (V;(2), Z:(2)) and (V;(1), Z:(1)) satisfy the
following system of backward equations:

V,(2) =V0(2)+/MT (2:(2) +6V,(2)) ds+/t 0?V2(2)ds

0 Vs(2) Ar
. /t/\T Z,(2)dW,, Vr(2) =1, (5.18)
0
V1) — Vo1 1 AW (Z5(2) + 9%(2‘/)5)((22)5(1) +OV,(1)) i

o[ 0v@ Vi) + B (1]F5)) s

tAT
tAT
+ [ zaw. Vi) = B(HIGY). (5.19)
0
Equation (5.18) admits in this case an explicit solution. To obtain the solution one should
solve first the equation

t
U =Uy+ / 0?U2ds, Ur =1, (5.20)
0
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in the time interval [, T'] and then the BSDE

t(Z,(2) +0V,(2))° t
) =1@+ [ %G " @), + [ zeaw. (5.21)
0 s 0
in the interval [0, 7], with the boundary condition V,.(2) = U,. The solution of (5.20) is
1
U=
T1e(T—1)

and the solution of (5.21) is expressed as

1
O = B e ez, o E)

(this can be verified by applying the Itd formula for the process V; *(2)E?(—0W) and by
using the fact that this process is a martingale). Therefore

. — if t>71
1102(T—1) 1 ZT
Vi(2) = 1 i p<r (5.22)
B((1462(T—r)E2 . (—0W)|FF) -
According to (4.37), taking in mind (5.14), (5.17), and the fact that e~ Ji 0V (2)du — m
on the set t > T, the solution of (5.19) is equal to
H T ov,(2hudu g
Vl)=E| ——w—— U FS )T
(1) <1+92(T—t)+/t 1+e2(T—u)‘ T) (t>7)
0(2) + AV (2) H
El& - ——2 .8 ———nw—
+ ( t ( V() 1+ 02(T — 1)
T
OV (2)hydu s
+/ HGQ(T_U))Wt Ti<r)- (5.23)

By Theorem 4.1 the optimal filtered wealth process is a solution of a linear SDE, which takes
in this case the following form:

tAT t
X =x— / Pu(2) £ 6Vu(2) *(Odu + dW,,) — 02V, (2) X du
0

Vu(2) tAT
tAT t
+/ M(Gdzﬁ—dﬂfu)—&-/ (0°Va(1) + pE (hu|F7)) du. (5.24)
0 Vu(2) tAT

The optimal strategy is equal to
= {_ ©t(2) + 0V;(2)

Vi(2)
@i (1) +0Vi(1)

Vi(2)
where X} is a solution of the linear equation (5.24), V(2) and V(1) are given by (5.22) and

(5.23), and (2) and (1) are integrands of their martingale parts, respectively. In particular
the optimal strategy in time interval [7, T (i.e., after interrupting observations) is of the form

= =02V, (2)X; + 02Vi(1) + pE (| FS) (5.26)

T<ry — 92‘/2(2)1(t>r)] X;

Iner + (°Vi(1) + pE (| FY)) Lisry, (529
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where
- X
X* = T @
1 402(t— 1)

For instance, if 7 is deterministic, then V;(2) is also deterministic:

1
Vi(2) = {“925”’ —0%(r—1)
1102(T—0) ¢

1

/ (PV.) = 1B (0 F2)) 1=y

if t>7,
if t<7,

and p(2) = 0.
Note that it is not optimal to do nothing after interrupting observations, and in order to act
optimally one should change the strategy deterministically as it is given by (5.26).

APPENDIX A

For convenience we give the proofs of the following assertions used in the paper.

Lemma A.1. Let conditions (A)—(C) be satisfied and ]\//E = E(M;|G}). Then <J/\4\> is abso-
lutely continuous w.r.t. (M) and p‘™ a.e.

p? = d{M);

td(M),

<1

Proof. By (2.4) for any bounded G-predictable process h
2

t t t
E [ h2d(M),=F </ hdes> =F (E </ hdes|Gt>)
0 0 0

t 2 t
<FE (/ hdes> :E/ R2d(M)s,, (A.1)
0 0

which implies that (M) is absolutely continuous w.r.t. (M), i.e.,

2

t
(31 = [ ptaon).
for a G-predictable process p. O

—

Moreover (A.1) implies that the process (M)—(M) is increasing and hence p? < 1 p{M)
a.e.

Lemma A.2. Let H € L*(P, Fr), and let conditions (A)—(C) be satisfied. Then
T ~
E/ h2d(M), < cc.
0

Proof. It is evident that

T T
E [ (hS)2d(M), < o, E/ h2d(M), < cc.
0 0



Stochastic Analysis: Applications to Statistics and Finance 59

Therefore, by the definition of h and Lemma A.l,

o~

T T _ T 2
E/ R2d(M), < 2E/ h3d<M>u+2E/ (hg) pLd(M),
0 0 0

T T
< 2E/ h2d(M)., + 2E/ (hS)? p2d(M), < oo.
0 0

Thus & € TI(G) by Remark 2.5. O

Lemma A.3. (a) Let Y = (Y;,t € [0,T)) be a bounded positive submartingale with the
canonical decomposition
Y: =Yoo+ B + my,
where B is a predictable increasing process and m is a martingale. Then m € BMO.
(b) In particular the martingale part of V(2) belongs to BMO. If H is bounded, then
martingale parts of V(0) and V (1) also belong to the class BMO, i.e., fori =0,1,2,

T
B( [ ARG, ) + E(m)r - (m) G <C (a2
for every stopping time T.

Proof. By applying the Itd formula for Y2 — Y2 we have

T T
(m)p — (m), + 2 / Y,dB, +2 / Y,dm, = Y7 —Y? < const (A.3)

Since Y is positive and B is an increasing process, by taking conditional expectations in (A.3)
we obtain
E({(m)r — (m),|F;) < const

for any stopping time 7, and hence m € BMO.
(A.2) follows from assertion (a) applied for positive submartingales V' (0),V(2), and
V(0) + V(2) — 2V(1). For the case i = 1 one should take into account also the inequality

(m(1)): < const((m(0) +m(2) —2m(1)): + (m(0))¢ + (m(2))s). O
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SOLVABILITY OF BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS
WITH QUADRATIC GROWTH

R. TEVZADZE

Abstract. We prove the existence of the unique solution of a general Backward Stochastic
Differential Equation with quadratic growth driven by martingales. Some kind of comparison
theorem is also proved.

Key words and phrases: Backward Stochastic Differential Equation, Contraction principle,
BMO-martingale

MSC 2010: 90A09, 60H30, 90C39

1. INTRODUCTION

In this paper we show a general result of existence and uniqueness of Backward Stochastic
Differential Equation (BSDE) with quadratic growth driven by continuous martingale. Back-
ward stochastic differential equations have been introduced by Bismut [1] for the linear case
as equations of the adjoint process in the stochastic maximum principle. A nonlinear BSDE
(with Bellman generator) was first considered by Chitashvili [4]. He derived the semimartin-
gale BSDE (or SBE), which can be considered as a stochastic version of the Bellman equation
for a stochastic control problem, and proved the existence and uniqueness of a solution. The
theory of BSDEs driven by the Brownian motion was developed by Pardoux and Peng [22] for
more general generators. The results of Pardoux and Peng were generalized by Kobylansky
[11], Lepeltier and San Martin [12] for generators with quadratic growth. In the work of Hu at
all [§] BMO-martingales were used for BSDE with quadratic generators in Brownian setting
and in [15], [16], [17], [18], [19], [21] for BSDEs driven by martingales. By Chitashvili [4],
Buckdahn [3],and El Karoui and Huang [7] the well posedness of BSDE with generators sat-
isfying Lipschitz type conditions was established. Here we suggest new approach including
an existence and uniqueness of the solution of general BSDE with quadratic growth. In the
earlier papers [15], [16], [17], [18], [19] we studied, as well as Bobrovnytska and Schweizer
[2], the particular cases of BSDE with quadratic nonlinearities related to the primal and dual
problems of Mathematical Finance. In these works the solutions were represented as a value
function of the corresponding optimization problems.

The paper is organized as follows. In Section 2 we give some basic definitions and facts
used in what follows. In Section 3 we show the solvability of the system of BSDEs for
sufficiently small initial condition and further prove the solvability of one dimensional BSDE
for arbitrary bounded initial data. At the end of Section 4 we prove the comparison theorem,
which generalizes the results of Mania and Schweizer [14], and apply this results to the
uniqueness of the solution.

Published in Stochastic Process. Appl. 118 (2008), no. 3, 503-515.
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2. SOME BASIC DEFINITIONS AND ASSUMPTIONS

Let (Q, F,F = (F})i>o0, P) be filtered probability space satisfying the usual conditions.
We assume that all local martingales with respect to F are continuous. Here the time horizon
T < oo is a stopping time and F = Frp. Let us consider Backward Stochastic Differential
Equation (BSDE) of the form

dY; = —f(t,Ys, 07 Zy)dK; — d(N)ge + Z;dM; + dNy, (2.1)
Yr =¢, (2.2)

We suppose that

o (M;,t > 0) is an R™-valued continuous martingale with cross-variations matrix
(M) = ((M*, M7)1)1<i j<n.

(K,t>0) is a continuous, adapted, increasing process, such that (M), = fot os0rdK
for some predictable, non degenerate n X n matrix o,

¢ is F-measurable an R%-valued random variable,

f:Qx R x R4 x R**? — R%is a stochastic process, such that for any (y, z) €
R x R™*4 the process f(-,-,¥, ) is predictable,

e g:Qx RY — R4 s apredictable process.

The notation R™*? here denotes the space of n x d-matrix C' with Euclidian norm |C| =
\/tr(CC*). For some stochastic process X; and sopping times 7, v, such that 7 > v we
denote X, ; = X, — X,. For all unexplained notations concerning the martingale theory
used below we refer [9], [5] and [13]. About BMO-martingales see [6] or [10].

A solution of the BSDE is a triple (Y, Z, N) of stochastic processes, such that (2.1), (2.2)
is satisfied and

e Y is an adapted R?-valued continuous process,
e Z is an R™*“%-valued predictable process,
e N is an R%valued continuous martingale, orthogonal to the basic martingale M.

One says that (f, g, &) is a generator of BSDE (2.1),(2.2).
We introduce the following spaces

o L®°(RY) ={X :Q — R Fr — measurable, || X| o = esssup|X (w)| < oo},
Q

o S®(RY)={p: OxR*— R?, continuous, adapted, ||| =esssup|p(t, w)| < oo},
[[0,77]

. H2(R™<4, ) = {<p :Q x R — R predictable,
T
ol = ess supE(/ |a:gas|2sz|]-'t) = esssupE(tr{p - M>tT|]-'t) < oo}, (2.3)
([0, 71] t [[0,77]
e BMO(Q)={N, R?valued Q-martingale ||N||2Q =esssupE? (tr(N) | F;) <oo}.
([0, 77]

. T
We also use the notation |r|, o for the norm || [ r2dK||oc.
The norm of the triple is defined as

1Y, 2, N)II* = [Y]I* + 12115 + N1

Throughout the paper we use the condition



Stochastic Analysis: Applications to Statistics and Finance 63

A) There exist a constant ¢ and predictable processes

a: QxR = RLT:Qx RY — Lin(R™%, RY), r:Qx R" - R,

such that the following conditions fOT redK,, fOT

lg¢| < 62 and

r2dKs € L*, T(071) € H2, |ou| < 14,

|f(t,y1, z1) — f(t, g2, 22) — ae(yr — y2) — T'e(z1 — 22))|
< (relyr — yal +0lz1 — z2]) (re([ya] + [y2]) + 0(|21] + |22])) (2.4)

are satisfied.
Sometimes we use the more restrictive conditions

B1) [ |£(t,0,0)|dK; + |g;| < 6% forall t € [0,T],
BZ) |fy(t7yaz)| S Tty ‘fZ(tayvz)‘ S e+ 9|Z| for all (tvy7z)’
B3) |fyy(t,y,2)| <72, |fy=(ty, 2)| < Ory, |fou(t,y,2)| < 62 forall (¢,y, 2).

Remark 1. Condition A) follow from conditions B1)-B3), since using notations éy = y; —
Y2, 0z = 21 — 2o for oy = fyy(¢,0,0), I'y = f.(¢,0,0) by the mean value theorem we have

|f(t,y1,21) — f(t, Y2, 22) — audy — T'4(62)]
= |fyt, vy + (1 —v)ya2, vz1 + (1 — v)29)dy — f,y(¢,0,0)dy|
+1(t vy + (1 —v)ye, vz + (1 — v)29)(62) — f.(¢,0,0)(62)],

for some v € [0, 1]. Using again mean value theorem we obtain that

|f(t,y1,21) — f(t, Y2, 22) — ady — T4 (02)|
< (lvyn + (1 —v)ys| max | fyy (9, 2)| + [v21 + (1 = v) 2] H;aZX|fyz(t7y,Z)|)|5y\
+(lvyr + (1 —v)ys| max | fyz(t, 4, 2)| + [vz1 + (1 — v)2s| max |f2=(t, y, 2)])]02]
< il + [ya2]) + re0(z1] + 122)]10y] + [r:0(|y1| + ly2]) + 6°(|21] + |22])]|02]

= (reloy| + 010z]) (re(yr| + |y2|) + 0(|21] + [22]).

Remark 2. If d = 1 the operator I'; is given by an n-dimensional vector v; such that T's(z) =
v; z. Thus inequality in A) can be rewritten as

|f(t7 Yi, Zl) - f(t7y27 22) - atéy - 7:62|
< (rel oyl + 0102) (re([ya| + ly2l) + (21| + |22]))-
The main statement of the paper is the following

Theorem 1. Let £ € L°°, d = 1 and conditions B1)-B3) are satisfied. Then there exists a
unique triple (Y, Z,N), where Y € S, Z € H%, N € BMO, that satisfies equation (2.1),
(2.2).

3. EXISTENCE OF THE SOLUTION

First we prove the existence and uniqueness of the solution for a sufficiently small initial
data.
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Proposition 1. Let f and g satisfy condition A) with o« = 0 and -y, = 0. Then for & with the
norm ||§l o < ﬁ, B = 8max(|r|3 ., 0?) there exists a unique solution (Y, Z, N') of BSDE

Yr =¢,

with the norm ||(Y, Z, N)|| < R, where R is a constant satisfying the inequality 4||&||%, +
B%R* < R?, namely R = 2v/2||¢|| .-

Moreover, if ||€]|oc + || f3~ 1£(5,0,0)|dK|| o is small enough then BSDE (2.1) admits a
unique solution.

Proof. We define the mapping (Y, Z, N) = F(y, z,n), n is orthogonal to M, (y, z-M+n) €
S2° x BMO(P) by the relation

dY; = (f(¢,0,0) — f(t, ye, 0 2))dK; + d{n)ge + Z; dM; + dNy,
Yr =¢&. (3.2)

Using the 1t6 formula for |Y;|> we obtain that

T
Vi = Je? + 2 / Y2 (5,90 07 20) — £(5,0,0))dE
t
T T T T
+2/ Ys*d<n>sgs—/ trZ§d<M>SZS—tr<N>tT—/ YS*Z;‘dMS—/ Y*dN,.
t t t t

If we take the conditional expectation and use (2.3) and the elementary inequality 2ab <
1a? +4b%, we get

T
1
it B( [ losz P, + el 7 ) < 61+ JIVIE
t

T

T
+4E2</t |f(s,ys,0%2s) —f(s,O,O)IdKS—F/t Igsldtr<n>s|]-‘t>. (3.3)

Thus using condition A), identities

t t t
tr{z- M); = tr/ zid{M)szs = / tr(ziosorzs)dKs = / ot 25 |2d K (3.4)
0 0 0
and explicit inequalities

1
FUYIE + 12 - M+ Nlgvo) < max(|[Y |5, 12 - M + Nllgmo)

T
< esssup [Yt|2 + E(/ |cr;‘Zs|2sz + tr(N)tT|]-"t>}
[[0,77] t
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we obtain from (3.3)

1 1
VI + 5012 M+ Nl

T
< ||«£||2 + 4ess supEQ(/ |f(s,ys,00525) — f(5,0,0)|dK; + 92tr<n>tT|}}) (3.5)
[[0,77] t

)

T
< I€I1* + 166[s[gsTl]1]pE2</t r2y2dK, + 0*tr(z - M + n)tT}}>

< 1P + 6]l gl + 1667 - M + nlltyo.
Therefore
Y12 +11Z - M + Nlgmo < 4I€NI* + 64]r]2 oo Ilyll3 + 646™]|2 - M + nllzyo
< 4Yl&l* + B2yl + 12 - M + nllgyo)?,
where 8 = 8max(|r[3 ., 6?). We can pick R such that
Allgl* + B*R* < R?

if and only if ||{]|cc < ﬁ. For instance R = 2v/2||¢||o satisfies this quadratic inequality.
Therefore the ball

Br={(Y,Z-M+ N) € S° xBMO, NLM, |Y|% +|Z M + N|jzyo < R?}

is such that F/(BR) - B_R. _
Similarly, for (y/,27 - M + n?) € Bgr, j = 1,2, using the notations dy = y' — 32,

80z =zt — 22, 6n = n! — n?, we can show that

T
1Y 12 + 152 - M + 6N |20 < 4eﬁ§sTl]l]pE2( [ 1 ukotzd) = S22,
s t

T
—|—/ |lgs|dvar(tr(on, n* +n2>)s|]-'t)
t

T
< SesssupE(/ (r2|6ys|* + 92|0:6z3|2dK3)|}"t>
([0, 77] t

T
E( | 0+ 12+ 0ozt + 10222 >2sz>3)
t

+0?E(tr(6n)r | Fs) E(tr(n' + n?) | F)

Again using the equalities (3.4) we can pass to the norm. Thus

1Y 12 +116Z - M + 6N|[gmo < 8(I713,00 1% + 621162 - Ml[Euo)
X (713,00 (191 36 + 197 15) + 6% (12" - M3 + [12° - M|[3)

+26°[[6n3mo (17" 13m0 + 172 ([3m0)?)-

Since ||zt - M|, ||2% - M|| < R, ||nt]], |n?|| < R, we get

I18Y |3 + 1162 - M + 8N gm0 < 1286°R*(||8yl1%, + (162 - M|[guo) + 467 R*|[on]Fmo
< 12887 R ([l6yl% + 162 - M + 0n[Fmo)- (3.6)
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Now we can take R = 2v/2||¢[[o0 < 8\%5. This means that [|{||cc < ﬁ and F is

contraction on Br. By contraction principle the mapping F' admits a unique fixed point,
which is the solution of (3.1). [l

From now we suppose that d = 1.
Lemma 1. Let condition A) is satisfied. Then the generator (f, g, ), where
F(t.5,7) = edo st (f(t e Jo ™™ g em Jo e gy £(2,0,0)) — cu — 7 7,
ge=e JoodFeg and &= eld adog,

satisfies condition A) witha =0,y =0, r, = rte” Jo rsdKsllee gnd § = fell i radKslloo
Moreover, (Y, Z, N) is a solution of BSDE (3.1) if and only if

t
(Vi 2080 = (el oty el [ iy,
0

is a solution w.r.t. measure dP = Er((yo~') - M)dP of BSDE
dY, = — f(t,Ys, 07 Zy)dKy — d{N):gs + Z; dM; + dNy, (3.7
Yr =¢,
where M; = My — {(yo=1) - M, M);.
Proof. Condition A) for (f, g, €) is satisfied since by (2.4)
£t 51, 51) = f(t, 5, 22)| < €0 @M (1, |55| + 00Z)) (ro (70| + 7)) + 0(171] + |721))
< (7elog] + 0102]) (e (171] + [72]) + 0(1Z1| + |Z2]))-
On the other hand, using the It6 formula we have
dY, = el - qy, 4 apelo K-y d K,
= elo et (£(2,0,0) = f(2,Yi, 07 Z)dK, + el @< d(N) g,
+ efo oudKe Zxq, + efo KN, + 0,V d
Taking into account that
elo @K (£(1,0,0) — f(t,Ys, 07 Z,) + Yy = — (1, V2,07 Z0) — oy Za,
eJo @K (N gy = d(N)ge™ Jo @08 g, = d(N),g,
and

Z' M */ ’)/tO':thKt = ZM*/ ’YtO't_lo'tO';thKt
0 0

=Z-M— | yoy'dM),Zy =2 -M—((y-07")-M,Z-M)=2-M

we obtain
dY, = —f(t,Ys, 07 Zy)dK; — d{N).gy + ZydM; + dNy.

Here M is a local martingale w.r.t. P by Girsanov theorem. O
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Corollary 1. Ler f and g satisfy condition A) and ||£]|cc < ﬁ exp(—2|| fOT rsd K|l oo)-
Then there exist the solution of (3.1) with the norm ||Y |2, +||Z - M + N||]23MO(1—3) < ﬁ.

Proof. Tt is obvious that

T
Y1212 M+ N Bsoqey < (171 + 12 - 3 + N0, ) exp (zn / rsdmnm)

T T
< 8]1€|% exp (2 / rsdmnm) < 8]¢|% exp (4” / rsdmnm).
0 0

T T
From [|{]| < 32,8 exp(—2|| fo rsdK||s) follows that 8||§||Ooexp(4|| fo rsdKs||oo)

<
1852 Hence we get [[Y[|, + [ Z - M+NHBMO @) = T35 .

Corollary 2. Let generator (f, g,€) satisfies conditions B1)-B3) and (Y3, Z, Ny) be a solu-
tion of (3.1). Then BSDE

dY, = (f(t,Ye,07 Zy) — f(t,Ys + Yy, 07 2y + 07 Z4))dK, (3.8)
—d(<N>t + 2<N7 N>t)9t + Zt*th + th
Vr=¢

satisfy condition A) with —f(t,y,2) = f(t,Ys,072) — f(t,y + Yi,z + 07 Z4), ap =
fu@& Y, 07 Zy), v = f.(t, Yy, 0f Z,) and the new probability measure Ep(2g - N)dP. More-
over (3.8) admits a unique solution (Y, Zz, N¢) if €]l oo < ﬁ exp(—2|| [; rsdKs|loo)-

Proof. Using a change of measure equation (3.8) reduces to equation of type (3.1). By pre-
vious corollary we obtain the existence and uniqueness of the BSDE. (I

Lemma 2. Let conditions B1)-B3) be satisfied and random variables §~ and é be such that
maz(||€]ss, |€]lo) < 32ﬁ =21 Jo" r2dK< Nl Then there exist solutions of BSDEs (3.8) and
dYy = (f(£,0,0) = f(t, Y, 07 Z))dK; — d{N).ge + Z{dM, + dN,, (3.9)
Yr=¢
and the triple (Y, Z,N) = (Y + Y, Z + Z,N + N) satisfies BSDE
dYy = (f(t,0,0) = f(t, Y1, 00 Z¢))dK; — d{N)igi + Z;dM; + dNy,
Yp=£+¢.
Proof. Similarly to the Remark from Section 1 we can show that for
fty,2) = F(8,Ys,07Z0) = [ty + Vi, 072 + 07 Z),
o = fy(t,f/t,a;‘Zt), Ve = fz(t,ﬁ,a;‘Zt),the estimate
|F(ty1,21) — f(t,y2, 22) — by — ;7 02|
< (reldy| + 010z]) (re(lya] + [y2]) + 0(121] + |22]))

holds.
Now by Lemma 1 and Corollary 2 of Lemma 1 we obtain the solvability of both equations
(3.9), (3.8). (]
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Proposition 2. Let f and g satisfy condition B1)-B3) and £ € L*°. Then BSDE (2.1) admits
a solution (Y,Z - M + N) € S x BMO.

Proof. An arbitrary £ € L°(R) can be represented as sum £ = >, & with [|&]lec <
325 OXD(—2]| [y 75dK|[0). Denote by (Y7, Z7, N7), j = 1,...,m, the solution of
Ay = (fEY 4+ Yo (2 o+ 2
—FOY) Y 02 e+ Z])) K
—d((N7)y +2(N7 N + ...+ NI7Y,)g, + ZI*dM, + dN? (3.10)
=¢,
v?=0, 2°=0 N°=0.

By Corollary 1 we get

) . ) ) 1
2 2
Y91+ 127307 + N fnsoen < 5578

where dP7 = Ep( [y fo(s, YO+ +YI ™ ol (Z0+- -+ ZI71))o  'dM,)dP, and M7 =
— (LY YT e (20 4+ 277 ))o T M M.
Using Lemma 2 we get the existence of a solution for BSDE

d?} = (f(t, O, O) — f(t, )7t7 O';;Zt))th — d<N>tgt =+ Z:th + th
Yr =¢.
Since fOT t, 0 0)dK; is bounded we can apply the above argument with f replaced by
flt,y,z (t,y — fo $,0,0)dKs, z) to get the existence of solution

4%, = (f(£,0,0) — f(t, ¥ - / £(5,0,0)dK . 07 Z0))dK; — d{N)2gs + Z;dM; + dN;,
0

T
YT:£+/ f(SaOaO)dK
0
Obviously, Y; = fo 5,0,0)dK is a solution of BSDE (2.1), (2.2). O

4. A COMPARISON THEOREM FOR BSDES

Let us consider BSDE (2.1),(2.2) in the case d = 1.

Lemma 3. Let £ € L, and assume that there are positive constants C(f), C(g), increasing

function X : RT™ — R™, bounded on all bounded subsets and a predictable process k &
H?(R,1) such that

£ty 2)| < BEA(y]) + C()2, (4.1)

lg(t)] < C(g). (4.2)

Then the martingale part of any bounded solution of (2.1), (2.2) belongs to the space
BMO(P).
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Proof. LetY be a solution of (2.1), (2.2) and there is a constant C' > 0 such that
[Y:| < C as. forall ¢.

Applying the It6 formula for exp{ 8Yr } —exp{8Y:} and using the boundary condition Y7 =
& we have

52 T T
?/ BV 75 (M Z+—/ Ve d(N >s—5/ e f(s, Y, Z,)dK,

—@/ +5/ QY*ZdM—i—B/ PV dN,
= — PV < PC (4.3)

where [ is a constant yet to be determined.
If Z- M and N are square integrable martingales taking conditional expectations in (4.3)
we obtain

B;E(/TTGBYSZ:d< >Z|F> A . (/TTeﬁst<N>SIFT)

T T
<P ¢ 5E</ BYs (s,Ys, ZS)|dKS|FT) + BE</ eBY: g(s)|d<N>s|FT>.
Now if we use the estimates (4.1), (4.2), we get

B22E</TT65Y“Z:d< >Z|F> C </ ‘”“d<N>s|FT)

<Pl 4 ﬁ)\((])E(/ eﬁYskgsz|FT>
T . T
+/30(f)E< / eﬁ’”ﬂa:ZSPszlFT) + BE< / eBYs|g(s)|d<N>s|FT)
T
<Pl ﬁ)\(C)E(/ eBYSkdeS|FT>

+BC(f)E< / "oz <M>szs|2|FT> +C(g)ﬂE< / Teﬂysd<N>s|FT>.

Conditions (4.1) and (4.2) imply that

(5 -scwn)e( [ o zamn.zir)
+ (5 - scw)p( [ e amir)

T
<Pl 4 BA(C)E( / e’BYSkisz|FT>. (4.4)
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Taking 3 = 4C, where C' = max(C(f), C(g)), from (4.4) we have

ac” {E(/TT eBYSZ:d<M>SZS|FT> +E(/TT eﬁYSd<N>5|FT>}

< 0 (4ON(C)|K| i +1).
Since Y > —C, from the latter inequality we finally obtain the estimate

E((Z- M)1|F,) + B((N)1]F,) < eSCC[4C>\ig)2k||H +1] 45)

for any stopping time 7, hence Z - M, N € BMO.
For general Z - M and N we stop at 7,, and derive (4.5) with T replaced 7,,. Letting
n — 0o, the proof is completed. O

Further we use some notations. Let (Y, Z), (Y, Z) be two pairs of processes and (f, g, ¢),
(f,§,&) be two triples of generators. We denote:

6f:f_f7 6g:g_ga 6€:§_£a
FYe, Zh) = f(t,Y0, Ze)
Y, -Y;
forall j=1,...,n, 8,f(t,Ys, 2, Z;) = 8;f(t)
FOY, Zh, 2T 2 20 2 = f(L Y, ZE, . 2 2 T 2
7zl -7}
VIt)=(01f(t),...,0nf(t))".

)

Thus we have
F Y0, Ze) = f(8,Y0, Zy) = 0, f(£)8Y: + V f(1)"0Z,. (4.6)

Theorem % Let Y and Y be the bounded solutions of SBE (2.1) with generators (f,g,§)
and (f, g, &) respectively, satisfying the conditions of Lemma 3.

If€ = &(as) f(ty,2) > f(t,y.2) ("-ae), g(t) = g(t) (n'N)-a.e.) and f (or f)
satisfies the following Lipschitz condition:
Ll) foranyY,Y,Z
f<t7}/ta Zt) - fv(t7}/t7Zt) c SOO,
.- Y

L2) for any Z, Z € H? and any bounded process Y
(0:00) IV f(t, Yy, Zy, Zy) € H*(R™, o),
thenY; > Y; a.s. forallt €10,T).

Proof. Taking the difference of the equations (2.1), (2.2) with generators ( f, g, ) and (f, g, 5 )
respectively, we have

t
}/t_Yt:YO_YO_/ [f(57)/87ZS)_f(57)/8723)]dK3
0



Stochastic Analysis: Applications to Statistics and Finance 71

- / F(5.V2. Z0) — f(s, Vo, Z2)dK, — / l9(s) — §(s))(N).
0 0

- / F(s)A((N)s — (N)) + / (Z, — Z,)dM, + N — N,. 47
0 0

Let us define the measure Q by dQ = Er(A)dP, where
t t
A, = / Vf(s)*(0y0") " dM, + / G(s)d(N, + N,).
0 0

By Lemma 3 Z, Z € H? and N, N are BMO- martingales. Therefore Condition L1), L2)
and (4.2) imply that A € BM O and hence () is a probability measure equivalent to P.
Denote by A the martingale part of §Y =Y — Y, i.e.,

A=(Z—-Z)-M+N—N.
Therefore, by Girsanov’s Theorem and by (4.6) the process

t t o t
5, + / (B, F(8)5Y: + VF(5)°02,) K, + / 51(s, Vo, Z)dK, + / 59(s)d(N),
0 0 0
=¥t [ (@,£(5)8. +55(5,Va, Zu)d.
0

+/O Vf(s)*(asa:)*1d<M)s5Zs+/ dg(s)d(N)s

0

= /O'g(s)d«N)s —(N)y) + /O (Zy — Zs)dM, + Ny — Ny = Ay — (A, A),

is a local martingale under . Moreover, since by Lemma 3 N € BMO, Proposition 11 of
[6] implies that
Ay — (A A); € BMO(Q).

Thus, using the martingale property and the boundary conditions Y7 = &, Yi = fN we have
Y-V
T . ~ T s . ~ =~ ~ ~ =~
= E° (eff ufedks (e — &) +/ eli QuludK(f(s, Y, Zs) — f(s,Ysst))szFt)

t

(| B ot (o) HNANIF)

t

which implies that Y; > Y, as. forall t € [0,T]. O

Corollary 3. Let condition A) be satisfied. Then if the solution of (2.1), (2.2) exists, it is
unique.

The proof of Theorem 1 follows now from the last corollary and Proposition 2.
Remark 3. Conditions L1), L2) are satisfied if there is constant C' > 0 such that
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and tr(o07)~! < Cforall y,5 € R, 2,7 € R* t € [0,T]. Conditions L1),L.2) are also
fulfilled if f(¢,y, z) satisfies the global Lipschitz condition and M € BMO.
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L?-APPROXIMATING PRICING UNDER RESTRICTED INFORMATION

M. MANIA, R. TEVZADZE AND T. TORONJADZE

ABSTRACT. We consider the mean-variance hedging problem under partial information in
the case where the flow of observable events does not contain the full information on the un-
derlying asset price process. We introduce a certain type martingale equation and characterize
the optimal strategy in terms of the solution of this equation. We give relations between this
equation and backward stochastic differential equations for the value process of the problem.

Key words and phrases: Semimartingale, incomplete markets, mean-variance hedging, par-

tial information, backward stochastic differential equation.
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1. INTRODUCTION

We assume that the dynamics of the price process of the asset traded on a market is de-
scribed by a continuous semimartingale S = (S;, ¢ € [0, T']) defined on a filtered probability
space (Q, F, F = (Fi,t € [0,T1], P), satisfying the usual conditions, where F' = Fr and
T < oo is the fixed time horizon. Suppose that the interest rate is equal to zero and the asset
price process satisfies the structure condition, i.e., the process .S admits the decomposition

t
Sy = So + M; +/ Ad(M)y, (A-M)r <oo as., (1.1)
0

where M is a continuous F —local martingale and ) is a F-predictable process.
Let us introduce an additional filtration smaller than F

Gy C F, forevery tel0,7].

The filtration G represents the information that the hedger has at his disposal, i.e., hedging
strategies have to be constructed using only information available in G. We assume that the
filtration G also satisfies the usual conditions.

Let H be a P-square integrable Fr-measurable random variable, representing the payoff
of a contingent claim at time 7.

We consider the mean-variance hedging problem

to minimize ~ E[(X7" — H)?] overall = ¢€II(G), (1.2)

where TI(G) is a class of G-predictable S-integrable processes to be specified later. Here
XPT =g+ fg T, dS,, is the wealth process starting from initial capital z, determined by the
self-financing trading strategy = € I1(G).

In the case § = F of complete information the mean-variance hedging problem was
introduced by Follmer and Sondermann [9] in the case when S is a martingale and then

Published in Appl. Math. Optim. 60 (2009), no. 1, 39-70.
73
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developed by several authors for price process admitting a trend (see, e.g., [7], [13], [26],[27],
(25], [11], [12], [1D).

Asset pricing with partial information under various setups has been considered. The
mean-variance hedging problem under partial information was first studied by Di Masi,
Platen and Runggaldier (1995) when the stock price process is a martingale and the prices are
observed only at discrete time moments. For a general filtrations and when the asset price pro-
cess is a martingale this problem was solved by Schweizer (1994) in terms of G-predictable
projections. Pham (2001) considered the mean-variance hedging problem for a general semi-
martingale model, assuming that the observable filtration contains the augmented filtration
FS generated by the asset price process S

FSCG, forevery tel0,T]. (1.3)

In this paper, using the variance-optimal martingale measure with respect to the filtration G
and suitable Kunita-Watanabe decomposition, the theory developed by Gourieroux, Laurent
and Pham (1998) and Rheinldnder and Schweizer (1997) was extended to the case of partial
information .

If 75 C G, then the price process is a G-semimartingale and the sharp bracket (M) is
G-adapted. If G is not containing F S then S is not a G-semimartingale and the problem is
more involved. At the beginning of Section 3 under mild conditions (see Proposition 3.1)
we derive a ‘forward-backward’ equation which gives a necessary condition of optimality.
In the case when S is a martingale this equation admits an explicit solution and gives the
optimal strategy constructed by Schweizer (1994). We focus our attention to the case when
the filtration G of observable events does not contain the full information about the asset price
process S. In this case this equation is hard to solve and we require the following additional
assumptions:

A) (M) and X are G-predictable,

B) any G- martingale is an F-local martingale,

D) there exists a martingale measure for .S that satisfies the Reverse Holder condition (see
definition in Sgction 2).

Denote by Y and PY” - the G-optional and G predictable projections of a process Y. For the
processes of finite variation, by Y? we denote the dual G-predictable projections. Condition
A) implies that

t
5, = E(S.|G:) = So + / (M) + M.
0
Let
t
H, = E[H] +/ hydM, + LY
0
and

t
H, = E[H] + / WS, + L
0
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be the Galtchouk-Kunita-Watanabe (GKW) decompositions of H; = E(H|F;) with respect
to local martingales M and M, where h, h9 are F-predictable process and L, L7-9 are F-
local martingales strongly orthogonal to M and M respectively. We shall use also notations:

d(M), - = _ 5 /T he s
2 Gy 2
= , hy =P(h —Phy and H = Hp — dS; — o
Pt d<M>t t ( )tpt t T o 1 —,0? t
We introduce the following martingale equation
T
~ ~ 1 —
G- [ 3 [N+ o8] (M) + diE). (1.4)
o 1—

The solution of this equation is a pair (Y 1/1) where Y is a square integrable martingale and
1/} is defined by the GKW decomposition of Y

t
Y,;:YOJr/ UudM, + Ly, (M, L)=0. (1.5)
0

Now we formulate the main result of the paper which is proved in Section 3.

Theorem. Let conditions A), B) and D) be satisfied. Assume also that EH? < oo and
pr < lfor all't € [0,T). Then there exists a unique solution (Y , 1)) of equation (1.4) and the
strategy 7* is optimal if and only if it admits the representation

* 1 7 e i
mi = = (b Vi + o7 (1.6)
1 —p;

In Section 4 (see Propositions 4.2 and 4.3), we establish connections between equation
(1.4) and BSDEs for the value process of the problem (1.2) derived in [21], additionally
assuming that

C) the filtration G is continuous, i.e., all G-local martingales are continuous.
It was shown in [21] that the optimal strategy is determined by

o AVi(1) + pRoe(1) = X7 (A VA(2) + pFen(2))
! L—pf +p7Vi(2)

where the triples (V(1), (1), L(1)) and (V(2), (2), L(2)) satisfy the following system of
BSDEs

. XT =u, (1.7)

(AVi(2) + 20 (2)) (N Vi (1) + pPepe (1))

AVi(1) = T ) d(M)e + ()M, + dLy(1), (18)
Vr(1) = H.
avi(2) = QYL@ ynry o) al, +dLu@), Ve@) =1, (19)

L—p} + piVi(2)
Here L(1) and L(2) are G-local martingales strongly orthogonal to M.

Note that, to construct the optimal strategy (1.6) we need to solve only equation (1.4),
which is easier to solve than equation (1.9), whereas for the construction of the optimal
strategy by (1.7) one should solve equation (1.9) and two linear equations (1.7) and (1.8).
Besides proving the main theorem we don’t need the continuity of the filtration G imposed in
[21]. On the other hand the construction by (1.4), (1.6) does not contain the case of the full
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information, since in this case p?> = 1 and the integral in (1.4) is not defined (this case can be
included only by using certain limiting procedures), but the construction (1.7)- (1.9) includes
this case directly.

The relations between these equations are as follows (here we assume that condition C) is
satisfied):
If (}7, 1) is a solution of (1.4) for H equal to strictly positive constant ¢, then the processes
Y, c— fot Wngu are strictly positive and the process

_n
c— fot 7:dS,’
where 7* is defined by (1.6), satisfies the BSDE (1.9).

On the other hand, if the triples (V' (1), (1), L(1)) and (V(2), ¢(2), L(2)) satisfy (1.8)-
(1.9), then the pair (Y,1)), where Y; = V;(1) — X7 V;(2) and ¢y = ¢(1) — Vi(1)7} —
<pt(2)Xt”* (7* and X;T* are defined by (1.7)), is a solution of equation (1.4).

In Section 5, we consider a diffusion market model which consists of two assets .S and 7,
where S; is a state of a process being controlled and 7 is the observation process. Suppose
that S; and 7, are governed by

Ut:

dSt = pe(n)dt + at(n)dw?,
dne = ag(n)dt + by(n)dwy,

where w® and w are Brownian motions with correlation p. In this case F; = ]_-ts " and the
flow of observable events is G; = JF;'. We give in the case of markovian coefficients solution
of the problem (1.2) in terms of parabolic differential equations (PDE) and an explicit solution
when coefficients and the contingent claim are deterministic.

2. MAIN DEFINITIONS AND AUXILIARY FACTS

Denote by M€ (F) the set of equivalent martingale measures for .S, i.e., set of probability
measures () equivalent to P such that S is a F-local martingale under Q.
Let

M5(F) ={Q € M*(F) : EZ}(Q) < oo},
where Z;(Q) is the density process (with respect to the filtration F) of @ relative to P.

Remark 2.1. If S is continuous, then the existence of an equivalent martingale measure and
the Girsanov theorem imply that the structure condition (1.1) is satisfied.

Note that the density process Z;(Q)) of any element ) of M°(F) is expressed as an
exponential martingale of the form

E(=\-M+N),

where N is a F-local martingale strongly orthogonal to M and £;(X) is the Doleans-Dade
exponential of X.

If the local martingale Z;"" = &£ (—\ - M) is a true martingale, dQ™" /dP = ZF"dP
defines an equivalent probability measure called the minimal martingale measure for S.
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Recall that a measure @) satisfies the Reverse Holder inequality Ry (P) if there exists a
constant C' such that

) |]:T) <C, P-as.
for every F-stopping time 7.

Remark 2.2. If there exists a measure () € M°(F) that satisfies the Reverse Holder in-
equality Ry(P), then according to Theorem 3.4 of Kazamaki [16] the martingale M® =
—X - M + N belongs to the class BM O and hence —\ - M also belongs to BMO, i.e.,

T
E(/ N2d(M),|Fy) < const 2.1)

for every stopping time 7. Therefore, it follows from Theorem 2.3 of Kazamaki [16] that
Ei(—A-M) is a true martingale. So, condition D) implies that the minimal martingale measure
exists (but Z™" is not necessarily square integrable).

For all unexplained notations concerning the martingale theory used below we refer the
reader to [6], [19], [15].

Let II(F) be the space of all F-predictable S-integrable processes 7 such that the stochas-
tic integral

t
(m-9) :/ TudSy, t€1[0,T],
0

is in the S? space of semimartingales , i.e.,
2

E( / ' w3d<M>s) n E( / ' |wsAs|d<M>s) <.

Denote by II(G) the subspace of II(F) of G-predictable strategies.

Remark 2.3. Since A - M € BMO (see Remark 2.2), it follows from the proof of Theorem
2.5 of Kazamaki [16]
T

T 2
E(/ mud<M>u) = E{|m|- M, |\ - M)2. < 2||\- M||BMOE/ n2d(M), < oco.
0 0

Therefore, under condition D) the strategy 7 belongs to the class II(G) if and only if
E [ m2d(M), < oc.

Define JZ(F) and J%(G) as spaces of terminal values of stochastic integrals, i.e.,

JEF) ={(m- S)r 1w € I(F)}, J7(G) = {(r-S)r:7 € I(G)}.

Let us make a comment on condition B).
Remark 2.4. Condition B) is satisfied if and only if the o-algebras F; and G are condi-
tionally independent given G; for all ¢ € [0, T (see Theorem 9.29 from Jacod 1978). Note
that one can weaken this condition imposing that any G-martingale is a .A- local martingale,

where A is the augmented filtration generated by F° and G. This condition is automatically
satisfied if ]_-ts C G;. In this case instead of (1.1) one should use the decomposition

t
Sy = So + / PAud(M), + Ny, (2.2)
0
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where
t
Ny = M, +/ Ay — PAL]A(N),, (2.3)
0
is a A-local martingale and P\ is an A—predictable projection of \.

Now we recall some known assertions from the filtering theory.

Let A = (A4, t € [0,7T]) be a RCLL process and there is a sequence (7,,n > 1) of
G-stopping times such that E fOT" |dA,| < oo for all n > 1. Then there exists a unique
G-predictable process AP of finite variation (see Jacod 1978), called a G-dual predictable
projection of A such that

E(A4|G:) — AY isa G — local martingale.

Denote by M2 _(G) the class of locally square integrable G-martingales.
For reader’s convenience, we give the proof of the following assertion, which is proved

similarly to [19].
Proposition 2.1. If conditions A) and B) are satisfied, then for any m9 € M2 (G)

loc
- L2 d(M,mY)
My = E(M|G,) = /0 <d<mg>)u dmg + N7, (2.4)

where N9 € M2 (G) and is strongly orthogonal to m9.

loc

Proof. Condition A) and the continuity of M imply that M e M2 (G). Therefore M
admits the GKW decomposition

t
M, = E(M;|G;) = / fudmf + N? (2.5)
0

%. Thus, it is sufficient to show that d(m¥);dP -a.e.
d( M,m%), p (d(M,m9)
d(m9), d(m¥)

By condition B) m9 € M2 _(G) implies m9 € M2 (F) and the process Mym§ — (M, m9),
is a F-local martingale. It follows from condition A) that M;m¢ and (M, m9); are G-
locally integrable. Therefore the processes E(M;ms — (M, m9)|G;) and E((M, m9)|G;)—

(M, m9)? are G-local martingales and hence the process

E(Mym{|Gy) — (M, m9)} 2.7)

where f,, =

(2.6)

is also a G- local martingale.
On the other hand E(M;mY|G;) = M;m{ and the process Mym{ — ( M, m9), is a
G-local martingale. Therefore the process

E(Mm{|Ge) — (M, m¥),
is also a G- local martingale. This, together with (2.7), implies that

(M, m9%); = (M,m9)?. 2.8)
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But
Ed(M,m9) b EP o d(M,m9)
MmN — 7 ) 4Gy ) / ) g
oy = ([ oamts) = [ (S, deme
which proves equality (2.6) and (2.4) holds. (]
Corollary 2.1. For any 7 € I1(G)

(m-8) = E(/ wudSu|gt> = / TudSy,. (2.9)
0 0

Proof. It follows from Proposition 2.1 that for any G-predictable, M -integrable process m
and any m¢ € M2 _(G) that

loc

0y = [ (D) mdw)s = [ mdiFEn), = o T

Hence, for any G-predictable, M -integrable process m

(m- M)y = E</ ndesgt) = / medMs. (2.10)
0 0

Since 7, A and (M) are G-predictable, from (2.10) we obtain (2.9).
Remark 2.5. In particular, equality (2.8) implies that
(M, M )? = (M) Q2.11)

and
(M,L)? =0 (2.12)

if L is a G-local martingale orthogonal to M.

Lemma 2.1. Ler conditions A), B) be satisfied and ]\/4\,5 = E(M|G:). Then Z/\4\> is abso-
lutely continuous w.r.t (M) and

Moreover, if A = {(w,t) : p? = 1} then a.s. for all t

t t
/ La(u)dM, = / La(u)dM,. (2.13)
0 0

Proof. By (2.10) for any bounded G-predictable process f

t

2
fsd]/\/[\s>
0
t 2 t 2
=F (E (/0 fdes|gt)> <FEE <</0 fdes) |Qt>

t 2 t
_ _ 2
=FE </0 fdes) = E/O F2d(M), (2.14)

E tf3d<]/\i>s:E<
0
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which implies that <JT/[\ ) is absolutely continuous w.r.t (M), i.e.,

t
(3)i = [ ptaqa).
0
for a G-predictable process p. Moreover (2.14) implies that the process (M) — ( M ) is
increasing and hence p? < 1 ™ ae.
Let us show now the equality (2.13). By definition of the set A, fot Ty(w)d(M), =
fg T4 (uw)d{M),,. Since the set A is G-predictable and (M, M) = (M), by Proposition 2.2

E(/tIA( dM, /IA dM> _E/ Ia(w)d(M — M ),
_E/ Ia(u M—J\?>5:E/O Ii(u)d —E/ Ia(u = 0.

Corollary 2.2. If p? = 1 for all t, then M = M and therefore M is a G-local martingale.

o~

O

We shall use the following Lemma proved in [5].

Lemma 2.2. Let N = (N, t € [0,T]) be a square integrable martingale such that Ny > 0.
Let 7 = inf{t : N; <0} AT ") be a predictable stopping time announced by a sequence of
stopping times (T,;n > 1). Then

N2
E (T‘QM> — 00 on the set (N, = 0)

N2
Proof.
(500, = (S ol
1 N2 1
<Ez ( L |grn> Ez (I(NTZO)‘ng) . (215)

By the Levy theorem limy, o0 E (I(n, =0)|Gr,,) = I(n.=0) is equal to 0 on the set (N, = 0).
Therefore it follows from (2.15) that £ (J{,V—ﬁ gm) — o0 on (N, = 0). O

3. MEAN-VARIANCE HEDGING AND FORWARD-BACKWARD EQUATION

Let X/ =4 f(f msdSs be the wealth process corresponding to the optimal strategy
m* and initial capital z. Without loss of generality we assume that + = 0 and denote by
X(7*) = X* = X0 Let H, = E[H|F,], cyg = E[H] and let

t
H, = E(H|F) =cn +/ hy,dM, + LE (3.1)
0

be the Galtchouk-Kunita-Watanabe (GKW) decomposition of H;, where L is an F-martin-
gale orthogonal to M and h is F-predictable M -integrable process.

1t is assumed that inf ) = 0o and a A b denotes min{a, b}
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In the following proposition we don’t need the continuity of the process S which we
assumed throughout the paper.

Proposition 3.1. Let S be a special semimartingale satisfying the structure condition (1.1)
and M is a locally square integrable F-martingale. If 7* € T1(G) is the optimal strategy of
the problem (1.2), then d{M){dP-a.e.

t p
(5 005,50

T, = AT , (3.2)
where the triple (Y, ¢, N), (N, M) = 0 is a solution of BSDE
dY, = wiNd(M), + 0 dM; + dNy, Yo = 0. (3.3)
In particular, if (M) is G-predictable then d{M)dP-a.e.
mf =Ph + P +P(MH. +Y - X)), (3.4)

Proof. The variational principle gives that
E(H — Xp(n™)Xp(m) =0, Vo eIl(G).
Since 7* € II(G) we have that E( fOT 7r;j)\ud<M>u)2 < oo and by the GKW decomposition

T T
- / T Aad(M)y = ¢+ / YudMy + No, (M, N) =0, 35)
0 0

where ¥ - M and N are square integrable martingales. Using the martingale property, it
follows from (3.5) that the triple (Y, ¢, V), where

T
Y, = E(/ w;/\ud(M>u]-"t)
t
and v, N are defined by (3.5), satisfies the BSDE
t t
Y, =Y, +/ T A d{ M), +/ Yy dMy + Ny, Y = 0. (3.6)
0 0

Note that Yy = ¢ = E [, 73 Aud(M),,.
Therefore by (3.1) and (3.5) we have

B(H — X (")) Xz (r)

T T T
= E( - / 7Tz<>\td<M>t - / W:th + H) </ ﬂ'tdst>
0 0 0
T T T
= E(YO +/ ¢tht + NT — / 7'(':th + H) (/ WtdSt>
0 0 0

T T
- E(Yo sV [ it + H) ( / mtd<M>t) (3.7)
0 0

T
+E(Y0+NT+/ (60 — ) dM, + cx
0
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T T
+/ hydM; + L¥> (/ mth> = 0. (3.8)
0 0

Using the formula of integration by parts in (3.7) and properties of mutual characteristics
of martingales in (3.8) we obtain the equality

T t
E/ (}/0 + Nt + / (wu - W:) th + Ht> 7Tt>\td<M>t
0 0

T
+E/ (wt—l—ht—wf)md(M}t:O.
0

Inserting the solution Y of BSDE (3.6) in the latter equality gives

T t t
E/ (YO + Ht + Y; — / )\u’]TZd<M>u - / W;th> WtAtd<M>t
0 0 0
T
+E/ (Yt + he — mp) med (M)
0

T
:E/ ((Ht—f—yvt—X;)At+wt+ht—7rz)ﬂtd<M>t:O
0

It follows from the latter equality that

E/Othd</()thd<M>u>

T t
- E/ m(/ [ + W+ AaHoy + \oYo — )\uX;]d<M>u>
0 0

and using the properties of G-dual projections

T T t
E/ mem d{M)P = E/ Wtd(/ [hy + Yy + A Hy + NYy — )\UX:L‘]d<M>u)p.
0 0 0

By arbitrariness of 7 € TI(G) we get
P

t t
[ mtan = ([t vt av - axgan.) . 69)
0 0

Itis evident that if A < B, then AP < BP. Therefore, taking the Radon-Nicodym derivatives
in (3.9) equality (3.2) follows. It is also evident that if (M) is G-predictable, then
d(f(f[hu + wu + )\uHu + )\uYu - /\uXZ]d<M>u)p
d(M)y
which gives (3.4). ([l

=Phy + Py + P (MNH +Y—X*))t,

Corollary 3.1 (Schweizer [28]). If the price process S is a locally square integrable martin-
gale, then the optimal strategy is of the form

o AUy hda),)’
t d(M)y

Proof. Tt follows from (3.2) and (3.3), since in this case A = 0 and the triply (Y =0, ¢ = 0,
L = 0) satisfies the BSDE (3.3). O
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We shall use also the GKW decomposition of H; = E(H|F;) with respect to the local
martingale M

t
H, = cy +/ hgdM, + L9, (3.10)
0

Here h9 is a F-predictable process and L9 is a F- local martingale strongly orthogonal

to M.
It follows from Proposition 2.1 (applied for m¥ = M) and Lemma 2.1 that

<E(H|Q,),J\7>t:/0 P(hg)ud<z\7>u:/0 P(R9) p2d(M),,. (3.11)

Corollary 3.2. Let conditions A) and B) be satisfied. Then (3.2), (3.3) is equivalent to the
system of Forward-Backward equations

o (M, SO JU
dX; = (pht + W FAH -+ Y - X;_)) S, Xi=o, (3.12)
t
d(M, m),

dy, =\, <”ht + +M(H + Y — )?;_)) d(M); + dmy, Yp=0. (3.13)

d{M )
Proof. Since A\, 7*, (M) are G-adapted,
POAH. + AY — AX*); = \(Hy— + Yo — X))
and
t
my = / sdMs + Ny
0

is a G-martingale (this follows from (3.6) and condition B), since under this condition Y; is
also equal to E(ftT w5 Aud{M),|Gt)). Therefore, by (2.6)

7= p(d<M, m) ) _d(M,m),
¢ aiMy ), d(M),
and it follows from (3.4) and (3.3) that the optimal strategy 7* satisfies the system

d(M,m)

o ="hy + d<M>tt +M(Hy- + Yo = X7, (.14)
dY, = mi\d(M)y + dmy, Yo =0. (3.15)

If we insert the expression (3.14) for 7* in (3.15) and then integrate both parts of equa-

tion (3.14) with respect to .S, we obtain the system of Forward-Backward equations (3.12),
(3.13). O

Remark 3.1. If we use the GKW decomposition of m with respect to M and filtration g

t
my = ¢udMu+Lt7 <M?L> :Oa
0
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then by (2.6) z/Jt = p; wt and one can write the Forward-Backward equations (3.12), (3.13) in
the form

d)?: = (pht—FptZ’QZt—‘r)\t(ﬁt_ +§}t— —)?:_)) d§t, )?a( =0

d?t =X (pht + P?{/;t + )\t(ﬁtf + i}tf - )?:7)) d(M); + qF/;ztd]\//ft + dzm ?T =0.

From now on we assume E) p? < 1 forall ¢ € [0, T).
Let us introduce the operator AY defined for any Y € M?(G, P) by

(AY)t:E</OT1_1 AoYur + 92 wu]( <M>u+dj\7u)

We shall use the following notations;

T
hy =Phy —Ph9p?, H = Hyp 7/ %d@. (3.16)
o 1—=p;
Let us consider equation
~ ~ T ~ ~ —
. /0 — [Am_ + 02| (Md(d), + dIT,) (3.17)

which can be written in the form Y7 = H — (AY ).

Theorem 3.1. Let conditions A), . B) and E) be satisfied and let FEH? < cc. Then the equation
(3.17) admits a unique solution Y € M2(G, P) satisfying E|Yr|> < E|H|?.

Proof. We need only to show that A is a non-negative operator. Indeed, for Y; = ¢ +
fot psdMgs + Ly, (M, L) = 0 we have

L L
(voAy) = B(Yr [ (Ve Ndon, + Ve [
o 1—pj o 1

5 Vi \d M,
Pt
T 2

T 2
+YT/ 1p 2(pt)\td<M>t+YT/ lp 2<ptht)
0 - 0 -

Since (Y, M); = [J up2d(M), and EYr [ g, d(M), = E [ Yugud(M), for any G-
predictable process g, we obtain that

| | —
vy =B( [ {2ovEaan+ [ v v,

t

2

i 5 Yi_ @i Aed(M >t+/T ptg%zd<]\/4\>t>
1_/’ o 1—pi

2

+ /O '
( VRN + [ LIy (),
o
-5

1 —p;

T
Yt QeAd(M >t+/ 1 & 2‘P§d<M>t>
0 — Pt

}/;5 At+pt@t) d<M>t>0
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Thus Y + AY is a strictly positive operator, (Id + A)~! is bounded with the norm less than
oneand Y = (Id + A)~!H is a unique solution of (3.17). O

Remark 3.2. Condition EH? < oo is satisfied if EH? < oo and p? < 1—¢forallt € [0, 7],
for some € > 0.

Remark 3.3. If (}7, 1;) is a solution of equation (3.17), then it follows from the proof of
Theorem 3.1 that

T
1 i -~ ~ o~ ~
E/ ﬁ(yﬁ /\tﬂwt) d(M), = (Y,AY) = EYpH — EY? < 0. (3.18)
L 1=

Theorem 3.2. Let conditions A), B), D) and E) be satisfied, FEH? < oo and
E fOT h2(1 — p2)~Yd(M).,, < co. Then the strategy m* is optimal if and only if it admits the
representation

*_
Ty =

1 g~ ~ ~
—— (b + AT+ 02, (3.19)
L —p;
where the pair (Y , 1)) satisfies equation (3.17).

Proof. Let us show that if the strategy T is 0pt1mal then it is of the form (3.19). By Propo-

sition 2.1 X, ( fo T Xed(M) s + fo *dM Introducing notations
t
)/t:Y}/‘FHt—Xt(W*), mt:mt+Ht—/ ﬂ'ZdMS (320)
0

(note that Y =m by (3.15)) we have

d(M, i), d(M), d(M,H),
s =Pp . Y,
TSN Taan, T, dpn,
dY; = diny, Yp = Hp — )?T(W*),
which gives (since p? < 1 for all t)
1 d(M,H), dM,Y), .~
> = Phy — Y 321
Tt 1_'0?{ t (D) + (M), + Ak |, (3.21)
Yy = Hy — Xp(n%). (3.22)

Integrating (3.21) with respect to S

—~

- T 1 d(M,H), dMY) .~ ] -
Xp(n*) = Ph, — ! + ! + M\ Y,_|dS;.
re) = | 1—p3{ CTapay, T dn, T

Since dgg\’j;” = PhYp? | inserting the latter equality into (3.22) and taking in mind (3.16),

we obtain the equation for the martingale Y

- = (T 1 [AMY) | o —~
YTfo/O 1—p§[ 00, +>\th_] ()\td<M)t+th). (3.23)
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We remark that if 17,} = 170 + fot &Sdﬂs + Et is the GKW decomposition of Y then (3.23)
can be rewritten as (3.17). Thus, if the optimal strategy 7* exists, then the pair (177 1), where

Y is defined by (3.20), satisfies equation (3.17) and by (3.21) 7* is of the form (3.19).
Let us show now that if the strategy 7* is of the form (3.19), then it is optimal. Let first
verify that 7* € TI(G). Since by (3.17) and (3.16)

T R T B L - R B
| midBe = [ Wi+ g0+ ] (M) -+ dBE) = B Vi,
0 0 Pt

it follows from Theorem 3.1 that E( fOT WZdS'\u) 2 < 00. Therefore,

T T N T -
E( / W;;dsu> :E( / 7 dS, + / de(Mu—Mu)>
0 0 0
T
§2E(/7rd5>+2E/ 20(M — M), < oo,
0

since it follows from (2.11) and (3.18) that

2 2

E/ d(M — M), E/T( “V2d(M — M)

T h2
_E/ 1—pu <2E/ u
_pu

+2E/ /\ Yoo + p20u)2d(M), < .

Thus £ ( f *dSu) < oo and by condition D) and Theorem 4.9 from [2] (see also [4])

2

T T
E/ (m5)2 (M), < const E(/ ﬂ'ZdSu) < 0 (3.24)
0 0

and 7* € II(G) by Remark 2.3.
By the variational principle it is sufficient to show that

T T
E(H — / W2d5u> (/ ﬂ'udSu) =0, Vr eII(G). (3.25)
0 0

From equation (3.22) we have that

T T
7/ T Ad(M), = Yy — Hr +/ 75 dM,.
0 0

Therefore

E(H - /OT deSu> (/OT wudSu>

T T T
- E(YT +H-Hr+ / mid(M, — Mu)> (/ Tudad(M)y +/ wudMu).
0 0 0
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Since A and (M) are G-adapted

E (H - ﬁIT) (/OT 7ru/\ud<M>u> -0

and by Proposition 2.1

E/OT mrd(M, — Mu)(/OT 7ru)\ud<M>u>

T T
= E/ 7ru/\ud<M>uE(/ mad(M, — Mu)gT> =0.
0 0
Since Y is a martingale
EYT(/ Tru)\ud<M>u> = E/ TuAu Yo d{M ). (3.26)
0 0
Using the GKW decomposition for }N/t and relations (2.11), (2.12)

T T T
EYr / TudM, = E / Tutud(M, M), = E / Tulbup2d(M),. (3.27)
0 0 0

Using decompositions (3.1), (3.10) for H, projection theorem and again relations (2.11),
(2.12)

T T T
E(H - HT)(/ wudMu) = E/ Tuhad(M), — E/ mahSd(M, M),
0 0 0

T
=F / Tuhad{M),. (3.28)
0

Taking the sum of right-hand sides of (3.26), (3.27) and (3.28) we obtain
T ~ T T
E/ TulaYud(M), + E/ T up2d(M), + E/ Tuhyd(M),
0 0 0
T ~ ~ ~
0

T
—E / rumh (1= p2)d(M),, (3.29)
0

since 7* is of the form (3.19). Finally,
T e T T e T
E/ mrd(M, — Mu)/ TudM, = E/ oy d{M, M), — E/ o d{M),
0 0 0 0

T
> / rut (1= p2)d(M).,
0

which, together with (3.29), implies that (3.25) is fulfilled and hence 7* is optimal. U
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Remark 3.4. Theorem 3.2 remains true if instead of condition D) we assume that: A\ - M €
BMO and p? < 1—cforallt € [0,T], for some £ > 0. Indeed, in the proof of Theorem 3.2

condition D) is used only to show that E fOT(W*)2<M>u < o0. Butif p7 < 1 — ¢, then

u

E/OT(WZ)2<M>u = E/OT ﬁ (R + Vor + p?@)z d(M),

1 /1 s - 5 \2
< *E/ 5 (ht"f'y;j)\t—FthOt) d<M>t<OO
e Jo 1—=pi

according to Remarks 3.2 and 3.3.

4. RELATIONS TO BSDES FOR THE VALUE PROCESS

In this section we express the solution of equation (3.23) in terms of the value process of
the problem (1.2) and show that equation (3.23) is equivalent to the BSDE derived in [21].
To this end we consider equation

T
_ 1 - -\ o~
Vo= [ g (T i) 5, @

for any stopping time 7 < 7. Similarly to Theorem 3.1 one can show that if F(? < oo,
then there exists a unique solution (}7, 1;) of (4.1), where Y is a square integrable martin-
gale. Throughout this section we assume that conditions A)-E) are fulfilled. Thus, unlike to
previous sections we also assume the continuity of the filtration G.

Lemma 4.1. Let (f”, 1;7) and (177 zZ) be solutions of equations

T
~ 1 ~ ~\ o~
Vr=c— / s (MVi+ ) dS, (42)
0 — Pt
and
~ T ~ ~ o~
Yr =1 _/ =2 (Yo + pa07)dSu, (4.3)
respectively. Let
~ 1 v 2.7 ~T 1 T 20T
Tu=71T o] (AYu + pythu), 7 = 1-p2 (MY + puiy,)-

Then

Vo= ¥rle- [ S, o=t~ [ Sl
Fr= 77 (c— /OT TudS,), t>T. (4.4)
Proof. Multiplying both parts of equation (4.3) by ¢ — fOT %udgu we get
V(e /OT #.d8.) = ¢ /0 %,dS,

T T
~ JQ 1 VT T g4
0 T P

— Pu
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Since ¢ — fOT %udgu is G--measurable, using properties of stochastic integrals we have
Yi(c 7/ TudSy) = ¢ 7/ T, dSy,
0 0

T T T
1 ~ ~ ~ ~ ~
_ / - (Auyg(c_ / FudSy) + 207 (¢ — / %udSu)> dS,.
T 1- Pu 0 0

On the other hand,

- T N T 1 _ . N
Yo = c—/o %udS, —/T = (Y + o) dS,
and relations (4.4) follow from the uniqueness of a solution of equation (4.1) with { = ¢ —

7 FudS,. O

Let us define the process

T 1 " 2
V,=E|[1- MY 4 p29t) dS,
t |:< [ 1710721( u +Pu¢u) )

T ~ .
+/t 1—p2 MYy + P?ﬂ%y d<M>u|gt:|~

u

Lemma 4.2. V; > 0,a.s. for all t € [0, T] and the process

t t
Vite [ Fudsi?+ [ @ - i,
0 0
is a martingale.

Proof. 1t is evident that V, is non-negative. Let us show that it is strictly positive. Assume
that there exist ¢ € [0, 7], B € G; such that P(B) > 0 and

T ~ ~  ~\?
B t ., 27t
b Kl /t 1—p2 ¥y +0u0) dSu)

u

T
1 ~ ~
[ T+ RO A6 I o
t — Pu
This implies that
T ~
Ip— / I57.dS, =0, 4.5)
¢
T
/ I72(1 = p2)d(M), = 0. 4.6)
t
Since p,, < 1, it follows from (4.6) that ftT I B%Zdé'\u = 0. Therefore, from (4.5) we obtain

Ip = 0 a.s., which gives a contradiction. Thus P(B) = 0 and Vis strictly positive. Let us
check now the martingale property. Using elementary properties of conditional expectations
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and stochastic integrals it follows from Lemma 4.1 that

" t . t R t . T \ 2
Vt(c—/ %udSu)QzEKc—/ %udSu—(c—/ %udSu)/ %;dsu>
0 0 0 t
i

+<c—1[f%ud§>2]/Ta P27 2 (M) |G,

E{(c—A ﬂ'udS —/ C—A wudSu u>

b [0 [ Fasom P nm]

EK /OtwudS /tT%ud§u>2+/tT(1pi)%3d<M>u|Qt].
7]

Therefore, for any ¢ € [0,

V@—43m5>t[ﬁa—ﬁWMn

:EKC—/OT%M@Y+/OT(1—p3)%§d<M>u|gt}

which proves that this process is a martingale. (I
Proposition 4.1. The solution of (4.2) is strictly positive, i.e., Y, > 0as. Sorallt € [0,T).

Proof. Let first show that EYr > 0. Multiplying both parts of equation (4.2) by Yy and
taking expectations (as in the proof of Theorem 3.1) we obtain that

T
~ ~ 1
EY:,%:cEYT—/ 5 —— (Y + p20)2d(M) .
0

Therefore cESN/T > E}~/T2 > 0, hence EYT > 0.
Let us consider the process

t t
ztszt(c—/ %ud§u)+/ F2(1— p2)d(M).. @7)
0 0

It follows from the Ito formula that Z is a martingale and using the martingale property from
(4.2) we have

t T
Yt(c— / %udsu) = E(Y% + / Ta(1 —pi)d<M>u|gt>. (4.8)
0 t
Besides the process Zt = ﬁ(c — fot %udé'\u) is a supermartingale and
t
0

Let us define 7 = inf{¢ : 57,5 = 0} AT . Then 7 is a predictable stopping time and there exists
a sequence of stopplng times (7,,;n > 1) such that lim7,, = 7 and 7,, < 7 for every n on
7 > 0. Note that Ym > ( by definition of 7,,, since Yo = EYT > 0.
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Taking 7,, instead of ¢ in (4.9) and dividing both parts of this inequality by ?}n, we obtain

~2 _ Tn ~ dS
E<¥T|gfn> < % (4.10)
V2 Y,

It follows from the Lemma 2.2 (applied for the martingale Y,=E (?T|gt)) that

Y2 ~
E(é’gﬂ) — oo on the set {Y; = 0}. (4.11)
By Lemma 4.2 and (4.8) the processes V;(c — fot FudSy)? + ft 72(1—p2)d(M), and Yy (c—

fo %udS )+ f ! 72(1— p2)d(M), are martingales and their values at time 7" coincide, hence
they are 1ndlst1ngu1shable Thus

t 2 t
Vt(c/ %ud§u> Yt<c/ %ud@) 4.12)
0 0

which, together with (4.10), implies that

2 _ [Tn =
p(Z,) < Ml B L
Y2 Y, v,

n

Since ‘7t > (, it follows from the latter inequality that

lim E( |QTW> < oo on the set {Y, = 0},
n—00 YT

which contradicts to (4.11). Therefore P()N/T = 0) = 0 and hence f@ > 0 forall t €
[0,T]. O

Corollary 4.1. Forallt € [0,T)

t
¢ —/ TudS, >, (4.13)
0
and B
~ Y,
Vi= ——— . (4.14)
c— [y TudSy

Proof. By (4.9) and the Jensen inequality
t
Yi(c— / TudS,) > E(YF|G:) > Y/ (4.15)
0

and since f@ > 0, we obtain inequality (4.13). Therefore the process ¢ — fg %udgu is also
strictly positive and equality (4.14) follows from (4.12). O

Remark 4.1. V, coincides with the value process V; of optimization problem

T 2
min E(l —/ WudSu>
7ell(G) 0
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T 2
V; = ess infE((l —/ wud5u> |Qt>.
Tell(G) t

This follows from Theorem 3.2 and from Theorem 3.1 of [21]. But we shall show this equal-
ity, proving that V' satisfies the BSDE for the value process V, derived in [21].

defined by

Proposition 4.2. Let (}N/t, @Zt) satisfies the equation

T

~ 1 ~ ~ o~

Yr=c —/ 2 (\eY; + piapy) dS; (4.16)
0

Pt

1 - ~ ~ .
and 7w} = T2 (AtY; + p2iby). Then ¢ — (7% - S)¢ = ¢ — X[ is strictly positive and
— Pt
Y,
U= ——~— 4.17)
c— X[

is a solution of BSDE
(MU + pied)?

A(M)y + Y dM, +dLV, Ur=1. 4.18
1—pt2+pt2Ut < >t wt t t T ( )

dU; =

Proof. By Corollary 4.1 and Lemma 4.1 ¢ — )A(ZT* > 0 P-as. for all ¢. Therefore U, is a
G-semimartingale. This semimartingale admits the decomposition

t
Ut:At+/ wngs‘f'L,Ig],
0

where A; is Q-P\redictable process of finite variation and LY is a G-local martingale strongly
orthogonal to M.
By the It6 formula
dY; = d((c — X[ )Uy)
= (c— )?f*)(dAt + w?dﬁt +dLY) - Ut”fdgt — w0y prd(M),
= ((e = X7 )y —m;U)dM, + (¢ — X7 )dLY
e — X7 )dA, — (WU + p2ol n)d(M),. (4.19)

Since Y is a martingale with the decomposition

t
V=To+ | Gudili+ L (4.20)
0

comparing the decomposition terms of (4.19) and (4.20) we have

v = (= X7 )y — iUy, (4.21)
t /\9 . 2.,U
A = / MUs ¥ 0305 iy, (4.22)
0 c— XT"

From (4.17) and (4.21)

1 S oo 1 S ) o
T OFi 4ot = 1= (Mo = X77) = piUim; = pie = X7 )
t t

*_
T =
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which gives
. MU+ iy
Ty = 2 2
L —p; + piUs
Finally from (4.23) and (4.22) we obtain the equality
t 2.1 U\2
)‘SUS + str's
A, = / % d(M),
0 1- Ps + Ps US
which means that U, satisfies (4.18). [l

(c— X). (4.23)

Proposition 4.3. Let the triple (Vi(1), Vi (2), X ™) satisfies the Forward-Backward stochas-
tic differential equation

(AVa(2) + piee(2) AV (L) + pFen(1))

dVi(1) = d{M
(1) 1=+ A) W
+@e(1)dM; + dLy(1), Vr(l) = H, (4.24)
(AVA(2) + pPe(2))? =
dVi(2) = d{M 2)dM; + dL(2 Vr(2) =1 4.25
+(2) 1= 2+ p2V,(2) (M) + @i(2) dM; + dLi(2), Vr(2) ,  (4.25)
2 _xr 2 .
L —pi + ppVi(2)
(L(1), M) = (L(2), M) = 0. 4.27)
Then the pair (Y , 1)), where
Y, =Vi(1) = X7 Vi(2) and iy = (1) — V()7 — @i (2)X] (4.28)
is a solution of equation
~ ~ T 1 ~ -~ A
Tr=H- [ oy (VT4 200 45 (4.29)
0 — Pt

Proof. By the It6 formula
dY; = = (Vi@)m7 + X7 01(2) — ¢1(1)) dMy — X7 dLy(2) + dLy(1)
(AeVa(2) + pPee(2))?

_ 9 * )/(\'ﬂ* 2 2\ ¥
(W( ))\tﬂ-t + t 17p%+p%~v%(2) +pt80t( )Trt
(AeVe(1) + piee(1) A Va(2) + pF e (2))
— 5 5 d(M);.
L= pf +piVi(2)

It follows from (4.26) that the expression in the latter bracket is equal to zero. Thus Y, is
martingale and 1, = o, (1) — V;(2)7} — 04 (2) X[ . By (4.28)
Yr=H - XF

and inserting (Y, %) in (4.29) we claim

T
S 1 St * S AN
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This means that

* 1 ot *
=TT 2 AVi(1) + piepr(1) = XT (M Vi (2) + piee(2)) — p7Va(2)m7)
t
and
(1= 97 + Vi) = MVa(1) + pfon(1) = X7 (MVA(2) + 97 01 (2))-
Obviously this equality coincides with (4.26). Therefore (}77 1) satisfies (4.29). O

5. DIFFUSION MARKET MODEL
Let us consider the financial market model
dSy = pi(n)dt + o¢(n)dw},
dny = a¢(n)dt + be(n)dwy,

subjected to initial conditions, where only the second component 7 is observed. Here w? and
w are correlated Brownian motions with Edwdw, = pdt,p € (—1,1).
Let us write
_ 0 1 — 2wt
wy = pwy + prwy,
where w” and w! are independent Brownian motions. It is evident that w* = —+/1 — p2w’+

pw! is a Brownian motion independent of w and one can express Brownian motions w°, w?

in terms of w and w™ as
w? = pw; — /1 — p2wit, w =+\/1— pw, + pwi-. (5.1
We assume that b2 > 0, o2 > 0 and coefficients y, o, a and b are such that
JT.'SJ] — ]_-wo,w ]_-77 — ]_-w.

So the stochastic basis will be (€2, F, F, P), where F is the natural filtration of (w°, w) and
the flow of observable events is G = F™.
We consider the mean variance hedging problem

T
to minimize  E[(x +/ mdS; — H)?] overall 7€ TI(G),
0

where H € L*(Fr) and 7 is a dollar amount invested in the stock at time ¢.
Comparing with (1.1) we get that in this case

¢ t
M, :/ crsdwg, (M), :/ o?ds, p— u—;
0 0

0%

It is evident that w is a Brownian motion also with respect to the filtration F w’ 0" and con-
dition B) is satisfied. Therefore by Proposition 2.1

t
M; = p/ osdws.
0

By the integral representation theorem the GKW decompositions (3.1), (3.10) take the fol-
lowing forms

t t
Ht:cH+/ hsasdw2+/ hldw!, (5.2)
0 0
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t t
H; =cy + p/ hgasdws + / hsldwsl. (5.3)
0 0

Putting expressions for w, wt in (5.3) and equalizing integrands of (5.2) and (5.3) we obtain
that
g 2 5 htL
ht = ht P — 1-— pe—
Ot
and hence

Ph, = p(hg)tp2 — /1= p2 7t

Therefore by definition of h (equation (3.16))

~ PRt
hy =Phy —P(h9)p? = —\/1 — p2 —-. (5.4)
Ot
It is evident that Zg%;: = p? and (3.23) takes the form

Yr=H -

1 T P T
1= 2 /0 Y0 (0¢dt + pdw,) — -2 /0 @1 (0¢dt + pdwy) (5.5)

forY; = c+ fot Veposdws = ¢+ fot Psdws, where 0, = Lt
Since H € L*(Fr), it follows from (5.4) that

T 32 ~

E/ “—d(M), < oo, EH”< oo
o 1L—=p

and all conditions of Theorems 3.1 and 3.2 are satisfied. Therefore, there exists a unique

solution (Y, ¢) of equation (5.5) and the optimal strategy in this case is

* 1 Ve ~ —
R (eth +pPr — /1 — 2 Ph#) ot (5.6)

Note that one can write the equation (5.5) also in terms of a random variable &

- 1 T
§=H— W/ E[¢]|F"]0; (0¢dt + pdw,)
- 0

T
- [ DR Gt pau). 6)
- 0
where D is the stochastic derivative.
Remark 5.1. Let p = 0 and let 6 be deterministic. In this case w = w!, wt = —w®, G =
Fv' and

t
Mt =F (/ O_deg’ftwl) =0
0

Therefore equation (3.17) takes the form

T
Yr=H— [ Y.0idt. (5.8)
0
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Since Yisag -martingale, by the integral representation theorem
t
Y, =Y, +/ lsdw?.
0
Note that in the decomposition (1.5) for Y

t t
/%dMu:o and Lt:/ lsdw!?.
0 0

Besides, in the decomposition (3.10) for H; = E(H|F%)
t t t
/ hddM, =0, L79 = / hsosdw? +/ hldw!.
0 0 0

Using the integral representation of H=2¢ o+ fOT Edwi and the formula of the integration
by parts we have

- T __ . T T t -
YT:EH+/ h,}dwg—YT/ 9§ds+/ / 02dudY; and
0 0 0 0

B T T T gt
e <1+ / ogds) R T / L [ 02dudu).
0 0 0 0

On the other hand,

_ T ~ T T T
Yr (1 +/ 9?0?5) =Y (1 —|—/ dis) —|—/ (1 —I—/ 0?ds> lydw; .
0 0 0 0
Comparing the last two equalities we obtain
~ u Rl
YO = T t = T o
L+ [y 02ds L+ [, 0%ds
Therefore the solution of (5.8) is expressed as

. Cn bRl .
Y, = T +/ i dwy.
1+ [, 62ds  Jo 1+ [ 62du

Since h = Ph, the optimal strategy is
59} t R}
W::pht+—cﬁt +>\t/ —TS U}l
1+ [, No2ds 0o 1+ [ Mo2du
Proposition 5.1. Suppose that H = cy, ny = wy and B2 = 0(t, wy) for some continuous
function 0, such that the nonlinear PDE
1 (O(t, z)u + puy)?

ug + lae = P w(T,z) =1 (5.9)

admits the sufficiently smooth solution u. Then the solution of (3.23) can be represented as

~ CO(s, ws)u(s, ws) + pug (s, ws)
= —
Y; = cyult,w:)& ( /o 1— 02 + pPuls, ws) (0(s, ws)ds + pdws)
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and the optimal strategy is
O(t, wi)u(t, we) + pug(t, wy)
1= p? + pu(t, wy)

. G(S’wS)u(S,ws) + pum(s,ws)
x & </0 1— p2 + p2u(s, wy) (0(s,ws)ds + pdws)) ) (5.10)

7F = cpo t(t,wy)

Sketch of the proof. It is well known that if u(¢, x) is the solution of (5.9), then V;(2) =
u(t,w;) will be the solution of (4.25). On the other hand V;(1) = ¢V;(2) and ¢ — X[

cé’t( fo 1\ ‘p/iiges dS ) Moreover, similarly to Proposition 4.3 it can be verified that

Y = (c— Xt7T )V;(2) satisfies equation (3.23) and it follows from (4.23) that 7* is of the
form (5.10).
The detailed proof we shall give in Appendix A.

Example. If 6(¢,2) = 6(t) then the solution of (5.9) is of the form u(t, z) = u(t), where u
satisfies

wt) P i
dt 11— 02 +p2u(t)’ u(T) = 1.

Thus

L2 s /92
u(s)

If we denote by v(p, «) the unique solution of
1— 2
A pPlnu=a,
u

then u(t) = v(p,1 — p? + ft 62(s)ds) and the solution of (5.7) is explicitly given by

. [ H(S)u(p,l—pQ—i—fsT 02 (u)du) s y
£= H5T< /0 1fp2+p21/(p,1fp2+fsT92(u)du) (0(s)ds + pd s))

APPENDIX A. APPENDIX

Proof of Proposition 5.1. It easy to see that (5.9) is equivalent to

. pG(t,x)uugC + pu? N lu _ 02(t, x)u? + pO(t, v)uu, (T, ) =
t 1—P2+p2U 2 TT 1—p2+p2u ) )

_ Ot m)utpu,

If u is a solution of (5.9) then using the notation g = el

formula and Girsanov’s theorem we can write

o) = (& ([ oo w0 w)ds + pi) ) [ =)

0

the Feynmann-Kac
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Hence the integrand ¢ of the integral representation of the martingale
Y: = cuE [Er (fy 9(s,ws)(0(s, ws)ds + pdw,)) | Fi*] can be calculated as follows

@tdwt = df/t

= cpd (& (/ g(s,ws)(0(s,ws)ds + pdws)> U(tth)>

0

—enéi ([ ot w0 w)ds i)

0
X (g (t, wi)dws — g(t, we) (O(t, we)u(t, we) + pug (t,we)) dt)

+ crrult, w)€ ( / (5, wa) (0(5, ws)ds + pdws>) gt we) (B(t, we)dt + pduy)

T ent, ( [ atssw ot wds + pdwg) gt ) (1w, )t

=cp& (/0 g(s,ws)(0(s,ws)ds + pdw5)> (ug (t, we) + pult, wy)g(t, wy))dws.

Thus

1
1 — p?

T T
/ Y}e(t, wt)(G(t, U,)t)dt + pdwt) + ﬁ / Gt(e(t, ’LUt)dt + pdwt)
0 - 0

1

= CH7 /0 (u(t,wt)e(t,wt) + pug (t,we) + p2g(t,wt)u(t7wt))

1—
x & (/0 9(s,ws)(0(s, ws)ds + pdws)) (0(t, wy)dt + pdw).

Since uf) + pu, + p?gu = (p* — 1)g, then

1

T T
1_7p2/0 YtH(t,wt)(G(t,wt)dterdwt)+$/0 Zo(0(t, wy)dt + pdwy)

T .
— e [ gltwne ( [ ats. w66, w)ds + pdwg) (0(t, wi)dt + pduw)
0 0
On the other hand,

i;T = CHET (/ g(s,ws)(e(s,ws)ds + pdws))

0

—en+ | " engltwn)é, ( [ atsswiots. s + pdwg) (Ot wn)dt + pduw).

Hence (5.5) is satisfied. The expression for 7* is obtained from the representation

= T O(s,ws)u(s, ws) + pug (s, ws)
Yr =culr ( /0 1— 02 + p2uls, wy) (0(s, ws)ds + pdws)

/T 0(s,ws)u(s,ws) + pug(s,ws)
=—c
SN 1 — p? + p?u(s, ws)
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- Ou+pu,
x Eg (_/0 m@du + pdwu)) (0(s,ws)ds + pdws)

and equations (5.5) and (5.6). ([
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THE ROBBINS-MONRO TYPE STOCHASTIC DIFFERENTIAL EQUATIONS.
III. POLYAK’S AVERAGING

N. LAZRIEVA AND T. TORONJADZE

Abstract. General results concerning the asymptotic behaviour of the Polyak averaging z =
(Zt)¢>0 of the solution of the Robbins—Monro type stochastic differential equation are pre-
sented. It is shown that the suitable normed process Z admits an asymptotic expansion which
enables one to obtain its asymptotic distribution from a Central Limit Theorem for martin-
gales.

Key words and phrases: Stochastic approximation; Robbins—Monro type SDE; Recursive
estimation; Polyak’s averaging

MSC 2010: 62L.20; 60H10

INTRODUCTION

In recent years the interest to stochastic approximation and its applications substantially
increased including such fields of applications as statistics [5], medicine and engineering [17],
adaptive control, signal processing, weirless communication [4], [1] and even mathematical
finance [19].

An important approach to stochastic approximation problems has been proposed by Polyak
[13] and Ruppert [15]. The main idea of this approach is the use of averaging iterates ob-
tained from primary schemes. In [14], [18], [3], [8] and [9] it was proved that such algorithms
can provide strongly consistent estimates which are asymptotically efficient. In several cases
the averaging can provide the rate of convergence higher than the rate of the primary process.
Le Breton and Novikov [10], [11] concentrate their attention on a general multidimensional
linear regression model with Gaussian errors. They demonstrate that averaging can also pro-
vide consistent estimates for asymptotic covariances of estimates. Melnikov and Valkeila
[16] consider the averaging procedure both for the so-called standard RM procedure and for
procedures with slowly varying gains. They have proved the convergence of averaging pro-
cedures and studies the asymptotic properties of these procedures.

In the present paper we study the asymptotic behaviour of the Polyak averaging procedure
for the Robbins—Monro type (RM type) SDE introduced in [6]

t ¢
zt:zo—i—/ H(s,zs,)sz—i—/ M(ds, zs—), (0.1)
0 0

where K = {K;, t > 0} is an increasing predictable process, H (t,u) and M (¢t,u), t > 0,
u € R!, are random fields given on some stochastic basis. We assume that for each ¢ > 0

H(t,0)=0, H(t,u)lu<0 for u#0 P-as.,

Published in Stochastics 82 (2010), no. 1-3, 165-188.
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for each u € R, M (u) = {M(t,u), t > 0} € M% , the symbol f(f M (ds, zs_) is used for
the stochastic line integral (see [6] for more details).

Equation (0.1) naturally includes both generalized RM stochastic approximation algorithm
with martingale noises [16] and recursive estimation procedures for parametric semimartin-
gale statistical models, and enables one to study them by a common approach.

The present work is the final part of series of papers [6], [7] concerning the asymptotic
behaviour of solution z = (z;);>¢ of equation (0.1).

We define the Polyak averaging procedure for the process z = (2¢):>0 by the formula

Et:

1 /t 1
— [ 2d& N (—goK), 0.2)
& 1(_9 o K) 0 ( g )

where g; > 0, ;AK; < 1, go Ky < ooforallt > 0, go Ky = oo P-as. Here
go Ky = fg gs dK, £(X) is the Dolean exponential of X. Denote &, * := & '(—g o K).
The aim of the present paper is to study the asymptotic properties of process Z = (Z¢):>0

defined by (0.2).
First note that if

zz—0 as t —>oco0 P-as.,

then since (St_l)tzo is an increasing process, ' = oo the Toeplitz lemma (see Appendix
A) yields

Ze —0 as t — oo P-as.

We show that under sufficiently mild conditions the normed process Z = (Z;);>0 admits
the following representation

_ [5(B, — B,_)dL

&'B*z, o+ R, R0, as t—os, 0.3)
Bt
where
t " t
By ::/ r;tag;t, By ::/ (B; — Bs_)?d(L) 0.4)
0 0

and objects (I';)¢>0, (Lt )¢>0 and ((L););>¢ are defined by Eq. (1.1) below.
For instance, if we choose & ' := 1 + [ T2(L);'8,dK,, then E7'B ~ £71/2 (see

—1/2

Appendix A, Definition A.1) and the asymptotic distribution of process £ Z coincides

with the asymptotic distribution of E; 12 fot (By — Bs_)dL (up to the constant factor) as
t — oo. As a special cases we obtain the results of [16] concerning the asymptotics of
averaging procedure for standard RM stochastic approximation algorithm, as well as for RM
algorithms with slowly varying gains.

The paper is organized as follows: In Section 1 the main objects and assumptions are
introduced. In Section 2 we study the asymptotic properties of averaging procedure Z in the
linear case. The general case we consider in Section 3. In Section 4 the special cases are
considered. Section 5 is devoted to proof of results. In Appendix A some definitions and
technical results are given and in Appendix B we collect necessary results from [6] and [7]
for convenience of readers.

All notation and facts concerning martingale theory can be found in [12].
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1. PRELIMINARIES
Let on a filtered probability space (2, F, F' = (F;)¢>0, P) satisfying the usual conditions
the following objects be defined:
(1) A predictable increasing process K = (K¢)¢>0.
(2) A random field {H (¢t,u), t > 0, u € R'} such that (H(t,u));>0 is a predictable
process for each u € R! and
H(t,0) =0,
H(t,u)u <0, u#0,
forallt > 0 P-a.s.
(3) Arandom field {M (t,u), t > 0, u € R'} such that for each u € R!

M(u) = (M(t,u)),50 € Mip(P),  M(t,0) #0, t>0, P-as.,
(M(u), M(v)); = h(u,v) o Ky, h(0,0) 0 Ky < 0.
Denote ¢2 := hy(0,0), M; :== M(t,0). Evidently, (M), < co.

Assume that there exists an unique strong solution z = (z;)¢>0 of Eq. (0.1) on the whole
time interval [0, co) such that (see [6])

s i= ([ Midsio)) e atiur)

(A)

Let us denote
H(t
B¢ := — lim H{t,w)
u—0 u
assuming that this limit exists for each ¢ > 0 P-a.s. and define

_HE 0
Biuy={ v Murl
B if w=0.

It follows from (A) that for all ¢t > 0 and u € R"
By >0 and fi(u) >0 P-as.
Throughout of this paper we are working under the following assumptions:
Assumption 1: Forallt > 0 S,AK; # 1, BAK,; < 1 eventually, tlgloio B:AK; = m,
0<m<1,LoK; <0, 0Ky =00 P-as.
Define further the objects: for all ¢ > 0

t t
=&Y (—BoK), L ;:/ TydM,, (L), ;:1+/ 202 dK,. (1.1
0 0

Assumption 2: (L), = co P-as.

Assumption 3: There exists a predictable increasing process v = (;)¢>0 equivalent to
(F§<L>;1)t20 with
THL), " -~
lim Tl _ 771, 0<d<oo P-as.
t—o00 Yt
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Besides, we assume that 79 = 1, 750 = o0, % < 1l forallt > 0 P-as., also v, =

1+ f(f gs dK g for some appropriate g.

Remark 1. From Assumption 1 it directly follows that (I';);>¢ is an increasing process
eventually, I'p = 1, I'o, = oo with tlim I?(L);! = 0o P-as.
—00

It is not hard to show (see [7]) that the process z = (z;);>0 can be written as

2 =T71 (zo + Ly +/Ot L, dRS> , (1.2)
where

R,:=R;+ R},

R = /Ot (Bs = Bs(z5-)) 25— dK, (1.3)

R? /Ot (M (ds, zs_) — M(ds,0)). (1.4)

Moreover, the normed process (z;);>0 admits the following asymptotic expansion:

_ L
= —t_ 1R, (1.5)

e (),

where
20

1 L
=7+7/ Iy dR;.
(Ly* (L) Jo

The conditions sufficient for the convergence

R, B0 ast— oo, (1.6)

were studied in [7].
From Assumptions 1, 2 and 3, Egs. (1.5) and (1.6) we obtain

lim E(%l/zzt) = lim £ <§ Lt)

t—o00 t—o00 <L>i/2

in the sense of weak convergence.

2. ASYMPTOTIC PROPERTIES OF PROCESS Z IN THE LINEAR CASE
In this section we consider the following linear equation
dZt = *5t2t7 th + th, zZ0- (21)

Solving this equation we have

t
2z =T;"! (ZO + / T, dMS) : (2.2)
0
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Since (I't)¢>0 is an increasing process, I'oo = 0o (see Remark 1 of Section 1), (M), < 00
it follows from the stochastic version of Kronecker lemma (see [12, Ch. 2, §6, Lemma 3])
that

zz—0 as t —> oo P-as.

Multiplying both sides of Eq. (2.2) by T',(L); */? yields

T(L); %2 = 2o(L); 2 + Ly /(L) 2.3)
and hence (by Assumption 2)
. -1/2_\ _ . 1/2
ti (7)1 017)

in the sense of a weak convergence.
Further, substituting (2.2) in (0.2) we get

Bt LOBt

— 4 —. 25
&t &t @5

Zt = 2o

To continue we need additional
Assumption 4 : The processes (3:)i>0, (¢7)t>05 (gt)e>0» (K¢)i>0 are deterministic.

Since (By)¢>0 is deterministic, then applying the It6 formula we get L o B, = fg (By —
B,) dL,. Multiplying Eq. (2.5) by & *(B;) ™'/ we obtain

t
~ B; — B,_)dL,
E1N(B) V= B Jo (B )

=20 = + — R (26)
¢ Btl/z Btl/z

where (By)¢>0, (Et)tzo are defined by (0.4).
The main result of this section is

Proposition 2.1. Let the following conditions be satisfied:

(1) (L) 0 By = 0,

(2) ({(L) o B) o By = 0,

. (L) ABy
2 7 7 = <

3) tlgglo (LYo B, o 0<ce<2

Then
By

B

—0 as t— oo,

and

t
Jo(B: — Bs-) dLS). 2.7)

t

t—o0

Proposition 2.2. Let
t

=1 +/ I2(L);1B, dK,. (2.8)
0

Then conditions (1)—(3) of Proposition 2.1 are satisfied. Moreover,

lim —% =2—m 2.9)
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and

t
B, — B,_)dL,
lim £(& ?z,) = Jim ,c(\/z —m Jo (B ) ) . (2.10)

=00 ’é}/ 2
Remark 2. Eq. (2.8) gives the natural choice of £ ' which becomes clear from the proof of
this proposition, see Egs. (5.3) and (5.4).

From now we define averaging procedure (0.2) with £ * given by (2.8).

3. THE ASYMPTOTIC PROPERTIES OF PROCESS Z IN GENERAL CASE

In this section we study asymptotic properties of Z = (Z);>¢ defined by Eq. (0.2) with
E! given by (2.8).

Substituting (1.2) in (0.2) and multiplying both sides of resulting equation by &, 1§t_ 1/2
we obtain
~_ B, [y(B;— B, )dL,
ETIB VP = 2y = 4 S . 3.1)
t t Btl/g Bt1/2

where

1 t t
rt:w</ R;dBSJr/RﬁdBS)
B, 0 0

and R := fot IsdR:, R, i =1,2, are defined by (1.3) and (1.4), respectively.
Denote

; 1 /t .
ri:=——= [ R.dB,, i=1,2.
! Btl/2 0

As is seen, the first two terms in the right-hand side of Eq. (3.1) coincides with those in
Eq. (2.6). Hence, our problem is to prove that

P
rp —0 as t— oo.

Since B ~ & —1 it is sufficient to establish conditions under which

, 1 o
%‘;::Tp/ RidB, 50 as t o0, i=1,2
&, 0

First we consider the case 7 = 1.
Lemma 3.1. Suppose that the following conditions are satisfied:
I3 (L)

L+ fy PHL) B dE,

(1) <1 eventually,
(ii) / ETV2B, = Bo(zs )| 2| dKy < 00 P-as. 0<c<1,
0

Then
?tl —0 as t— oo, P-as. (3.2)



Stochastic Analysis: Applications to Statistics and Finance 107

Suppose that the following assumption holds.

Assumption 5: (1) z; -0 as ¢t — oo P-as,
(2) Foreach 6,0 < d < dp, 0 < §p < 1,

7022 -0 as t— oo P-as.,

where v = (y:):>0 is an increasing predictable process presented in Assumption 3 with
Yo = 0, Yoo = 00 P-a.s.

Remark 3. The conditions sufficient for (1) and (2) were studied in [6] and [7], respectively.

Corollary 3.2. (1) Let the following condition be satisfied:

(i1)’ There exists 6, 0 < § < %0, such that

/ 5t—1/2‘5t — 5t(zt,)|'y,;5 th < Q. (33)
0

Then (3.2) holds.
(2) Assume in addition that

H(t,u) = —pru+v(t,u)

t
lim vt v)
u—0 U

= Vg,

where (v;)1>0 some predictable process.
Suppose that the following condition (ii)" is satisfied.

(1) There exists 6, 0 < 6 < %”, such that

/ 6']5—1/2|11,g|ﬂyt__2‘S dK; < 0o P-a.s.
0
Then (i) =(i1)' = (ii).
Let us consider the case ¢ = 2. Denote N; = fot Ts[M(ds, zs—) — M(ds,0)]. Then
1 t
7i=—5 | NydBs.
0

5;1/2

Lemma 3.3. Let the condition

=0 as t— oo, (3.4)

be satisfied. Then

P
720 as t— oc.
All above-given results we summarize in the following

Theorem 3.4. Let conditions of Lemmas 3.1 and 3.3 be satisfied. Then (2.10) holds true.
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4. SPECIAL CASES

Case 1. This case illustrate that the rate of convergence of Z is higher than of z.
InEq QD let K, =t, B; = B(1 + t)~(zF), 2 =01+ )=(3+%) where a, 3 are

some constants, 3 > 0,0 < a < 3,0 < 0? <, tlim ol =0%0%>0.
—00
It is not hard to observe that (L) ., = cc.
Puty; = 1+t. Thensince AK; = 0,7, * f; = % — %,andv{l % = % (I4+t)* 2 —
t t t
0 as ¢ — oo, conditions (a), (b) and (c) of Proposmon A.3 are satisfied with ¢; = ¢35 = 0,
Co = f . Thus
r2(L);!
lim LBy B
t—oo 14t o2
Then from Eqs. (2.3) and (2.4) follows
1/2 o’
1+t 4N
(L+8)" %2 ( 25)
where N (a, 0?) stands for normal distribution with parameters a and o2.
Obviously in (2.9) m = 0 and hence
)dLs
lim £(&%z,) = Jim £< fo). (4.1)
t—o0 B1/2
On the other hand, it is not hard to check that
-1 2
4
& s as t— oo. 4.2)

_)
(1+t)E—  02(3 - 2a)
Hence, from (4.1) and (4.2) using the usual technique developed in the proof of Lemma 3.3

we obtain ,
3
(1+t)2G-2z, 4 N <o, <2 - a> ;) :

Note that £ (2 — o) > 1.

Case 2. Standard Linear Procedure. Lety = (7;);>0 be an increasing predictable process,
Yo=1v%=1+ fot’gsz, gt > 0, go Ky = oo P-as. Obviously, v can be written as
v = E (Ao K), where A\, = 2,

Put in (2.1) B = 7%, Mt = fot 2 dmg, (m); = K, where (04);>0 has the same

P
properties as in the previous case 1.
Thus, we consider the following SDE

dZt = *izt_ th+&dmt, 20-
Yt— Ye—

Proposition 4.1. Assume that the following conditions are satisfied: P-a.s.

O [ s @) [ <o i) Z(““)Q@o,

Ve— 0o - >0 \ Jt—

(iv) limg. =g, ¢=>0, ¢ isaconstant, (v) 286>3.
t—o0
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Then the following assertions are true:
(1) (L)oo =00 P-a.s.;
UL _28-9

(2) tllglo o 2 P-a.s.;
3) lim £ lim £ —— Le 3,
(3) oo ( ) e \/257 (L >1/2 ’

(4) if (Kyt)i>0 and (y)i>0 are deterministic, then

V25 [y(Bi— Bs_) dLS)
(26 -9) B,/ ‘

Note that the primary process z has the rate of convergence %1 / %, while averaging process
Z has the rate (1 + K;)'/2 in all cases. For instance, if 7, = (1 + K), then since g; = 1, we
obtain

Ji 200+ K220 = i £

ag Lt
lim £((1+ Ko)'22) = lggoﬁ(m <L>i/2)

and

- INE: )dL,
Jim L((1+ 1) 7)) = hoo£< B(28-1) ! 31/2 >

Ify, = (1+K,)", 5 1 < r < 1, then, since §; — 0 as t — oo (see (A.3)) we get

o Lt
Jim £((1+ Koy m) = J;oo‘<m <L>/)

and

_)dLs
hm L((1+ K)'Y?z,) = hm E(B fo ~1/2 )
By

Case 3. RM stochastic approximation algorithm with slowly varying gains. This case
may be considered as a summurized example, where we demonstrate our methodology de-
veloped in [6], [7] and in the present paper in full capacity and details.

Consider the following SDE

R(Zt_) gt

dzy = ———— dKy + ———— dmy, 2o, 4.3
T O+K) T A+ Ky 4.3)

where K = (K});>0 is an increasing predictable process, K, = oo P-a.s., such that

AK, \?
———— | <o P-as., 4.4
> (wrhr) 8
the process (0);>0 is predictable with 0 < o? < ¢, tlim o2 = 0%, m = (my)>0 €
> g >

M2, d(m); = dKy, R(u), u € R, is some deterministic function satisfying the following
condition:

(A) R(0)=0, Ru)u<0, u0,
R(u) = —fu+v(u) with v(u) = O(u?) when u — 0, 4.5)
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is a positive constant, 1 < r < 1.
p 2
In our notation

_ R(u) I os
H(t,u) = ArE M(t,u) = M, .—/0 mdms.

We demonstrate our approach step by step.
Suppose, as usual, that equation (4.3) admits unique strong solution z = (z;);>0 on the

whole time interval [0, co).

Step 1. Convergence z; — 0 as t — oo P-a.s. We refer to Proposition B.1 of Appendix B.
Introduce the following objects

a(u) = 2H(t7u)u:2(1]j_(% <0, u#0, a(0)=0,
2 u
bt(u) = H2(t’u) AKt = U-ffét)wAKt

Proposition 4.2. Let the following conditions be satisfied:

|R(u)| |ul |R(u)]  AK;
0 a3 x, [_2+ u (14K,

+
)T} <D,(1+u%), D;>0, DoK, < o,

i) [R(w)] |ul
R LS DTN o Ly
(11) ggFul|<§ (1 + Kt_)r {AK;=0} +
R(w)| AK; |
* |u| (1 + Kt_)T I{AKﬁﬁO} oKy =00, P-as.
Then

zz—0 as t— oo P-as.

Remark 4. Suppose that the function R(u) satisfies the following condition: there exist some
positive constants G, G, G < G, such that

Glu| < |R(u)| < Glul.
Then conditions (i) and (ii) are satisfied. Indeed, if we put

€] -~ AK, T

— |24 G—t
(14 K-)" (14 K-)"

then since according to (4.4) % — 0 as t — oo, we may conclude that D = (Dy)¢>¢

is equal to zero eventually. Thus (i) follows.
As for condition (ii) we have

Dt:

[R(w)] |u|
(1+ K )r

LI
21 —oy + | —21 +
{{“t ot [t + S
2G|ul?

————  eventually.
SO+ K) y
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Now (ii) follows from (see Proposition A.4 (1))

/°° aK,
o A+K._)

Step 2. Rate of convergence of z = (z;);>¢. In this subsection we assume that z; — 0 as
t — oo P-as.

Since the process T?(L)~! = (T'7(L); ')¢>0 is equivalent to the process ((1 + K;)")¢>0
(see Proposition A.4, (4)) the natural choice of normalizing process v; is vz = (1 + K¢)",
t>0.

Thus we have to prove that conditions imposed on function R(u), u € R' and process
K = (K)¢>0 together with z; — 0 as t — oo, P-a.s. ensure the following asymptotic
property of (z;)¢>o: forall 6,0 < § < %", 0<do <1,

(1+ K;)"%2z —0 as t— oo P-as. (4.6)

For this aim we refer to Proposition B.2 of Appendix B. First we focus our attention on
condition (6), which allows us to obtain the value of §y such that for all § < §y the following
condition is satisfied:

e 1
1+ K)° ——— P-as. 4.7

But (4.7) holds true if 2r—rd§ > 1 (see (A.1) and (A.2)). Hence, 6 < 2—% = 00,0 < §p < 1.
Condition (1) is trivially satisfied. Indeed, since AK;/(1 + K;_) — 0 as t — oo,

AK, "
%:(l—l—t) —1 as t— o0, P-as.
Vi (1+K)

As for condition (2), we have from (4.5)

_ AKt U(Zt_) AKt
Pla)AK = e+ = a- I(ae #0) ey = 0

as t— oo, P-as.

Let us check condition (3). Note that

t
1+ Ky)" = 1+/ gs dK,
0

where
_ . 1-K)" — 1+ K"
g =r(1+ K¢)" ' iak,—0y + ( ) AK(t t) HIN R
Therefore
o ~ +
[ 6% - s a;
0 Yt
(14 K,)r? 3 v(z-) 1 *
_ 5 _ + _ Iy, dK; < oo,
/0 {7’ (1 —|—Kt)r (1 —|—Kt)r thf 2t (1 +Kt)T {zt-#0} t <00
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since the integrand in the last expression equals zero eventually. Indeed, the integrand is
equal to

1 1 v(2e-) "
[7"6( - B+ A 730}} =0 eventually

(14 Ky)" 1+ Kyt 27

because (1 + K;)"~1 — 0, also ~ ( =) zi— — 0ast — oo (see (4.5)).

Further, since 5;(z;— )AK; — 0 as t — oo, condition (5) is trivially satisfied.
Thus to finish the proof of (4.6) we have to check condition (4).
We have, for any §,0 < § < 1,

A’}/t AKt o AKt AKt 2
1-{1———) =1—-(1- < 1-— .
( %) ( ) Vi TR

Therefore

{1—@(% ) — (1—%) r < afflg)r {ré(l—l—Kt_)Tl

AK, v(z—)
(14 K ) P 27

+ (1 =79

+
zt_I{Zt#)}} =0 eventually.

Step 3. Asymptotic expansion for z = (2)1>0- In this subsection we assume that Yz — 0
ast — oo P-as., forallO <8< %,0<d < 1. Recall thaty; = (1+K;)" and §g = 2— 2.
Assume that r > =

According to Remark 6 to Proposition B.3 if we prove that

(o)
/ Bt = Be(z- )| dKy < oo P-as. (4.8)
0
for somee, 3 — % < ¢ < 1, then the normed process (I'; (L), ! 22t)t20 admits the following
asymptotic expansmn
— L
L)y Vo = -+ i + R (4.9)

ITE

with R; — 0 as t — oo P-a.s.
Let is check condition (4.8). For each 4,0 < § < 50 , we have

[ 18- aomizar = [TPE 0 g,
0 0 Z

t—

< const(w) / (1+ K, ) H0=9) 4K,
0

Therefore for given r, % < r < 1, if there exists the pair (£, d) such that

1 1< <1
2r 2 2’

then condition (4.8) will be satisfied. But such a pair (g, 0) exists only if r > %.

1
0<1l—— 1446— 1
0<d< 5 r(1+ g) > 1,
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Note that from Eq. (4.9) follows that

_ L
lim L(T(L); ?2) = lim ,c(<§/2)

t—o00 t—o00

Thus, one can obtain the asymptotic distribution of the process ((1 + K;)'/?2;)¢¢ using
the appropriate form of Central Limit Theorem for locally square integrable martingales.

-1
Namely, since tlim TL), 2 % (see Proposition A.4 (4)), then
—

RS AL
2 L
. r/2 — 1 g t
Jim £((1+ K722 thjgoc< i <L>i/2>' (4.10)

For instance, consider the case when all processes under consideration are continuous.
Define for any sequence (¢,)n,>1 of positive numbers with lim ¢, = oo, the sequence

n—oo
Y™ = (Y, Fiuelo,1) € M. (P), where for u € [0, 1]

Ltnu
<L>1/2 ?

tn

Y=

u

Fi = Fipu-

Then (Y™); = 1 and hence Y7* < N(0,1) asn — oo. But, Y{" = (LL;i"/‘z and therefore

tn

Ly
()"
Finally, from (4.10) we obtain

4 N(0,1) as t— oo. (4.11)

2
1+ K)Y22 A N (0,2 ).
( + t) 2t —r 0’2ﬂ

In the case when K = (K;);>0 and (m;);>o are discontinuous the following Lindeberg
condition (Ls) (see [12]) ensures (4.11):
(L) @2I{japssy * VP 50, b€ (0,1],

where " is the compensator of jump measure of (Y,").e[0,1]-
Note that (L2) can be expressed in terms of the jump measure of m = (m;)>o.

Step 4. Asymptotic properties of Z = (Z,),>0. First we study the asymptotic properties of
Z = (Zt)1>0 in linear case, when in (2.1) 5; = ﬁ Then if we put in Proposition 4.1
v = (14 K})", all conditions of this proposition are satisfies with g = 0 (see Eq. (4.4) and

Proposition A.4). Further, by virtue of the Toeplitz lemma,
& L RTHLTBA KK, BTHL) 28
= lim = Lo\

li = = ==
e 1+ K, t— 1+ K, t—oo (1 4+ K;_ )" o2’
since 11++1§t, — 1 as t — oo. Finally, from assertion (4) of Proposition 4.1 we obtain

o Jy(Bi— BS_)dLS>.

. 1/2— IRT
Jm £ <(1 +K) Zt) - tlgf}oﬁ(g e



114 The Robbins-Monro Type Stochastic DEs. III. Polyak’s Averaging

Let us return to the general case. Assume now r > % (in Step 3 r > %). First note that in
B.Dri=

Now because the difference between the representations of (2.5) and (3.3) for linear and
general cases, respectively consists only in the remainder term r, to obtain the asymptotic
distribution of Z in general case it is enough to prove

rtl —0 as t— oo P-as. 4.12)

For this aim let us refer to Corollary 3.2, (2), and note that in the considered case

v(u)
t - —_—
vlt,u) 1+ K"’
e u)] o [o(u)] 1 1
= _— < T = < .
el Illgr%) u? zltlg%) w2 (14+Ke)m — const (1+ K¢ )"

Thus to prove (4.12) we have to check that condition (ii)” of Corollary 3.2 is satisfied.
But condition (ii)”” will be satisfied if there exists §, 0 < § < %’, %0 =1- %, such that

oo
/ 1+ K )20+ K, )71+ K, )" dK, < co.
0

Such a § exists only if r > %.
Thus we obtain

. £<g2 [5(B, — Bs_)dLs>.

. —1/2—
Jim, £+ K™ z) R I

=1
t—o00
5. PROOF OF RESULTS

Proof of Proposition 2.1: Applying the Itd formula to the process B, after simple calcula-
tions it is easy to check that

B, =2((L)o B) o B, — ((LYAB) o B. (5.1)
From conditions (2) and (3) applying the Toeplitz lemma we obtain
~ L)AB
lim B 2 — lim 7(<L>AB) °B: _ 2 — lim <<L)>°B (L) o B) o By
twoo ((LyoB)o By ~ t=oo ((LYoB)oB; ~ t3 ((L)oB)oB
B . (LY:ABy
2o e T2
Further,
B? B? ((LYyo B) o B 1 B?
lim = = i : = = lim .
00 B, s ((L) o B) o By B, 2_¢ i ((L)o B) o B;
Therefore, it remains to show that
2
lim Bi 0. (5.2)

t= (Lo B)o B
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We have

B2  J5(Bs_ + B,)dB, o 7 B, dB,
({L) o B) o By ((LyoB)oB; ~ ((LYoB)oB;
2y Bs((L) o B);*({L) 0 B), dB,
((L)o B) o B; '
Now, applying once again the Toeplitz lemma to the last term of this inequality and using
condition (2) we obtain

2 [ By dB, B ALY YL)s dB, 1
li o s s —920 t -9 0 s s 5:21. -0
500 (LyoB)o B, b0 (LyoB, 5%  (L)oB, 500 (L)
Therefore .

. B2 2 [ Bs dB;

lim ———*t <2 1lim —2—° —"° —

M T o B o B, = 2 () o B o B, ©
from which (5.2) follows. Eq. (2.7) directly follows from Eq. (2.6). O

Proof of Proposition 2.2: First, show that conditions (1) and (2) of Proposition 2.1 are
satisfied. We have

(L)o B, = (LT o &' = / LTI B, dE,

t
:/ dl'y=T¢y—1—=00 as t — oo.
0

Thus, condition (1) is satisfied.
Further, since £.! = oo and
((LyoB)oB; _((L)oB)I'og!
&' &t ’
one can apply the Toeplitz lemma to obtain
((L)Y o B) o B;

&t

t
dl's
= lim 7‘[0 =

t—oo I

lim

t—o0

1

)

from which condition (2) follows.
Condition (3) immediately follows from Assumption 1. Indeed,

LAB, AT, 1
- = BAK, —— — t— oo.
LyoB, T,—1 Aoy s e

To prove (2.9) rewrite B, in the following form
By = (2(L) o B— (L)AB) o By = (2(L) o B— (L)AB)T "' 0 & 1.
Applying the Toeplitz lemma we have
i B gy 2L 0B~ (L) ABy L 2((L)T ) o€ — (L), D7 IAE
t—o0 I t—o0 I
oy 2TTPBTgE T T — (L),I;B; ' g:& P AT '

t—oo Ft




116 The Robbins-Monro Type Stochastic DEs. III. Polyak’s Averaging

Then, since I', = o0, applying the Toeplitz lemma again we obtain

AT
. t . o, _ . 9 _ t
Jim == 2 Jun (DT B (DS T 6)
if these limits exist. Now note that
@& =THL) ' By, (5.4)

therefore from (5.3) we get (2.9). Now Eq. (2.10) is a direct consequence of Eq. (2.7). |
Proof of Lemma 3.1: Since

det = (&7 v %) g,
we can write 7% as follows:

1 t _

~1 _ 1p—1/0—1/2 1/2 —1/2

Ty = 5—1/2/0 Rsrs (gs / +5S— )dgs / .
t

Let us show first that

L BHE 167

tlinx) Ft =0
Indeed, using (1.3) we get
-1/2 —-1/2
R+ ) IR
Iy - Ft5t1/2
t —1/2\ o—1/2
_ fO(Fsgs / )55 / ‘53 _ﬂs(zs—)‘ |Zs—‘sz
= 7 . (5.5)
I':&;
Show that the limit of the last expression equals zero. For this aim establish first that
lim T,67? = c. (5.6)
t—o0
We have
-1
t b2/ —17-2 AT 2
L+ [T B Ak, L+ THDT (22 4E)  ar?
Ft_Qgt_l — f() S< >s 6 _ 0 r ) (57)

I?2 7
Applying the Toeplitz lemma to the last term of Eq. (5.7), we get

-1
lim T2 = lim (L); ! (2 - AFF*'> =0.
t

t—o00 t—o0

Further, show that condition (i) implies that (I‘tEtl / Q)tzo is an increasing process eventu-
ally.
Using the Itd formula to the process (I'?&;);>0 we have
1

r? 1
d(r7&) =d t)=r+r_ AUy =T} === d(& !
(360 = () = gy (Fu+ D) =T e ()
1

AT 1 _
— I} [(2 -5 t) - ——TH(L); 1] BidK; >0 eventually.
& ¢ &
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Hence (I‘fé’tl/ Q)tzo is an increasing process eventually. This fact together with (5.6) allows
one to apply the Kronecker lemma to observe that condition (ii) ensures that the limit of the
last term of Eq. (5.5) equals zero. Now assertion of the lemma follows from the Toeplitz

lemma. ]
Proof of Corollary 3.2: (1) As szt — 0ast — oo, P-as. foralld, 0 < § < %‘), then
|70 z¢(w)| is bounded by some constant (depending on w) for all §, 0 < § < %0, P-as.

Therefore, forall 6,0 < § < %0,
< 12 < 12
/ E B = Bz )| |ze-| dKy = / E B = Bz )il ez | A,
0 0

< const(w)/ St_1/2|5t — Bi(z )|l dK; P-as.
0

Thus, (ii)'=(ii).
(2)The arguments are clear. [l
Proof of Lemma 3.3: Show that

1 ¢ 1 ¢
Ff:Tm/REdBS:T/?/ N,dB, 50 as t— oc.
& 0 &, 0

t
Since B = (By);>0 is deterministic, we have
- 1 ¢ 1 K
Tt = 6}—1/2/0 Ns dBG = (5?1/2\/0 (Bt - BS—)dNS.
Further, for any sequence (¢,,),>1, t, — 00 as n — oo, let us consider a sequence of
martingales Y = (Y7", ! )ucpo,1] € Mp.(P),n > 1, where F} = Fy u»
1 thu
Y= 7/ (B:, — Bs—)dNs.
&% Jo

tn
Now, if we show that (Y™); L 0asn — oo, then from the well-known fact that (Y™ R
0= Y] £o (see, e.g., [12]) we will get 77 — 0 as n — oo, and hence 77 — 0 as t — oco.

Thus we have to show that (V™) £ 0asn — oo. Since
1 tn
V= o1 [ (B, - B
& Jo

we have to show

1 t
F/o (B; — By_)?d(N), B0 as t— o0
t
We use (5.1) with (N) instead of (L) to obtain

/ (B, — By d(N), < 2((N) o B)o B,
0

Hence, it is enough to prove that (3.4) implies
((N)oB)o B

— —0 as t— oo.
&
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Since £! = oo and
((NyoB)oB, _ [o Jo{N)udB, 7 dES"
&t &1 7
applying the Toeplitz lemma yields

N)oB)oB I
lim « >O_1)O L = lim 7/ (N)sdB,
t— o0 gt t—o0 Ft 0
t t
N
= lim —/ (N),T;HdES = lim —/ (N) (L)1 dT, = (V) =0,
t—oo |y 0 t—oo |y 0 t—o0 <L>t
which completes the proof. O

Proof of Proposition 4.1: (1) By the definition

t t 5
<L>t:1+/ FﬁéﬁdKS:H_/ r2 % K,
0 0

s—

t t
dK, K.
1+/ Fﬁvs_—laﬁf‘zu/ Ty tol —.
0 g 0 .

5— S5—

Now consider the process (I'; 27;)¢>0. Using the Yor formula & (X)&(Y) = &(X +
Y 4+ [X,Y]), we have

[, 2y = &7 <—5 o K> (Ao K)

dK, _ _ AK,] (AK\?
+Z{B§—2ﬁgs+ﬁ2gs > ]( ) ) (5.8)
S s<-

B &(/0'[26 —elT o ]\ e

Further, note that by virtue of conditions (i), (iii), (iv) and (v)

e K
/ 28 — 7s] aKs _ oo P-as.
0 v

s—

and

2
> [/32 — 285, + A3 “ﬂ <AKt)

=0 Vt— Ve—

AK,] [ AK\?
gZBQ [1—&-@ t} ( t) < oo P-as.
>0 Yt— Yt—

These relations together with (5.8) imply

Jam o = o0
which in turn provides (L), = co P-a.s.
(2) Let us note that conditions (a), (b) and (c) of Proposition A.3 are satisfied with ¢c; = 0
(see (iii)), c2 = 5, c5 = % (see (iv)).
Assertion (3) follows from (2.4).
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On the other hand, applying the Toeplitz lemma and assertion (2) we obtain

g1 .o B BR6-7)
t—)ool—|—Kt_t1—l>I£loFt<L>t %7__ o2 ’

Now the last assertion (4) follows from (2.9) with m = 0 since AFE‘ =B AK; =0 % —
0.

Proof of Proposition 4.2: Conditions (i) and (ii) of this proposition are the same as the
corresponding conditions in Proposition B.1 written for the considered case. Condition (B)
of Proposition B.1 follow from Eq. (4.4). (]
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APPENDIX A

Here we collect some necessary definitions and technical results concerning main objects
of this paper.

Definition A.1. We say that two processes £ = (&;)¢>0 and 7 = (1;)¢>0 are equivalent and
write & ~ 7 if there exists some constant ¢, 0 < ¢ < oo, such that

lim & =c P-as.

t—00 1)
Definition A.2. We say that the process { = (&;);>0 has some property eventually if for every
w in a set Qg of P probability 1, the trajectory (&, (w))¢>o of the process has this property on

the set [to(w), 00) for some ¢ (w) < co.

Toeplitz’s lemma: Let L = (L;);>0 be a predictable increasing process with Lo, = 00
P-as.,Y = (Yi)i>0 € D be some process such thatY o L, < oo P-a.s. for allt > 0 and
tlim Y < 0o P-a.s. Then

— 00

_ JoYedL,
lim =——— = lim Y; =Y, P-as.
t—oo 14+ Lt t—00

Assume that the following objects are given: K = (K}):>o — predictable increasing pro-
cess with Ko, = 0o P-as. I' = (T'y)>0, It = Et_l(—ﬂ o K), where (8;):>0 is a positive
predictable process such that 5,AK; < 1, S0 K; < oo forallt > 0 and 5o K, = oo P-a.s.
L= (Lt)t207 L; = f(] 'y dmg, where (mt)t>0 S Mloc( ) d(m)t = K% dK, £2oKoo < o0
P-as.

Let v = (7¢)t>0 be some increasing predictable process such that v, = 1+go K;, g > 0,
go Ky <ooforallt > 0andgo K, = oo P-a.s. Obviously process (7y:):>0 can be written
as follows: vz = &(X o K), where Ay = G;/7:.

Everywhere below we assume that (L), = oo P-a.s.

Proposition A.3. Let the following conditions be satisfied: P-a.s.
(a) BAK;— ¢ as t—oo, 0<¢ <1,

(b) ’Yt_lgg — ey as t—o00, 0<ey< o0,

At
(c) 7[16—2%63 as t—00, 0<c3<ca(2—cq).
t

Then .
I2(L),
lim M =c3(2—c¢1) —c3 P-as.
t—o0 Yt
Proof. Applying the 1td formula to the process (I'?; 1)t20 and having in mind that d['? =

(Ty + Ty )dly, dUy = Ty f; dKy, d{L); = T'34? dKK; and d%—l = —7; '\ dK; we obtain

—1 AT, | Bs —1 2
L T (2= 4%) B dm)s - fo o e ndiL),

Ve (L)t <L>t
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Since (L) = oo using the Toeplitz lemma and conditions (a), (b) and (c) we have

2/7\—1 2 —1
lim M — lim el
t—o00 Ve t—o0 <L>t
AT\ B
:tlggoy (2— t) 65 hm % E )\t—02(2—01)—03.

Remark 5. Under condition (b) the condition (c) is equivalent to
© 7 'G/Br— & ast— oo, Pas.

This fact immediately follows from the relation

Yo NS = (v G/ B (vt B/ 6R).

O

Proposition A.4. Let K = (K3) be an increasing predictable process, Ko, = oo P-a.s.,

satisfying (4.4) with i<r<i
, lim 0?2 = o2
2 t—o00 t

2

2 o
Putﬁt— (1+K T,f 714»[(27)
In this case the following assertions hold true: P-a.s.

(1) (14 K_)"" o Ky = 00; moreover, tgrgo % = 1;;
2 1+ K_)?" o Ky < 005
3) (L)oo = 00,

(L),
(@] hm (1+K)

=28

Proof. Assertion (1) immediately follows from the following time change formula (see,

e.g.. [2])

/°° dK; /Koo dt /Km dt
—_— = e —— Z = OO;
o I+K-) Jo (A+Kep-)" —Jo A+

where c(t) = inf{s > 0: K, > t}. Note that K4 < t.
(2) We will prove more general result. Let o > 0. Then the condition

(AK;)?
2T Ky <

is sufficient for
1+ K )" o K < .

Using the It6 formula to the process (1 + K;)~® one easily obtain

1
A+K_ )" Do g == — (1= (1+K)™)

(A1)

(A2)

1
-3 [ 1+ K~ (1—|—Kt,)‘°‘+a(1+Kt,)_(1+a)AKt}.
t
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But

> ‘(1 +K) - (1+K,_)%+a(l+K,_)"FYAK,

t

AKt2
<a(1+a)zt:(1_i(_Kt_))2+a<oo.

In the case when 1+ a = 2r, for the convergence (1+ K_)~%" 0 K, < oo it is sufficient

the following condition
AK,)?
2 § +( Kt_t))27’+1 <
t

which in turn follows from (4.4).

Note that (3) follows from Proposition 4.2 with v, = (1 + K3;)".

(4) Put y(t) = (1 + K;)" and let us check conditions (a), (b) and (c) of Proposition A.3.
From the condition (4.4) directly follows that condition (a) is satisfied with ¢; = 0. Condition
(b) is trivially satisfied with co = % As for condition (c), it is not hard to check that

t
=1+ / 5. dK,, (A3)
0
where
_ . 1+ K — (14 K )"
g =r(1+K;_) 1I{L\.K,,:O}-F( ) A[é ) Iiak, 20y

<r(1+K)" ' —=0as t—>o0 O

APPENDIX B

In this section for convenience of readers we formulate some results from [6], [7].
The following proposition is the second part of Theorem 3.1 from [7].

Proposition B.1. Let the following conditions be satisfied:
(i) [lae(u)I{ak, 201 + be(w)]T < Dy(1+u?), Dy>0, DoKy < o0, (B.1)
(i) Foreache >0

<1n‘f<1 {la(u)I{aKk, =0y + [a(w)I{aK, 201 + b(w)] ™} 0 Koo = 00 P-a.s.
ES|ulSs 2

B) M)y <oo P-as.
Then zz — 0 ast — oo P-a.s.

Combining the results of Theorem 2.1 and Corollary 2.1 from [7] we obtain
Proposition B.2. Let the following conditions be satisfied:

@)) x is eventually bounded,
Y

(2) (Bi(z=)AKy) >0 is eventually bounded,
forall§, 0 < § < %0, P-a.s.
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~ +
3) {5 % - B(z_>] o K&, < 00, where §y = ¢,

A 9T
4) Z {1 = Bi(z-)AK; — (1 - %> } Iig, (2o yaK, <1y < 00,
t>0 Tt
A\ 07T
&> {&(zt)AKt —1- (1 - %> } L5, (s AK 21} < 00,
>0 Yt

(o)
(6) / 7202 dK, < oc.
0
Then for all §, 0 < § < %"
Wz —0 as t—o0o P-as.

Proposition B.3 below is the repetition of Theorem 3.1 from [7] for the case when (L),
t > 0, is deterministic, 5; AK; < 1 eventually, M (t,u) = M(¢,0) := M.

Proposition B.3. Let the following condition be satisfied: there exists e, % -y <e< %
such that
1 t

—/ 1Bs — Bs(zs—)|Vs_(L)sdKs -0 as t— oo P-as. (B.2)

(L)t Jo
Then I

_ z
I'(L), 1/2215 =+ + Ry

(L (),
with R; £> Oast — oo.

Remark 6. The condition: there exists ¢, % —dg<e< % such that

/ |8 — Be(ze—)|vi_ dK; < 0o P-as.
0

is sufficient for (B.2).
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Abstract. The recursive estimation problem of a one-dimensional parameter in the trend
coefficient of a diffusion process is considered. The asymptotic properties of recursive es-
timators are derived, based on the results on the asymptotic behaviour of a Robbins—Monro
type SDE. Various special cases are considered.
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0. INTRODUCTION

The asymptotic theory of maximum likelihood estimation of an unknown parameter in
the trend coefficient of diffusion processes was developed (in some generality) in a series
of works ([2], [3], [12] and others) in the context of Hajek—Le Cam theory. In particular, it
was shown that under some regularity conditions the maximum likelihood estimator (MLE)
is asymptotically normal and efficient.

As is well known, the maximum likelihood estimator can be constructed solving the MLE
equation

b a(X,,0)
/0 (0(X.))? (dXs —a(Xs,0)ds) =0
which is nonlinear (in general) w.r.t. the parameter 6, and, in addition, requires repeated
calculations of a stochastic integral.

On the other hand, to avoid these difficulties Nevelson and Khas’minskii (1972) [11], Al-
bert and Gardner (1967) [1] and others ([9], [10], [14], [15]) introduced recursive procedures
of constructing estimators that are asymptotically equivalent to a MLE for special cases of
statistical models (i.i.d., diffusion processes, etc.). They also suggested to study the asymp-
totic properties of recursive procedures by the methods of stochastic approximation.

In [6], [7], the authors proposed the method of constructing recursive estimation proce-
dures for semimartingale statistical models. Later, in [4], [S] they introduced the Robbins—
Monro type stochastic differential equation (RM type SDE) and studied the asymptotic prop-
erties of solutions (convergence, rate of convergence, asymptotic expansion) based on a gen-
eral theory of martingales and stochastic calculus.

Published in Georgian Math. J. 17 (2010), no. 4, 683-704.
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126 Recursive Parameter Estimation in the Trend Coefficient of a Diffusion Process

It should be noticed that an RM type SDE covers both general stochastic approximation
algorithms with martingale noises and recursive estimation procedures for semimartingale
statistical models.

In the present paper we study the problem of recursive estimation of a one-dimensional
parameter in the trend coefficient of a homogeneous diffusion process, embedding the recur-
sive estimation procedures (SDEs) in the RM type SDE, and derive the asymptotic properties
of recursive estimators based on the results of [4], [5].

In Section 1, we study the general case.

In Section 2, we consider the special cases of ergodic diffusion with the trend coefficient
of a separated parameter and phase variables, Ornstein—Uhlenbeck process and ergodic dif-
fusion.

1. GENERAL CASE

We consider the problem of recursive estimation of the one-dimensional parameter in the
trend coefficient of a diffusion process & = {&;, ¢ > 0} with

dé-t = a(gtae) dt+0(€t) dwt> 603 (11)

where w = {wy, t > 0} is a standard Wiener process, a(+, #) is the known function, § € © C
R is a parameter to be estimated, © is some open subset of R, 02(~) is the known diffusion
coefficient.

We assume that there exists a unique strong solution of equation (1.1).

For each § € © denote by P? the distribution of the process & on (Clo,00)5 B).

Let X = {X;, t > 0} be the coordinate process, that is, for each x = {x¢, t > 0} €
0[0700), Xt(1'> = T¢, t 2 0.

Fix some ' € © and assume that for each 6 € ©, P? (te) P? . Then the density process
pt(X, 6) can be written as

X, 0):=
pt( ) ) dptez

U(Xs) U(XS)

3 ()

I () = exp { / " a(Xy,0)~ a(X,,0) (dX,— a(X,,0')ds)
0

Recall that if for all ¢ > 0 P%-a.s.

1
/ 0%(X,)ds < o0, (1.2)
0
¢ t
then the process X ¢ := {thf a(Xs,0)ds, t > O} € M2 .(P?)with (X¢), = [ o?(X,)ds.
0 0

Under suitable regularity conditions if we assume that for all t > 0 P%-a.s.
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we will have

{;9 In oy (X, 0) = /Ot (W)Q dXS, 1> 0} € M2(P"),

where a(-, 0) denotes the derivative of a(-, 0) w.r.t 6.
Below we assume that conditions (1.2) and (1.3) are satisfied.
Introduce the Fisher information process

t . 2
~ a(Xs,0)
I(0) = / < ds.
0 o(Xs)
Suppose that for each 6, E(e) — oo ast — oo P%-as. and there exists some positive
predictable non-increasing process {I;(6), ¢ > 0} such that

E(Q)Itw) —1 as t — oo Plas.

Then, according to equation (1.4.11) from [6], the SDE for constructing the recursive estima-

tor (6¢,t > 0) has the form
a(Xy,0;) (X, 04)

dby = 1;(0y) | 5 dX{ + —5—~ (a(Xy,0) — a(Xy, 0,)) dt|. 1.4

t t( t)|: O_Q(Xs) t + O'Q(Xt) (a( ty ) a( ty t)) ( )

Fix some 0 € ©. To study the asymptotic properties of the recursive estimator {6;,¢ > 0}

as t — oo under measure P? let us denote z; = 6; — 6 and rewrite (1.4) in the following

form:

Xt, 9 + Zt)

et (X00) ~ a(Xi, 40 | 15)

In the sequel we assume that there exists a unique strong solution of equation (1.5) such
that

K a(Xs,0 + z5) }
I (0 4 2z) —2—"22dX¢, t>0p € ME (Pp),
{/O ( ) O_Q(XS) l (9)

that is, for each ¢ > 0 P?-a.s.

/Ot I2(0 + z,) <d(X;g($ ZS)>2 ds < co.

We will study the asymptotic properties of the process z = {z;, ¢t > 0} as t — oo (under
the measure P?) using the results of [4], [5] concerning the asymptotic behaviour of solutions
of the Robbins—Monro type SDE

t

t
Zt = 2o + Hs(zs_)sz+/ M(ds, zs—). (1.6)
0 0
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Note that equation (1.6) covers equation (1.5) with K; = ¢,
a(Xt,9+’U,)
o?(Xy)
x (a(Xt,0) — a(Xt,0 +w)), HI(0) =0, (1.7)
¢ 1(Xt, 0+ u)
M(u) := M?(u :{Meau :/ I,(0+u (X, 0 +u)
(u) (u) (t, u) O( )UQ(Xt)

Let for each u € R the process M?(u) € M7, (P?). Then

Hy(u) := H{ (u) = I(0 + u)

axe, t>0}. (1.8)

O(u O(v)), = tsu,v s,
(M (u), M°(v) /o“ )d

where
o, 0) = h(u,0) = L(0 + u) (9 4 v) AR T WXL F0) g )
0% (X3)
Let us introduce the following objects:
HY (u) a(Xy,0)\>
0 _ 1 t — ty
H{ (u)
Yy ={ o 0 470 (1.11)
fa u =V,
t
Ff:exp{ Bg ds}, (1.12)
0
t
Lf:/ % dm? (o). (1.13)
0

Suppose I'Y — oo as t — oo P%-a.s. and
LY ={Lf, t > 0} € Mj,.(P").
Below to simplify the notation we omit ¢ in some formulas.

Theorem 1.1. (I) Convergence. Let the following conditions be satisfied:
(A) foreacht >0 PY-q.s.

HY (u)u <0 forall w#0, 0+ uc O;
() forallu,  +u € ©andt >0 Pl-a.s.

where B = {B;, t > 0} is a predictable positive process (maybe depending on 0)
such that

oo
/ Byds < 0o, P’-as.;
0
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(i) foreache, 0 <e <1,
/Do inf (X, 0 +u)
0 e<lul<i

2(X,) (a(Xt,0) — a(Xt,0 +u)) u| dt =00 P’-a.s.
Then for any initial value zg

I (0 + u)

zz—0 as t = o0 Plas. (1.14)

(IT) Rate of convergence. Assume that (1.14) holds true.

Let v = {v, t > 0} be an increasing process such that v = 1 + fot gsdsS, Yoo = 00,
Pl a.s.

Suppose the following conditions are satisfied:

(1) forall 6,0 < § < 1, P?-as.

o 1(Xe, 04 2)\°
S12(0 + 2 <a(t’t> dt < o0;
/0 Ve t( t) O'(Xt)

(ii) forall 6,0 < 6 < %, Pl-gs.

[ 3050 (s

L0+ z) a(X4, 0+ z1) a(Xy, 0+ 2) — a(Xy, 0) +
I dt
1,(0) a(Xt,0) a(Xy,0)z {z:#0} < 00,

where ™ = max|0, a).
Then forall 6,0 < 6 < %,

vfzt -0 as t > oo Pl-as., (1.15)

for any initial value 2.

(IIT) Asymptotic expansion. Assume that (1.15) holds true and the following conditions
are fulfilled:

(i) (L)oo = /OO 2 d(M%(0)); = co P’-as.;

0
(i) T2(L)~! >~ ~* (i.e. these two processes are asymptotically equivalent);
(iii) (L) = {(L):, t > 0} is a deterministic process or (L) ~ (L), where (L) is a
deterministic process;
(iv) there exists €, € > 0, such that Pl-as.
I;(0 + z5) a(Xs, 0+ z5)

1t a(X,,0)\?
<L>t/ols(9><a<xs>> TLe) a%.0)
" a(Xs, 0+ z5) — a(Xs, 0)

a(Xs,0)zs

|2s| "¢ I, 201 (L) sds — 0 as t — oc;
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a(X€70+Z€) 2 P
—————| ds — 0 as t = .
a(X..0) s as 00
Then process z = {z, t > 0} admits the following representation
_ L
Ft<L>t 1/22t = i + Rt

(L),

)
with R, i>0ast—>oo.

Proof. (I) It is enough to note that conditions (A), (I)(i) and (I)(ii) of the theorem ensure that
the conditions (A), (B) and (I) of Theorem 3.1 from [4] are satisfied with

ha(u) = If(9+“>(éw>2

and
d(Xt, 9 + u)

ar(u) = I(0 + u) (X))

(a(Xt,0) — a(Xe, 0 +u)) u.

Thus (1.14) holds true.

(I) Condition (I)(i) of the theorem is the same as condition (2.4) of Theorem 2.1 from
[5] with h;(u) defined as above.

After a simple calculation one can check that condition (II)(ii) is the same as condition
(2.6) from [5], taking into account that

] Xt,a Xt,a - Xt,a
Be(u) := B (u) = — I,(6 + “)Q(UZ(X:_) ol : Z( asl Tiuz0y

+ 1,(0) <d£)((;(’j) > QI{UZO} .

Then (1.15) directly follows from Corollary 2.1 and Theorem 2.1 from [5], noting that all
conditions of Corollary 2.1 are satisfied because {K;, ¢ > 0} and {;, ¢ > 0} are continu-
ous.

(IIT) One can easily check that conditions (IIT) (i)—(v) imply all conditions of Theorem 3.1
from [5]. O

2. SPECIAL CASES

Case 2.1. Ergodic process with separated phase and parameter variables in the trend
coefficient. Let in equation (1.1) the trend coefficient a(z,0) = a(f)¢(x). Suppose that
conditions (1.2) and (1.3) are satisfied. Assume also that for any § € © C R the process &
has the ergodic property, that is, the functions a(-, #) and o2(-) satisfy conditions (1.44) and
(1.45) from [3] with the density of invariant distribution

16:0) = G {2, o )
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where

G(0) = /Oo o 2(y) exp {2/Oy a(v,6) dv}dy < .

oo o?(v)
Assume that a(#) is continuously differentiable with a(6) # 0 for all § € ©.
In this case

L(0) = (a(0))*®¢(X),

t 2
o(Xs)
o, (X) = / < ) ds
' 0 \o(Xs)
with the assumption ®;(X) — oo as t — oo P-a.s.
Putin (1.5)

where

1,(6) = [(a(0))* (1 + ,(X))] -

Proposition 2.1. (I) Convergence. Suppose that for each u # 0, u + 0 € O, the following
conditions are satisfied:

(@ a(@+u) (a(d) —a(@+u))u<0;

(®) [a(0 + u)] 7> < () (1 + [ul?);

(c) foreache, 0 < e < 1,
a0+ u) a(f) — a0+ u)

inf > 0.
c<lui<t | a(d) a(0)u
Then
2z —0 as t— +oo Pl-as. (2.1.1)

(I) Rate of convergence. Put v, = 1+ (a(6))?®,(X). Then forall 6, 0 < § < 1,

¥z =0 as t — oo, Pl-as. (2.1.2)

(IIT) Asymptotic expansion. Let the following condition be fulfilled: there exist some
€ > 0,7 > 0and c(0) such that

|a(0 +u) —a(f +v)| < clu—v|”
for all u,v € O(0) (here O.(0) is some e-neighbourhood of ). Then the process z =
{z¢, t > 0} admits the following asymptotic expansion
tl /22’t = L:(0)
(L),?
Proof. (I) Condition (I) (A), of Theorem 1.1 directly follows from condition (I) (a) of Propo-

sition 2.1.
Condition (I) (i) of Theorem 1.1 also directly follows from condition (I) (b) of Proposition

2.1 with
_ 0.0 ? -2
5= (£55) ooy,

Gl
TR, with R 250 as t— oo (2.1.3)
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Indeed,
u) : = hy(u,u) = I? u bl Lh) 2
ht( )-*ht( ’ ) It(0+ )< U(Xt) >
= a6+ u)] 2 B, < () Bu(1 + |uf?)
with

/ Btdt:/ (14 ®4(X)) 2d®,(X) < oo Pl-as.
0 0

(II) We will check conditions (IT)(i) and (ii) of Theorem 1.1.
Condition (IT)(i) for the considered case is of the following form: for all §,0 < § < 1

-2

/000(1 + (a(0))20,(X))° [(a(e F20))2 (1 +3(X))] (@0 + 2))? ddy(X)

14 (a(9))%9 (X)) > L
_/0 ( 1+ ®,(X) ) (a0 + 2)) (1+(13t(X))5 d®;(X) < oo P%as.

But the last integral is finite since

4Dy (X)
/0 T+ @, (x)20 =% Pl-as.

and

a “2 ’ -2 2(5—1
(FHEAOD LN o+ 201 G0 a5 100 Pas

Further condition (II) (ii) of Theorem 1.1 for the considered case means that for all §, 0 <
§ <1, Pl-as.

o [ 5 L (08 (X)
@0 [ 5~ e (e

a(8)  a(0+ =) — a(6) o am(X)
O+z) a0z I{Zfﬂ”ﬂ 1+ (a(0)20,(X) ~

+ -
a
and is fulfilled since

_ 1+ (a(0))*®+(X)
{6 (a(0))2(1 + @4(X)) (I{Zt—O}

a®) al@+z)—a

+
n - (6) I{zt#o})] =0 eVentually-
Indeed,
, . a(d) a0+ z) — a(d)
=0T 50+ 2,) a(0)z

It,z0y > 1 as t— o0 Pl as.

and also
1+ (a(0))*®«(X)

1 t PYas.
a(9)2(1+<I>t(X))—> as — 0 a.s
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(III) Using (1.11), (1.12) and (1.13) we have
[, :=T%=14+®,(X) > o0 as t— oo Pl-as.,
(L%, (a(0))* ®4(X) — 0o as t — oo Pl-as.,

2/70\—1
im DEEDC
t—o0 Yt
and, moreover, if we denote
2
. o(z)
i(0 :/ ( > f(x,0)dz, (2.1.4)
0= [ (557) S0
then .
Lﬁ —1 as t > oo Plas.
(1+¢)i(0)

Hence conditions (IIT) (i)—(iii) of Theorem 1.1 are satisfied.
Further, according to condition (III) (iv) of Theorem 1.1 we have to show that there exists
g, > 0, such that P?-a.s.

<£>/t 1_a(9—|—zs)—a(9)
tJo

a0+ z5)zs
But according the the stochastic version of the Kronecker lemma it is enough to show that

dd,(X)

s————— — 0 ast — oo.
1+ &4(X)

251 Iz, 01 (L)

Pl-as.
o a(f + zs) — a(f) _ dds(X)
1— ——————= |z I, —
/0 W0+ | e T 0 <
On the other hand,
1 a(0+ z5) — a(h) _ |a(0 + z5) — a(0 + Z5)| < const(8)] s — 5|,

a0+ zs)zs |a(0 + z5)|

where 0 < |Z;5| < |2s|. Therefore forall 6,0 < 0 < 1,e <7
/°° I a(f + zs) — a(f) dds(X)
0

. ‘Zs|7€]’{z #0} T 4 v
a(0 + z5)zs T4+ 94(X)
(o]
< const(@)/ |a(6 + ZS)|71 |zs — Zs|"]2s| "Iy
0

d®,(X)
FO T e.(X)
< const(0) [ 127 Tz 20y d0,(X)
0

= e srey dP(X)
< const(0 / Sy ey o 2
@) f, Pe=l" 11 0,(X)

e d®s(X) 0
< t(6 : P’-as.
< const( )/0 15 0,(X)) 09 < oo a.s

It remains to check condition (IIT)(v) which for the considered case becomes

1 b = _ﬂ 2 o N
1+(d(0))2q>t(X)/0 (a(0)) [1 a(9+zs)} d®,(X) — 0 as t — oo,
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and is satisfied by virtue of the Toeplitz lemma and since P, (X) = oo, 1 — d(‘;@s) — O as

t — oo P’-as. U

Remark 2.1. 1. Conditions (I) (a) and (c) of Proposition 2.1 are satisfied if a(-) is a strongly
monotone function.
2. If a(6) = 6, all conditions of Proposition 2.1 will be fulfilled if the process is ergodic

and
/R (%)Qf(%@)dx < oo,

where f(z,0) is the density of an invariant distribution.
3. From equation (2.1.3) it directly follows that

Lo {Vi=} = N (0, (@®)?ie) ),

where i(0) is defined by (2.1.4), Ly denotes the probability distribution of process z =

(2¢)1>0 under the measure P?, and the symbol “=" is used to denote weak convergence
of distributions. Indeed, from (2.1.3) it is evident that the weak limits of Eg(vtl / 2zt) and
Loy {%} coincide and according to the Central Limit Theorem for martingales one ob-

tains
Lo (4%2) = N(0,1).

It remains to note that

Example 2.1. The Ornstein—Uhlenbeck process: a(z,6) = —6x, § > 0, that is, © =
{6, 6 > 0}, o(x) = 1 (for simplicity).
As is well known, the MLE of 8 is

t
- X, dw,
et:9+7f°f =,
Jo X2ds

where dw; = dX; + 60X, dt is a Wiener process. The asymptotic behaviour of the normed
process \/t(0; — 6) = \/t z; directly can be obtain using martingale limit theorems, namely,

Lo(Vtz) = N(0,26).

The same result can be obtained if we rewrite the process z = (z;)¢>o in the recurrent
form
2

X
dZt = —Zt 7 t dt + n ! dwt
Jo X2ds Jo X2ds

and study its asymptotic behaviour using the results of Proposition 2.1. Since the Ornstein—

Uhlenbeck process has the ergodic property as it has been mentioned in Remark 2.1, all
conditions of this proposition are satisfied and we obtain the same results since tlim a1 =20.
— 00
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Case 2.2. Ergodic diffusion. We consider the diffusion process £ = {&;, t > 0} defined by
(1.1) and assume that for any § € © C R the process & has the ergodic property. Besides, the
law of large numbers is fulfilled: for any measurable function ¢(-, #) with

[ 1ot )] .0y do < o
R

we have the convergence
t

lim ! @(5579)ds:/ o(z,0)f(x,0)dx

t—oo t 0 R

(see, e.g., [3], [13]).
According to this law,

lim 1ft(9):/}%(d(x’9)>2f(x,9)dx — 1(0).

t—oo 1+t o(x)

Below we assume that for each § € © 0 < I(f) < co. Hence one can put
L(0) = [1+t)I(0)] " (2.2.1)

We will study the asymptotic properties of the solution z = {z;, t > 0} of the recursive
SDE (1.5) with I;(#) defined by (2.2.1) based on the results of Theorem 1.1.
For this purpose define the following objects:

=i [ () o
Ftexp{/otls(0)<a§)(()‘zj))2ds} exp{/otfs(ﬁ)d’ys}v

t
L, = / L, dM?Y(s,0),
0

where . .
M(t,0) = /0 15(9)‘2(2)((;3) d(Xs — a(Xs,0)ds).
Lemma2.1. (1)T'; — coast — oo P?-as.
(2)1f
/ h |1,(0)y, —1|dInvy, < 0o Pl-as., (2.2.2)
then I'y ~ ;. ’

(3) (L)oo = 00 Pl-a.s.

(L)t
(4) lim LilL) _ 1 PY-a.s.

t—o0 Yt

Proof. (1) Since v; — oo as t — oo P-a.s. and

t
InT; = / I;(0)ys dln~s,
0
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one can apply the Toeplitz lemma to obtain

InT
lim ——* = lim I,(§)y, =1 P’-as. (2.2.3)

t—oo In t—o0

Moreover, equation (2.2.3) allows one to conclude that
lim T2y, ' =00 Pl-as. (2.2.4)
t—o00

Indeed,

InT"
. 2 —1\ _ 71: t
Jim n (151) = iy o (22

- 1) =00 Pl-as.
Assertion (2) directly follows from the equality

E = expfot(IS(e)’stl)dln'ys )
Ve
(3) We have

t t
(L), = / T212(0) dys = / 2y (v515(0))* dInrys — 00 as t — oo
0 0

since T2y, 1 — 00, vsI5(0) — last — oo P?-as.
(4) We will check conditions (a), (b) and (c) of Proposition A3 from [8].
Condition (a) is trivially satisfied because K; = t, so ¢c; = 0.
As for condition (b), note that

0 _t2s
<M®»—A4m

where 9
(X, 0)
2 =120 (“( b ) :
t t( ) O'(Xt)
Hence
1 1
7%: —1 as t — oo Pl-as.
v b veli(0)
Thus c; = 1.

It is not difficult to show (in the same way as above) that condition (c) is also satisfied with
c3 = 1. Therefore according to Proposition A3 from [§]
(L) *
lim t < >t

t—o00 Yt

22(02—81)—6321. O

Remark 2.2. (I) Suppose that the process & = {&, t > 0} defined by (1.1) is stationary and
the following conditions are satisfied:
a) there exist some constants ¢; and p; (not depending on #) such that for all § € ©

(548 s

b) there exist the constants ¢, and po such that

o7 (@)] < e2 (1 + Jf™) 5
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c) for each 6
— a(z,0
li 3 .
|x\1£{100 bgn(x) 02($) <0
If there exists some € > 0 such that
. 0 24¢€
/ (a(:”’ )) F(z,0) dz < oo, (2.2.5)
o(x)

then condition (2.2.2) of Lemma 2.1 is satisfied.

Indeed, we have

L@ =1 dinre = [ 10— 1) (CLD) g
/o /o ( o(Xt)
— /0 Oout(e)ytfu 1,(0) <“§)(()f(tf)> oy dt,

where oy = (7:1;(0)) ™' — 1ast — oo P%-a.s. Therefore it is enough to show that

> a(Xtve) 2 6
/0 11,(0) — 1] 1,(0) ( A ) dt < oo PP-as. (2.2.6)

Further, we have (using the Holder inequality with p = 1 + % andg=1+5,e>0)

Ey /0 h 11,(6)y; — 1] I,(0) (dii()?t?))Q dt

> 2\ 79< a(§, 213
S/O 7(14;)](6‘) (Ee\ft(a)%—l\prg) Ey ( f@?) ] dt
i€, ) 24e\ 79e
§<&<d®> )
x /Om(lﬂl)m) (E.g |It(0)’)/t—1|1+%)2is dt, 22.7)

where £ is a random variable with a distribution density f(x, ).
On the other hand, under conditions a), b) and ¢) we have for all p > 0 (see Proposition

1.18 from [3])
1 Y ra(X,,0)\?
i () oo

Using the last inequality with p = % + 1 we obtain

p
Ey

Cp
= .
2

< P
T (141

e

2\ 75 1 2+e
(Eg |I:(0)v: — 1|1+§) < const <11> = const
(141t)2te

Substituting this inequality in (2.2.7) we obtain

o a(X,0)\> o s
Eg/0 |I:(0)y: — 1| I:(9) ( (X)) ) dtgconst/o (14+1¢)"2dt < oo.

b
(1+1)
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Theorem 2.1. (I) Convergence. Let the following conditions be fulfilled:
(A) foreachx € R

a(z, 0 + u)(a(z,0) —a(x,0 +u))u <0 forall uw+#0

(for instance, this condition is satisfied if for each © € R the function a(x,0) is
strongly monotone in ).
(i) for each x
a(x, 0+ u)I(0)
a(x,0)1(0 4 u)
where c is a constant;
(i) foreache, 0 <e <1,

10) a(x,0+wu) a(x,0) —alz, 0 +u)
I0+w) a(x,6) a(z,0)u

]2 < (1 + [uf?),

Then
zz—0 as t— o Pl-a.s.

(IT) Rate of convergence. Suppose that the following conditions are satisfied:
1(0 i(x, 0

(i) sup (9) a(% + u)

z | [(@+uw) a(z,0)

3 a(z,0 4+ u) — a(z,0)

(i) P a(x,0)u

Then for each 8,0 < § < %,

—1’—>0 as u— 0,

1’%0 as u— 0.

vz =0 as t— oo Plas.

(III) Asymptotic expansion. Let the following conditions be satisfied:
(i) there exists some v > 0 such that
1(0) a(z,0+u) a(x,0 +u) —a(z,0)
I04+w) a(x,0) a(z,0)u
1(0) a(z,0+u)
0+u) a(x0)
Then if condition (2) of Lemma 2.1 is fulfilled, the process z = {z;, t > 0} admits the
following asymptotic expansion

sup -1 =0(ul") asu— 0;

—0 as uw— 0.

(i) st;p‘l — I

_ L,
I (L), 1/22t = 75 T R,
()

PO
with Ry — O ast — 0.

Proof. (I) We have to check conditions (I) (A), (i) and (ii) of Theorem 1.1. Condition (I) (A)
is satisfied.
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As for condition (i) we have

120+ ) (a()it(’ o ) - eI [cht Z;(Z)i(zi] [aﬁj&j) } 2
<o SO gy
Put
n- () o
Then

/ Bydt < 0o Pl-as.
0

Indeed, we have, recalling the definition of I;(6) and ~;,

oo [ee]
d
/ &m:/VMWy§<m
0 0 v

t

oo
since 72 1;(0) — 1 ast — oo, and [ % < oo Pl-as.

t

According to (I) (iii) of Theorem 1.1 we have to show
< 1
/ —— inf
0o 141t e<u<t

But the integral of the last expression can be written as

u  a(Xe, 0+ u)

10 +u)  o2(X,) dt

(a(X¢,0) — a(X:, 0 + u))

< oo Plas. (2.2.8)

1(0)  a(Xy,0+u) a(Xy,0) —a(Xe, 04 u) | dy
I0+u) a(Xy,0) a(Xy,0)u e

1(0)  a(X:, 0+ u) a(X,0) — a(Xt, 0 +u)
I0+w) a(X,0) a(Xy, 0)u

e d
X / ’)/tIt(e) j = o0,
0 Ve

/"Yt[t(a) inf \u|2
0

e<|ul<t

this follows from condition (I) (ii) of Theorem 2.1, and from facts that ;. I;(6) — 1 as t — oo

o0
and [ 2% = o0 P-as.
0

(ID) (i) We will check condition (IT)(i) of Theorem 1.1, which in the case under considera-
tion takes the form: for each §,0 < § < 1,

o] . 2
572 (X, 0 + 1) o
—_ PY-as. 2.2.
/O%It(Q—i—zt)( (X)) dt < oo a.s (2.2.9)
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But

/Ooo I2(0 + z) <‘W>2dt

[T s 1(0)  a(Xe,0+2)\” ,

jo%s) I . X 2
< / I (0)y; sup (I( (6) alXi6+ Zt)) e < 00,
0 x

0 + Zt) a(Xt,G) 7375

which directly follows from the relation I;(6)y; — 1 as t — oo, condition (IT)(i) of Theo-
rem 2.1 and the inequality

d
/ ? <oo Pl-as.
0

d(Xtﬁ))?):

(ii) We have, after simple calculations (recall that g, = ( o (%)

(9+Zt) a(Xt,G)

{5& - ,Bt(zt)]+ S [5 — YL, (0) + 7L (6) (1 -

Yt
a(X, 0+ 2z) —a
a(Xt,Q)zt

X, 0 +
( “)>QQ¢@} =0 eventually. (2.2.10)

Indeed, from conditions (II) (i), (ii) of Theorem 2.1 it directly follows that

1(0)  a(x,0+ 2) a(z,0+ 2z) — a(z,0)
10+ 2z) a(z,0) a(z,0)z

sup
x

—1’—>0 as t — oo Pl-as.

and (2.2.10) can be derived using the same arguments as in the proof of (II)(ii) of Case 2.1.

(IIT) By virtue of Lemma 2.1, conditions (III) (i)—(iii) of Theorem 1.1 are satisfied.
Let us check condition (iv) which for the considered case is formulated as follows: there
exists €, € > 0, such that

1 /[t . 10+ z) a(Xs,0 + z)
(L) /0 [+ 5) 1) 1(0) a(Xs,0)
a(Xs, 0+ z5) — a(Xs, 0

a(Xs,0)zs

1-—

)‘|zSE<L>sds—>O as t — 0o Pl-as.

Since (L) = 0o, P?-a.s. according to the Kronecker lemma it is enough to show that there

exists £ > 0 such that
oo (X O\ (04 z) a(Xs, 0+ z)
[ o () - s
" a(Xs, 0 + z5) — a(Xs, 0)
a(Xs,0)zs

1

Iz, 20y | 26| Fds < o0 Pl-as.
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Further, using condition (III)(i) the last integral is less than
o0 0o
const / vy Mz dy = const / ¥ 2o 20y
0 0

o0
< const/ ’y;(l+5(77€))d7t < 00
0

fore < .
It remains to check condition (v) of Theorem 1.1. For this purpose rewrite it as

1t I1(0)  a(Xs t9+zs)}2 P
1-— 2 d{L)s — 0. 2.2.11
G e i) A (2210
Now, applying the Toeplitz lemma and taking into account (III)(ii) of Theorem 2.1 we
obtain the desired result (2.2.11). [l
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ROBUST UTILITY MAXIMIZATION FOR A DIFFUSION MARKET MODEL
WITH MISSPECIFIED COEFFICIENTS

R. TEVZADZE, T. TORONJADZE AND T. UZUNASHVILI

Abstract. The paper studies the robust maximization of terminal wealth utility in a diffusion
financial market model. The underlying model consists of a risky tradable asset whose price
is described by the diffusion process with misspecified trend and volatility coefficients, and
a non-tradable asset with the known parameter. The robust functional is defined in terms
of a utility function. An explicit characterization of the problem solution is given using the
solution of the Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation.

Key words and phrases: Maximin problem, saddle point, Hamilton-Jacobi-Bellman-Isaacs
equation, robust utility maximization, generalized control.

MSC 2010: 60H10, 60H30, 90C47.

1. INTRODUCTION

The purpose of the present paper is to study the robust maximization of terminal wealth
utility in a diffusion financial market model where the trend and volatility of an asset price
are uncertain.

The concept of robustness was introduced by P. Huber (see [19]) in the context of sta-
tistical estimation of an unknown distribution parameter. The essence of our approach is as
follows. Suppose we need to estimate the mean of some symmetric distribution. If the esti-
mation is based on “pure” observations, then the effective estimate is the sample mean. But
if observations are contaminated by outliers, then the situation completely changes. Huber
introduced the so-called gross error model (the contaminated neighborhood of a true distri-
bution) and showed that an optimal estimate is a maximum likelihood estimate constructed
for the so-called least favorable distribution. Analytically, this means that we need to solve
a minimax problem analogous to the problem given by formula (2.4) below with the asymp-
totic mean square error as a risk function. In some limiting cases, an optimal estimate is a
median,but not a sample mean. In mathematical finance, for most approaches and settings
it is implicitly supposed that the underlying asset model is fully specified: the parameters
(trend and volatility) of the model are known.Actually, we have all the same to estimate these
parameters and construct, say, confidence intervals for them. Hence we only know that a
pair (u, o) belongs with high probability to the rectangle [p—, u4] X [0—,04]. In that case
there arises a problem of construction of robust trading strategies where an optimal strategy
is the best strategy against the worst state of Nature. If the risk function of the problem is the
expected terminal wealth utility, then our definition of the optimization problem (2.4) is an
exact one.

Published in Finance Stoch. 17 (2013), no. 3, 535-563.
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144 Robust Utility Maximization for a Diffusion Market Model

In 1999, Chen and Epstein introduced a continuous time intertemporal version of a multiple-
priors utility function for Brownian filtration. In that case, beliefs are represented by a set P
of probability measures and the utility is defined as a minimum of the expected utilities over
the set P. Independently, Cvitanic and Karatzas [7] studied, for a given option, the hedging
strategies which minimize the expected “shortfall”, i.e. the difference between the payoff and
the terminal wealth. They considered the problem of determining the “worst-case” model Q.
i.e. the model which maximizes a minimal shortfall risk over all possible priors () € P. It was
shown that under certain assumptions their maximin problem could be written as a minimax
problem. In 2004, Quenez [30] studied the problem of utility maximization in an incomplete
multiple-priors model, where asset prices are semimartingales. This problem corresponds to
a maximin problem where the maximum is taken over the set of feasible wealth X (or port-
folios) and where the minimum is taken over the set of priors P. The author showed that,
under suitable conditions, there exists a saddle point for this problem. Moreover, Quenez
developed the dual approach which consists in solving a dual minimization problem over the
set of priors and supermartingale measures and showed how the solution of the dual problem
leads to a solution of the primal problem.

The above maximin problems can also be called robust optimization problems since op-
timization involves an entire class P of possible probabilistic models and thus takes into
account the model risk. Optimal investment problems for such robust utility functionals
were considered in particular by Talay and Zheng [33], Quenez [30], Schied [31], Korn
and Menkens [23], Gundel [15], Bordigoni [5], Féllmer and Gundel [13], Dokuchaev [12],
Hernandez-Hernandez and Schied [16, 17].

The majority of the relevant published works are concerned with the case where one of
the parameters is known exactly. For the unknown drift coefficient, the existence of a saddle
point of the corresponding minimax problem was established and the characterization of an
optimal strategy obtained in [7, 16, 15]. For the unknown volatility coefficients, the hedging
strategy was constructed in [2, 4, 3, 6, 25, 10, 35].

The most difficult case is to characterize the optimal strategy of the maximin problem
under the uncertainty of both drift and volatility terms.

Talay and Zheng [33] applied the PDE-based approach to the minimax problem and char-
acterized the value as a viscosity solution of the corresponding Hamilton-Jacobi-Bellman-
Isaacs (HJBI) equation. In general, such a problem does not contain a saddle point. More-
over, in robust maximization problems, the maximin should be taken instead of the minimax
used by Talay and Zheng. Recently in the work of Denis and Kervarec [11] the general prob-
lem of the utility maximization encompassing the case of the uncertain volatility was studied
and a duality theory for robust utility maximization in this framework was established.

During the referring process we have found the preprint of Matoussi, Possamai and Zhou
[28] which is also devoted to the robust utility maximization problem. To study the expo-
nential, power, and logarithmic utility maximization, the authors use the 2BSDE theory (this
theory was thoroughly developed by Cheridito, Soner, Touzi, Victoir and Zhang in works
[8, 32]). They obtained explicit solutions in some particular cases, which is one of the tasks
of our paper too. Despite some advantages of their approach (non-Markovian models, the
existence of a saddle point, a general contingent claim), we should say that that approach is
not sufficiently general for our model. Namely
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a) only the volatility matrix is misspecified in their model. In our case both coefficients
(drift and volatility) are misspecified,

b) the volatility matrix ,/a; satisfies the condition @ < a; < @, where g and @ are given ma-
trices, which does not cover our “partially misspecified volatility” case since in our paper ma-
trices a; = <Ut2 pat>, a = (UQ_ po'_) anda = (ai p U+> are non-comparable

por 1 po— 1 PO+ 1
to each other.

Moreover in the non-Markovian case the BSDE corresponding to our problem won’t be
2BSDE (see Remark 3.2). And, besides, we cannot even get our BSDE as a particular case of
the 2BSDE given in [28]. So we can conclude that [28] has little in common with our paper.

In this paper, we consider the incomplete diffusion financial market model which resem-
bles the model considered by Schied [31], Hernandez-Hernandez and Schied [16, 17]. We
suppose that the market consists of a risk-free asset, a risky tradable asset with misspecified
trend and volatility and a non-tradable asset with known parameters. As different from the
approach of Quenez [30] and Schied [31], we solve the maximin problem using the HIBI
equation which corresponds to the primal problem. When the trend and volatility coefficients
are uncertain, such a maximin problem has no saddle point in general. We extend the set
of model coefficients, i.e. carry out some “randomization” and obtain as a result a minimax
problem with a saddle point. This makes it possible to replace the maximin problem by a
minimax problem which is easier to study using the HIBI equation properties. In partic-
ular, we have found such a form of this equation that coincides with the equation derived
by Herndndez-Hernandez and Schied [16] when the volatility is assumed to be known. We
establish the solvability of the obtained equation in the classical sense and solve the HIBI
equation explicitly for the specific drift coefficient. The saddle point (an optimal portfolio
and optimal coefficients) of the considered maximin problem has been found as well. An ex-
plicit characterization of the optimal strategies of the maximin problem for the case of power
and exponential utilities in terms of the solution of the HIBI equation is the main result of the
paper.

To illustrate our approach, we present a simple quadratic hedging problem. Let (B, B*)
be the 2-dimensional Brownian motion and F% = (F)cp0.17, FB.B" — (ftB’BL)tE[OVT]
denote the augmented filtrations generated by B and (B, B~), respectively. We consider the
filtration F' = (F});e(0,7] satisfying the usual conditions and FZ C F C FBB Let H
be a square integrable FZ-measurable random variable. Denote by I1? the set of square-
integrable predictable processes with respect to the filtration F. Let P([o_, 0 ]) be the set
of probability measures on [o0_, 0] and U, U denote the set of predictable processes with
respect to the filtration F' with values in [o0_, o] and P,respectively. We use the notation f-v
for [7* f(o)dv(0), f € Clo—,04], v € P(lo—,04]). The wealth process corresponding

to a portfolio process 7 € I1? and volatility o € U is defined as
t
Xi(my0) = ch/ Te0sdBs. (1.1)
0
The problem is to find 7* € I12 minimizing the worst case mean-variance hedging error

E|H — Xp(r*,0)]? = mi E|H-X 2 1.2
max | (7", 0)" = min max E| r(m, 0|7, (1.2)
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Such 7* is called a robust hedging strategy. }
Let us extend problem (1.2) as follows. For each v € U we define the processes

tf/pysdB—i—/’/ 2 Fapt,
" Vs
/,/ p vs)? —dB, / Lo dBj,

where p, p? are the functions p(c) = o, p?(0) = o2 respectlvely One can easily check that
(WY, W¥LY s also 2- dlmensmnal Brownlan motlon and the equation

t
B; = LV gwr oy /,/ 2 dW"l (1.3)
VP 2 s Vg * Vs
18 satisfied.

For each 7 € 12, v € U we define

Xi(m,v)=c+ 7T5\/ 2y dWY . (1.4)

It is clear that i C U and for v € U, WY = B and (1.1) coincides with (1.4). Hence we can
consider the minimax problem

min max E|H — Xp(w, 1/)|2 (1.5)
mell? ey

which is the extension of problem (1.2).
For the sake of simplicity, it is assumed that ¢ = EH and, using the stochastic integral
representation

T
H:EH+/ h.dBy
0
T T
D
:EH+/ htidW”—i—/ he
o PP ! 0
(1.5) is rewritten as
[E/Th P \/27|2dt+E/Th2(1 (p~w)2)dt}
min max —_— — T % P E—
well? yely 0 t\/p2-ut S o 2

T
= min maxE/ (77 (0 - 1) — 2hymy(p - 1) + hidt.
well? yey 0

2
Vi W 1
) d tl), ,
t

Since for each 7 € 112
T T
maxE/ [Wf(pz ) = 2hyme(p - ve) + hf]dt = maXE/ [wfaf — 2hy oy + hf]dt,
vel 0 = 0

we have

min max E|H — X (w,0)|? = min max E|H — X (m, )%
well2 ocU well? ey
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We will see below that this expression is positive. Moreover,
T

max min E|H — Xr(7,0)* = max min E \h — o |?dt = 0.
o€U well? o€U mell? 0

This means that the saddle point does not exist for the problem (1.2).
On the other hand, the function G defined on I1? x U by

T
G(m,v) = E/ [ (p° - vi) = 2heme(p - vi) + B)dt.
0

is convex in 7 and linear in v. Then by the Neu~mann theorem (see Theorem 8 of [1], Chapt.
6) there exists a saddle point (7%, 0*) € II? x U. Therefore we have
0= in B|H — X 2
e e I~ Xm0l

< min max E|H — Xr(7,0)* = min max E|H — X (7, v)|?
well?2 ocU well? yey

= G(r*,v*) = max min E|H — Xz(r,v)?
vely mel?

r DV 2 T, (p-1y)?
= max min [E/ |he—— — T/ P* - 14 dt+E/ h3 (1— 5 >dt}
vea met® | Jo U \/p?w 0 P

T Y
=max F hf (1 — (p2 v) > dt.
ved 0 pe vt

It is easy to see that the saddle point is !

DY 2h

o_ g
t 5, w,?:htp =

o+

*_
vy = _

*

oy t+o_ oy to_ O'_+O'+.

Thus

2 T

min max E|H — Xp(m,0)? = F(x*,v*) = ("‘”*) E/ h2dt.
m€ll? oeU o_+o4 0

As we see, the extension of the problem allows us to find the robust strategy and the worst

case mean-variance hedging error for the original problem (1.2). In Section 2, we will obtain

this result by means of the HIBI equation in the case of a terminal contingent claim H (Br).

Notice, that the problem (1.2) can be solved also directly, but in more general cases (e.g.
for the models with nonzero drift) such “explicit computations” are complicated and in our
knowledge does not exist in the literature. The aim of this work is to show that the existence
of a saddle point in the extended problem simplifies solving the original problem and enables
us to find “explicit solutions”.

The paper is organized as follows. In Section 2, we describe the model and consider the
misspecified coefficients as generalized controls. Furthermore, we show the existence of a
saddle point of the generalized maximin problem and derive the HIBI equation for the value
function. Some examples are also discussed. In Section 3, we prove the solvability in the
classical sense of obtained PDE in the case of power and exponential utility and give an
explicit PDE-characterization of the robust maximization problem.

1) 5, denotes the measure with support at a point a
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2. GENERALIZED COEFFICIENTS AND THE EXISTENCE OF A SADDLE POINT

Suppose that the financial market consists of a risk-free asset
ds) = r(Y;)SYdt (2.1)

with (y) > 0 and a risky financial assets whose prices are defined through the stochastic
differential equation (SDE)
dsS ~
¢
Here W, is a standard Brownian motion and Y; denotes an economical factor process modeled
by the SDE

aY; = B(Yo)dt + (pdW, + /1= 2, 2.3)

for some correlation factor p € [0, 1] and standard Brownian motion W+ which is indepen-
dent of W. Let (]:t)te[o,T] denote the augmented filtration generated by W, W . Denote

b = b — r and assume that

A1) b(y), B(y), r(y) belong to Cy(R),
A2) V(y), r'(y) belong to Cy(R),

where C} (R) is the class of bounded continuous functions with bounded derivatives and
Co(R) denotes the class of continuous functions with compact support.

Introduce the set P(K) of probability distributions with support on K =
x[o_,04] (P(K) is a compact metric space in a weak topology), where 0 < p_ < py, 0 <
o_ < o4. Let Uy be the set of predictable P (K )-valued processes with respect to filtration
(Ft)tefo,1)- Such type process usually called the generalized control in control theory [36].
We identify the set of predictable K -valued processes Uy to the subset of Uy assigning to
each (ju¢, o) from U the P(K')-valued process (., ,o,)-

By 112 we denote the set of predictable processes with finite L2([0,7] x ©)-norm. The
objective of economic agent is to find the optimal robust strategy of the problem

in  EU(XM(r),Yr), 2.4
s, i, PO, ) @8
with
dXt = T(}/;)Xtdt + Wt(b(Y%) + ,U/t)dt + WtJtth, XO =,

(2.5)
dY; = B(Ya)dt + pdWy + /1 — p2dW;-, Yo =y,

where U(z,y) is a continuous function defined on R? satisfying the quadratic growth condi-
tion.

If we denote by f - vy the integral [, f(u,0)vi(dudo), where f(y, o) is an arbitrary
continuous function, and by p,,, p, the functions p,, (1, o) = i, ps(pt, o) = o, respectively,
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we can consider the following extended maximin problem

max min EU(X7(7),Yy), (2.6)

mell? petdy
dXt = T(K)Xtdt + Wt(b(yrt) +pﬂ . l/t)dt + Wt\/pg . I/tth, XO =X,

(o - 11)2 2.7
\/7th + 1 — p227
Do -Vt
As follows from results of [14] there exists the strong solution of (2.7) with
E(sup;<p | X¢|* + sup,<q |Y¢|*) < oo for each (7, v) € II> x Uy . Notice that for (u,0) €
U the equation (2.7) coincides with (2.5). Our aim is to show that
max min  EU(X%(n),Yr) = max min EU(X7(x),Yr) (2.8)

w€ll? (pu,0)EUK m€ll? ety

dY; = B(Yy)dt + p AW, Yo=y.

and the latter problem admits a saddle point (7*,v*). It is clear that then 7* will be an
optimal robust strategy of the initial problem (2.4),(2.5).

The link between problems (2.4),(2.5) and (2.6),(2.7) will be discussed in Theorem 1
below.

Remark 2.1. Let 5[0, T] be the Borel c—algebra on [0, 7] and F be some o —algebra with
Fr C F. Then the B[0,T] F-measurable process (u,0;) (not necessarily adapted
to (Ft)tefo,r) ) With values in the set K, defines the element v € Uy by the formula
P((pe,00) € B|F:) = v¢(B). More precisely, denoting PY the predictable projection of
a process Y (see [26]), we have the equalities Py = [} pvy(dpdo), Yoy = [, ovi(dudo).
Hence instead of (2.7) we can write

dXt = T()G)det + ﬂ-f(b(}/t) + put)dt + pO'tdet, XO =T,

, (P00)”
e

Remark 2.2. The main Theorems of the paper is valid if instead of II? x Uy will be con-
sidered the set of Markovian strategies and coefficients, i.e. the set of Borel measurable
R x P(K)-valued function (7 (¢, z,y), v(t, z,y)) such that there exist weak solution (X,Y")

of (2.9) satisfying condition E fOT 72 (X4, Yy)dt < oo.

(2.9)
dYy = B(Y)dt + p

thJ_a YO =Y.

Since
2. oVt
Tt/ P - Vt 0 T/ P2 - vy ppim
Vit o vt)? vy )2
plEs 1o 0 128t
W5 -v)mi p(po - Vi)
= (2.10)
p(pa : Vt)ﬂ-t 1
the generator of the process (X;, Y;) can be given by the function
1

1
§7T2(P¢2; -v)qu1 + pm(po - V)12 + 5022 + ar(y)p1 + 7b(y)p1 + 7(pu - v)p1 + B(y)p2
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Forallv € P(K),7 € R, (u,0) € K and (z,y,p,q) € R x R x R? x R? we set

1
HOM (2,0, p,q) = = T20°q11 + pTOqr2

2
1
+ 5 a2+ xr(y)p1 + wo(y)p1 + mup1 + B(y)p2, (2.11)
H™ (2, y,p,9) = H" 7 (2,9,p,q) - v (2.12)
and
H(z,y,p,q) = in H™(z,y,p.q). 2.13
(z,9,p,q) max min (z,y,p,q) (2.13)

Proposition 2.1. For each fixed (z,y,p,q) € R x R x R? x R3, with g1 < 0 the function
(m,v) = H™"(x,y,p, q) admits a saddle point (7*,v*), ie.

H”*’”*(:E,y,p, ¢) = max min )’H””’(x,y,p, q) = min maxH""(z,y,p,q). (2.14)

T€ER veP(K veP(K) mER
Moreover,
max min H™Y(x,y,p,q) = max min H"*(x,y,p,q). 2.15
max min (,y,p, q) = max in (z,9,p,9) (2.15)

Proof. By the Neumann theorem (see Theorem 8 of [1], Chapt.6) for each fixed point (z, y, p, ¢)
the function of 7 € R and v € P(K)

(m,v) = H™" (2, y,p,9)
admits a saddle point (7*, v*), i.e.

: TV _ . L% —_ gt C(2.16
rgggyg;gﬂﬁ (z,9,p,q) Vergl;(r;()rpggﬂ (z,y,p,9) =H" " (z,y,p,q9). (2.16)

It is obvious that

o 1+ (v )p1 A (Po - VT)pq1z.
(p2 - v)qu

Moreover, for each continuous function f on K

in fv= (#{g;gKf(u,o),

since for v* =arg min, f - v we have supp v* C{(u*,0*)|f(p*,0*)=min f(u,o)}. Hence

min H™(z,y,p,q) = min H"*(x,y,p,
,in (z,9,p,9) in (z,9,p,q)

and equality (2.15) is satisfied. (I

Now we define the value functions

“(t,z,y) = ma in  EU(Xp"Y, Yp™Y),
VR = B, PO

'U+ (t7 x, y) = min_ max EU(X;,"'E’U’ Y%,z,y).
(u,0) €l TEI?

2.17)
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Since the Isaacs condition is satisfied (by virtue of Proposition 2.1), there exists, as we will
see below, a value of the differential game v = vt = v~, which will be a solution of the
HIBI equation

B
&U(thvy)
+H($, Y, ’Ux(t, €, Zl/)7 ’Uy(t, z, y)7 UII(tu z, y)7 Uzy(t7 z, y)7 Uyy(t, z, y)) = 07 (218)
(T, z,y) =Ul(x,y). (2.19)

The latter equation can be rewritten as

0 1
a”(@ z, y) + ivyy(ta Zz, y) + 6(3/)”1/(757 z, y) + xr(y)vw(t, Z, y)

. 1
+ min max [f(pi )z (8, 2, Y) T+ (Do - V) pUay (E, 2, y) T

veP(K) m€R L2
+ (b(y) + pu - v)va(t, @, y)w] =0, (2.20)
o(T,z,y) = Ulz,y). (2.21)

Simplifying (2.15) we get

, 1
min max [(pi V)quim? + (po - V) pgram + b(y)prm + (py - v)p17

veP(K) m€R |2
— i [((pa V)pqi2 + (0(y) + Py - V)p1)2:|
veP(K) —2(p2 - v)qn1
2 . b . 2
_2p1 min {((pa V)K +2 (y) +pu-v) } if py 20,
=g e Po -V (222)
12 .
_ fp1=0
20mq11 =
where we suppose that g;; < 0 and use the notation x = pgf L oM = %
For the sake of simplicity we assume in addition that
A3)b(y) + p— >0, forall y € R.
By ¢(z) we denote the linear function of z € [—Z—_, —‘;—;] with o(—£+) =0_, cp(—f;—;) =
o4. Then the pair
Bt o4 o-0xy g oo, HHOM
(:U/-‘r’ P + oM ) 1 Ze( OO’O'MO',—OZFO'f )
(:U’Jrﬂo—*) if z€ (Mv_’uur:| )
oMo_ —040_ o_
() m(:) = (elo)ole)  ifse (-2 -te), .23)
o_ (o

(
(H—s04) if z € <>W] :
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is a continuous, piecewise smooth function of z € (—o0, 00).

Proposition 2.2. There exists v* € P(K) of the form v* = a6, o + (1 — )by, o, With
some (o, a) € [0,1] x {—,+}, such that

b . - 2 b Lg% Y - *\2
i | W) P v+ kp V)}:((?J)‘i‘pﬂ V' + kpy - V)

VEP(K) p2-v p2 - v*
K(Q(b(y)+u+)20’M+Ho—U+) i e (_OO’ P40 M }
o OMO_ —O040_
b - 2
(bly) + ps o) if%( KO 7_%],
ol OMO_—040_"  O_

=<0 if K €

(b(y) + p— + Koy )?
ot
ﬁ(2(b(y)+uf)20M+me+) F e < -0 700)

OM

and (py, - v*,ps - v*) = (I(k), m(k)), where (I, m) is defined by (2.23).
The proof is given in Appendix.
Corollary 1.

min | W) +pu )L+ (po l/)pm)?] ~ i [(b(y)pl + ip1 + qum)T
veP(K) —2pZ - vqu (mo)eK | —2(200m0 — 0_04)qu1
_ 0121 (b(y) + py)ons + pr120-04) (PQ12 c (_OO [ O D
- 2q1103; X p1 "opmo_ —0.0_
(p1(b(y) + py) + PQIQU—)Q P12 Uy Opr T
- 21102 X ( D1 © (O’MO'_ —opo_’ _a_})
~(pa(b(y) + p-) + pgr2o4)? (PC]12 c (_M— MO N })
2(]110'3_ X D1 O’+’ OMO4 —O040_
pqi2(2p1(b(y) + p—)on + pgr2o—oy) [ pqiz T,
- 2q1107%, X( P1 © <O’M(7+ - a+a_’oo>>
2 2
- %x(pl =0), (2.25)
oM

where x(A) denotes the indicator of a set A.

Proof. It is sufficient to verify that for v} = ad,, o + (1 — )0y, 5,.0 < a <1, we get
p2-vi =200(ps Vi) —0_04. O

From this Corollary we obtain that the HIBI equation has the form

0 1
&U(ta LU, y) + 5”yy<t7 l‘, y) + ﬂ(y)vy(t, ZL'7 y) + acr(y)vm(t, .'L', y)
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b(y)va(t NG vy (t ?
v omin @t 2.y) + pra(tny) + povay(t2,y) (2.26)
(1,0)EK 22000 — 0_04 ) Uy (t, 2, y)

o(T,z,y) = Ul(z,y). (2.27)

A classical solution v(t,xz,y) of this equation defines the pair of continuous, piecewise
smooth functions of (¢, z,y)

(1,2, ), Mt y)) = <z <””my(t’ z y)),m<”“zy(t’ %, y)>> (2.28)

Ve (t, 2, Y) Ve (t, ,Y)

by the formula (2.23).
The following Theorem is the Verification Theorem of [29] adapted to our setting.

Theorem 1 (Verification Theorem). Let v(t,x,y) be a classical solution of (2.20), (2.21)
such that v, (t,z,y) < 0 and

Ve (t, 2,y
fo(t,z,y)] SL(L+ Jo] + [glp, |22l \ < L1+ |2] + ly)),
vmm(t7x7y)
o) (2.29)
Vgy\l, T, Y
g I (1
P < 11+ ol + ).

holds for some constants L > 0, p > 1. Suppose also that the triplet (7*(t,x,y),p, -
v*(t,x,y), pe-v*(t, x,y)) satisfies the Lipschitz condition on each compact subsets of [0, T x
R x R, where

(b(y) +plt : V*(tvxay))vz(tvx7y) +po‘ : Z/*(taxvy)pvzy(tax7y)
(20MDpo -V (t, T, Y) — 004 )V (t, 2, Y)

and (p, - v*(t,x,Y), ps - v*(t,x,y)) coincides with (I(t,xz,y), m(t, x,y)) defined by (2.28).
Then (7*,v™*) is saddle point of the problem (2.6), (2.7) and

max min EU(X/7(n),Y

WEH)g (p,o’)lenllK ( T (W) T)

= max min EU(X7(7),Yr) = min max EU(X7(r), Y7).
well? I/ELN{K I/EZ;{K well?

Proof. By the definition of (2.30),(2.28) the pair (7*(¢, z, y), v*(t, z,y)) is a saddle point of
the function

T (t 2, y) = - , (2.30)

1
flt,zy,mv) = 5(1)3} V) aa (8, 2, Y) 7 + (po - V) pUay (t, 2, y)70
+ (b(y) + pp - V) (t, z, y)7

for each (¢, z,y). Itis easy to see that this pair is a continuous, piecewise-smooth function of
variables (¢, z,y) € [0, T] x R x R. By the definition, the triplet of functions (7*(¢, z,y), p,. -
v*(t,xz,y),ps - V*(t,z,y)) consists of Lipschitz functions on the each compact subset. Since
p2 vt z,y) = 200 (po - VH(t, 3, y)) — 0_oy > o2 is satisfied, m is also the
Lipschitz function on the each compact subset. The linear growth condition for the triplet is
also satisfied since |p,, - v*(t,z,y)| < p4, 0— < |ps - v*(t,z,y)| < o4 and inequalities

(b(y) +pﬂ ) I/*(t,l‘, y))vw(tvx’y) + Do - V*(t,x,y)pva(t,x,y)
(2005 -V (t, 2, y) — 0— 04 )V (t, T, y)

7" (t, 2, y)| =
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< maxy (b(y) + p14)

Um(tvxay) ‘ PO+
Uz (ta Z, y)

'ny(ta x,y) ‘

2 vflﬁll)("“? x? y)

o_
<L+ |z| + [yl)

hold for some constant L thanks to condition (2.29).
Thus SDE

dXy =r(Y)X[dt+ 7 (¢, X[ Y ) (0(Y]) + pp - V¥ (6, X, Y™))dt
+ 1t (t, X7 Y2 vt (t, X, Y ) AW,
X() =,

pa'V*(taX;ﬂ}/;*) p0~1/*(t,Xt*,Y;*)2 1
Y = p(Y,")dt + AWy + 4|1 = p? dW;-,
A NV s e P Xy

Yo = Y,
defining an optimal wealth process has the coefficients which are Lipschitz functions on each
{(t,z,y) : |z|] < R,|y| < R} and satisfy the linear growth condition. Hence there exists
unique strong solution of SDE with E sup, .7 |X;|* < oo, Esup,<z [Y;*|¥ < oo, for each
k > 1 (see Theorem 2.3, Chapter V of [14]) and Efo 7*2(t, X*,Y*)dt < oo. For each
control pair (7, v;) € II? x Uy we denote by (X (7* 71/),Yt(7r V), (Xi(m,v*), Yi(m,v*))
the solution of the system (2.7) corresponding to 7}, v; and 7, v respectively.
Let g = T Ainf{t : | X}| > R, |Y;*| > R}. Since

Tr l/
v+ H (x?y)v$7vy)vwwvvl‘yavyy)

ot

0 1 . .

at’u—"_ UZ/ZI +ﬁ( )Uy +J3’I"(y)’l}x +f(t7$,y’77 7') Vo= 0
and v, 7, v, are the continuous bounded functions on each ball, we can apply Ito’s formula
to v(t, X;,Y;) and get v(t,z,y) = Ev(X;L™Y, Y 1Y), Passing to the limit as R — oo
we obtain

*

v(t,z,y) = BUX7"Y, Y5 o),
since by the integrability of sup, <7 | X7'[P + sup, <7 |Y;*|? we have

P(rp <T) < P(sup|X/| >R, sup|Y}| > R) -0 as R — 0
t<T t<T

and
|E’U( *75 T,y Y*t 171/) E’U(TR, X:;’x’y’ Y‘I_’:»%y”
< |Bo(X557Y Y0 (tr < T)| 4 |Bo(X 0™V Y02y (1 < T

<2LE(1+sup|X[|P +sup |V, |P)x(tr <T) — 0 as R — oc.
t<T t<T
Similarly, using Ito’s formula for the processes v(t, X; (7%, v), Vi (7%, v)),
v(t, X¢(m,v*), Yi(m,v*)) and taking into account the inequalities

f(t7$7y77T7 ) : V*(t7$ay> < f(t7$,y77f*(ta$,y)a ) : V*(t7$7y>
< f(taxay77r*(tax7y)a ) v
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we get
EU(XE5Y (m,0%), Y5 (m,0%)) < u(t, x,y) < BU(XE"Y (7%, v), Ya2 (7%, v)).
Finally, we obtain
EU (XS (m,0%), Y25 (m,7)) < BU(X3000, Y000)
< BU(XE (x,0), YE™ (*,0)).
This means that the pair (7*, v*) is a saddle point of problem (2.6).

Since v(t,z,y) = inf, 7 EU(X35Y (n*,v), Y2"Y (n*,v)) satisfies the HIB equation
of the stochastic control problem and

min f(t T,y, T (t,x,y),-) ‘v = min f(taz7y77r*(t7x7y)uuf7a)7
veP(K (pn,0)EK

we conclude that
v(t,z,y) = min BU(Xz™Y (x%,v), V7™ (7%, v))

vEUK
= min EU(XLE™Y s Iy Y5y,
Lo (X7 (7w, 0), YY)
Thus
min max EU (X2 (n,v), Y™ (m,v)))
veUy TEI?
< max EU(XE5Y (m,v*), Y5 (m,v*)) < u(t, z,y)
S
= min EU(X5"Y(r*, p,0), V!
i ( (7", 1, 0), Y ™)
< EU(XE™Y (m, w,0), YY),
max (#gl)lenuk ( (m,p,0), YY)
On the other hand,

max min  EU(X5"Y o), YT
TrEH)g (p,0)EUK ( (ﬂ— o ) T )

< min max EU(Xt “Y(m,v), Y%’x’y(ﬂ, v)).
vEU ) TEI?

Therefore we get that the values of problems (2.4),(2.5) and (2.6), (2.7) are equal to
min max EU(X5"Y(m,v), Yo" (n,v))
vely mEI?
=max min EU(X3"Y ,0), YR, O
71'61—1}g (p,0)EUK ( (W i ) T )
Corollary 2. The optimal strategy of the robust utility maximization problem (2.4), (2.5) is
given by

(b(y) + Ut =, y))va(t, 2, y) + mlt, 2, y) pvay (¢, 2, y) 231)

oyt z,y) — o_0 ) vee(t, z,y) ’ '
where the pair (I(t, z,y), m(t, z,v)) is defined by (2.28) and v(t, x, y) is a solution of (2.26),
2.27).

W*(t,l’,y) =
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Example 2. Let us consider the robust mean-variance hedging problem with zero drift and
unknown volatility

min = max FE(H(Yr) — Xr(r,0))?, (2.32)
well?2 o1€lo_,04]

dXt = TXtdt + FtOtth, XO =z,
dY; = B(Yy)dt + pdWy + /1 — p2dW;-, Yo =y.

Therefore we have U(z,y) = —(z — H(y))?, (z,y) € R%, u_ = py = 0,7'(y) = 0. We
assume that H is a continuous bounded function. By equation (2.28) we get

" N o_o
(pﬂ'y (tvxay>7pa'y (tyl'7y)): <0, +)

(2.33)

oM
since p, - v(t,x,y) = zg_‘;t = Z2* (this means v*(t,z,y) = #5(07&) +
70+0_:07 5(0707)). Thus
2 2
o o_o
arg min P = +
o€lo_,04] —2(20p0 —0_04) oM

and from (2.26) follows

1
av(t,x,y) + ivyy(t7xvy) + ﬂ(y)vy(tv x»y) + xr(y)vz(t,x7y)
25202 t,x,
© min piotvg, (t,2,y)

o€lo_,o1] —2(20010 — 0_04 )V (t, 2, y)

(t,z,y) + 1vyy(t z,y) + B(y)vy (t, x,y) + 2r(y)va(t, z,y)

=o' 2
2
t7 b
_ oo tnthry) (2.34)
2O'M fum(t,x,y)
o(T, z,y) = —(z — H(y))*. (2.35)

The solution of (2.34), (2.35) can be given as a quadratic polynomial in
v(t,z,y) = —A(t,y)2* + 2B(t,y)z - C(t,y),
where the triplet (A, B, C) satisfies the system of PDEs

0 1 20 _04 AZ(tay) o

A(T,y) =1,

ﬁ 1 20-04 Ay(t7y)By(t7y) _
5 B(6y) + 5 Byy(t,y) + B(y)By(t,y) +2rB(t,y) +p 207, Aty 0,
B(T,y) = H(y),

8 20’_0’+ B;(tvy)

1
5. CE0) + 5Cu () + BW)Cy (ty) + p 202, Alt,y) =0

C(T,y) = H*(y).
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The system admits an explicit solution

Altyy) = & T0, B(ty) = & TOBH(YEY),

T
C(t,y) = p2”2:%e2r<”> / EB2(s,Y!V)ds + EH*(YAY)
M t
(notice that B, (t,y) = 2" (T EH, (Vi¥)el! Bv(Y3*)ds  when H is differentiable). The
optimal strategy then takes the form

P75 vy (L, 2, y)

7T* t,l‘, = - o_0o
t:2,9) (oM~ —0-04)vea(t,2,Y)
7Lrl}my(t7x7y) :7LBy(t,y)7fEAy(t,y)
OM Vaa(t, ,y) oM —A(t,y)

14 By(ta y) P —2r(T—t)
= — = —€ B t, .
oM A(t, y) oM y( y)

B(t,y) = TV EH(Y:Y) is a classical bounded solution of the corresponding linear
parabolic equation with bounded continuous By (¢,y) and continuous By, (t,y) (see [14]
formulae (5.20)—(5.22) of Chapter VI). It is clear that

,Uil) (t7 x? y)

UI (t?x’y)
< L(1 XY\ I
vm(my)\ < L(1+ |2]),

t < L(1 2
v(t, z,y)] < L1+ [z[?), Ve (t, 2, Y)

<

for some L > 0 and B,(t,y) is the locally Lipschitz function. Hence the pair
(m*(t,z,y),v*(t,y)) satisfies all conditions of Theorem 1.

The case p = 1, r = 0, 8 = 0 is discussed in the introduction. In this case the second
equation in (2.7) defines the Brownian motion Y; = B; for all non-anticipating strategies
v:(Y) = 14(B) and (2.7) coincides with (1.3).

In the case of objective function U (x, y) defined on R x R it is convenient to determine
the wealth process as a solution of SDE

dX, = r(Y)Xodt + m X (b(Y2) + pe)dt + mXyordWy, Xo =z,
Y, = B(Yy)dt + pdW, + /1 — p2dWi-, Yy =y

The set of admissible strategies IT we define as the set of all predictable processes 7 such that
f msdW is BMO-martingale (as regards BMO-martingales see [21]). It is clear that for each
(m,p,0) € IxUg, [ ms05dW; is also BMO-martingale, a solution of (2.36) is positive and
maximin problem

(2.36)

max min EU(XE(r),Yr), 2.37
max | min (X777 (m), Yr) (2.37)
make sense.
As in previous case of problem (2.4),(2.5) we consider the following extended maximin
problem
max min EU(Xy(7),Yr), (2.38)

m€ll yetiy
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dXt = T(K)Xtdt -+ TtXt(b(K) er# . l/t)dt + WtXt\/P?, . I/tth, Xo =,

. AV (2.39)
aY, = vt + p P2 Vg, 11— 2P gy
VP2 v DoVt

It is easy to see that HIBI equation for the value v(¢, x,y) of this problem is the solution of
the same equation (2.26), but 7* is defined now by

. _ (by) + Utz y)va(t, 2 y) + Mt 2, y)puay (t, 7, Y)
™t zy) = 2(20011(t, 7, y) — 0_ 01 )ven(t, 2, y) ’ (2.40)

where the pair (I(¢,z,y), m(t, z,y)) is defined by (2.28).

Theorem 1. Let v(t,z,y) be a classical solution of (2.20), (2.21) such that
Ve (t, 2, y) < 0 and

t’ b
lo(t,2,y)| <L+ J2] + )P, | 2B | o gy
Ve (t, 2, y)
2.41)
V(B e y) € [0,7] X Ry xR,
Uzz(taxay) -

holds for some constants L > 0, p > 1. Suppose also that the triplet (7*(t,z,y),p, -
v*(t,x,y), pe-v*(t, x,y)) satisfies the Lipschitz condition on each compact subsets of [0, T] x
R4 x R, where

(b(y) +pu ) V*(t7l'7y))’0w(t,l'7y) +p0 . V*(t,x,y)pvxy(t,x,y)

2.42
x(2UMpa 'V*(t,%y) _070—+)’Ua:1:(t7xay) ’ ( )

7-‘-*(tax7;l/) = -

and (p,, - v*(t,2,y),po - V*(t,x,y)) coincides with (I(t,x,y), m(t,z,y)) defined by (2.28).
Then (7*,v™*) is saddle point of the problem (2.38), (2.39) and
in EU(X/%(n),Y
At 4, PUCKE 090
= max min FU(X7(7),Yr) = min max EU(X(w), Y).
well yetfy vely mEU

Proof. The strategy defined by (2.42) is bounded since for all (¢, z,y) € [0,7] x Ry x R

Uy (t, z, y)
TV (t, 7, Y)

: mass, (b(y) + 1)
7 (8, )| < LY

'U:v(t7xay> ’ PO+
xvmx(t7 Z, y) 2

B

oz

for some constant L. Hence (7 (¢, X}, Y/*))¢eo,r) € 1L, where (X*,Y*) is the correspond-

ing solution of (2.39). The rest of the proof follows the proof of Theorem 1. O
3. POWER AND EXPONENTIAL UTILITY CASES

Now let us consider the robust utility maximization problem with power utility U(z) =

%:z:q, z>0with0<g<1

1
max min -~E(X/%7(m))q, 3.1
relld (,0)elx (X7 () @D
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subject to
dXt = T(K)Xtdt + WtXt(b(Y—t) + ,U,t)dt + WtXtUtth, XO =,
(3.2)
dY; = B(Yy)dt + pdWy + /1 — p2dWi-, Yo =y.
In this case, the HIBI equation (2.26),(2.27) gets
0 1
5L y) + oyt 2, y) + By)vy (2, 2,y) + 2r(y)ve(t, 2, y)
2
(n0)eK —2(20p0 — 0_04 )z (t, T, Y)
1
o(T,z,y) = —z7. (3.4)
q
A solution of this equation is of the form v(¢,x,y) = %zqe“(tvy), where u satisfies the
equation
0 1 15
ﬁu(t Y) + Suyy(ty) + By)uy(t,y) + Suy(t y) +ar(y)
2
2(q — 1) (wo)eK 2000 —0_04
(T, y) = 0. (3.6)

The pair (p,, - v*(t,,y), po - v*(t, 2, y)) from Theorem 1’ takes the form

(P - V(8 y), po - v (1, y)) = (U(puy(t, y)), mpuy(t,y))), 3.7
where (I, m) is defined by (2.23).

Remark 3.1. By Corollary 1 and (2.28), equation (3.5) can be written as

(6) + Sty (6 ) + Byt ) + 202 () + qr(y)

ot 2 2"y
qpuy(t,y MO
= DY) (50y) 4 ) + oo puy () (puy(ty) < —EE
2(q—1)o3, OMO_ — 0410
q 2 H+0 M Mt
- (b _uy(t — ty) < -4
50— 1)03( (y) + p+ + po_uy(t,y))°x (GMU_ oo © puy(t,y) < g_)
q 2 H— H—0 M
S — _ t, —EE < opuy(ty) < — =M
S () + = o 1) (- <t < =)
apuy(t,y)
- m@(b(y) + p-)on+o-opuy(t,y))
X X (puy(t,w > ““’M) =0, (3.8)
ONMO4 — 040
(T, y) = 0. (3.9)

Theorem 3. Under conditions A1)-A3) the Cauchy problem (3.5), (3.6) admits a classi-
cal solution with bounded w,(t,y) and a saddle point (v*(t,y),7*(t,y)) of the problem
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(2.38), (2.39) is defined by equation (3.7) and by the formula

L (b(y) +pu-vi(ty) | po-v(ty)
1(1( p2 - v*(t,y) pg,y*(w)uy(ty) . (3.10)

" (t7 y) =

Moreover, 7 (t,y) is the optimal strategy of robust utility maximization problem (3.1), (3.2).

Proof. By the Proposition of Appendix B there exists a classical solution of (3.5),(3.6) with
bounded u,(t,y). From the continuity of u,, (¢,y) follows that u, (¢, y) is the locally Lips-
chitz function. By the Lemma A.1 the pair (p,, - v*(¢,y), po - v*(t,y)), where v*(t, y) defined
by (3.7), is the locally Lipschitz function. Since p2 -v*(t,y) = 203 (po - v*(t,y)) —0_0y >

o2 is satisfied, W is also the locally Lipschitz function. Hence

- t,y)

1 b(y) + Upuy(t, y)) + mlpuy(t, y))puy(t, y)

q—1 2m(puy(t,y))on — ooy

L b(y) +pu- v (ty) + po v (L y)puy(t, y)
l—gq 2py - v (ty)om —o-0y

L (b(y) +pu-v(ty po - V(Y
_ ( ( )2 n (t,y) P *( )uy(t’y) 3.11)
1_(] pa'y(t7y) po_-y(t’y)
following from (2.30) is also the Lipschitz function. It is obvious that 7* € 1I for each v €
U (since X (7%, 1) is a solution of the linear SDE), v, (t, z,y) = (¢ — 1)z92e*t¥) < 0
and all the conditions of Theorem 1’ are satisfied. Therefore we can conclude that
(7*(t,y),v*(t,y)) is the saddle point of the problem (3.1), (2.9). O

L (tv y) =

Corollary 3. Ifb =0, r =0, then

2 2
q . p q s
ty) =———(T—1t =— T—1t)—
u(t, ) 2(q — 1)( ) (HI,?;EIK 2000 —0_0y 2(q — 1)( )ai
is a solution of (3.5) and a saddle point of the maximin problem can be given explicitly
L

* *) _ * t S el
(/’[’t70t) (/J, 7U+)? W(,l‘,y) 2(q_1)0__2‘_'r

Example 4. When 0_ = 04 = o), we obtain

) 1 1

57Ut Y) + Sup(ty) + Bly)uy(t,y) + §U§(t,y)

e )
2= 105, L min  (0) + pt poaruy(ty)

N | =

= %u(t, y) + %uyy(t,y) + (2pob(y) + B(y))uy(t,y) +

q . 9
4 ) i
2a =102, . min, () + 1)+ 2uporruy (t:y))

u(T,y) = 0.

2
ap oM 2
0,

Applications of such type equations in finance and the existence of a classical solution are
discussed in [16].
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Remark 3.2. Instead of PDE (3.5) we can use the BSDE with quadratic growth
L o
i = (522 + ar (V)

b(Y; Z:)?
L4y GOt poZ) >dt+ Z,dW, + ZEdW,
2(q—1) (mo)ek  20p0 —0_0y4
Vr =0.
solvability of which follows from the results of [22, 34]. The solution of the BSDE can be
constructed using the solution of PDE (3.5) by the formulas

Vi= u(ta}/t)7 Zy = puy(t’n% ZtL =v1- p2uy(t,Y}).
The optimal strategy 7; = 7*(t,Y}) is defined by the linear equation

* 1 (b(YZ)+pu’9f(Zt) _"_pU'ZA/;((Zt)Zt) ,

= - ~
fl-g 3 - 07 (Zy) 3 - i (Z)

following from (3.10). As follows from (3.7), the pair (p,, - 7/ (2), ps - U5 (2)) coincides with

(I(z),m(z)) defined by (2.23). O

Suppose now U(z,y) = —e 7@=HW) (1 y) € R?, v > 0 and r = 0. This case

corresponds to the exponential hedging problem of the contingent claim H(y), depending
only on the non-tradable asset. We assume that H € C,(R). Now following [27] we consider
the restricted class of strategies Il = {7 € II? : fot wsdWy is BMO-martingale} and minimax
problem

min max FeYHOT)-Xp7(m) (3.12)
€Il (p,0)EUK

subject to (2.5). It is easy to verify that a solution of (2.26),(2.27) is of the form v(t, z,y) =
—e7tY) =77 where u(t, y) is a bounded solution of

B 1 1
57Ut Y) + Sup(ty) + Bly)uy(t,y) + ~yul(t,y)

0 2 2
1 b 4 ()2
1 iy )+ utpyouy(ty))® 0 (3.13)
27 (w,0)eK 20pq0 —0_04
u(T,y) = H(y). (3.14)
The existence of a classical bounded solution of (3.13),(3.14) with bounded u,, for the case
H' € Cy(R) (3.15)
follows from Proposition B.1. Thus % = —%, % = —u,(t,y) are bounded.

One can checks that all conditions of Theorem 1 except of the polynomial growth condition
of v(t, z,y) are satisfied. The robust optimal portfolio is

_1b(y) +pu vt y) — vepe - V(L y)uy (L, y)
20 0P - V(L Yy) —o_oy

where (p,, - v*(t,vy),po - v*(t,y)) is defined by (2.28). Thus (7*(¢,y),pu - v*(t,y), Do -

v*(t,y)) is the bounded, locally Lipschitz function of (¢,y) and X %Y (n*,v*), s > t, is

BMO-martingale. Hence {¢7(X+"" (7" )—u(r.Y") "7 iq stopping times, t < 7 < T} is

T (t,y) =

b
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uniformly integrable family of random variables. This enable us to pass in the limit in the
Theorem 1

E’U(X*t \T,Y Y*t l,y) Ee’Y(X:;’I’y—U(TR;Y:I;’I’y)) N Ee’y(X;t'“”‘”—u(T,YT"t"”’”))
= Eu(T, X;0"Y YY) as R — o0
without the polynomial growth condition of v(¢, x, y). Hence we have proved

Theorem 5. Under conditions A1)-A3) and (3.15) the Cauchy problem (3.13), (3.14) ad-
mits a classical  solution with bounded wuy(t,y) and a saddle point
(m*(t,y),v*(t,y)) of the problem (3.12) is defined by the equation
(P - v (8 9), 0o - V7 (1, y)) = (Lpyuy (L, y)), m(pyuy (L, y)))
and by the formula
1b(y) +pu v (t,y) — vp(po - V' (t,y))uy(t, y)
20Mpo - V(L y) —o_0y '

Moreover w*(t,y) is the optimal strategy of the robust exponential hedging problem (3.12),
(2.5).

™ (t,y) =

APPENDIX A

Each measure v may be realized as a distribution of a pair of random variables (£, 1) with
the value in K. Simplifying the notation we denote b(y) + p by p again. Our aim is to
characterize the dependence of the minimizer of the problem

. . 1)2 2
min | Pev oo w7 [ (BE A+ kEn)
veP(K) p2-v (emeEK En?

on a parameter £ € R.

Proposition A.1. Let

*,n*) = arg min
&n") g nin

[(Eé E;En)r"} .

Then &* is a number, n* is the Bernoulli random variable with value in the set {o_, o} and
the expectation of the pair (£*,n*) is given by the formula

g_o a
<M+7M++ +> if/»fe<—oo’“+M],
K oM OpMO— — 040

(fty0-) if ke ( O ,uﬂ )
oMO_ — 0+0'_ o_

(-5
(1, 0) ifne( = ]
(2o

0'+ opMO4 — 040
— o_0 a
(M,’u—i— +) if kK € Ao oo).
K oM

OMOy — 040

(&, En*) = ¢ (k,—1)constant if ke
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Moreover,
“(2M+0M2+ KO_04) if 5 c (—007 MO }
o OMO_ —040_
(bt + KO_)? i H4+OM M
3 1L KE y—— |
ol oMO_— —O040_"  O_
* E *\2
M: 0 if,{e(_“7 '“—]
En* o_ o4
2
(- +2fw+) e ( Y }
(7+ Oy OMO4 —O040_—
n(2u_UM2+ Ko_oy) e ( JT5Y ,oo> .
OM OpMOy — 040

Proof. Let (u4+ro_)(pu—~+ro4) < 0. Then by the continuity of a function p+ko, (i, o) €
K, there exists (fi,&) such that i + k6 = 0. Thus (f, ) is proportional to (k,—1) and

[%}#)2] = 0. If (uy + ko_)(p— + Koy) > 0, then either x > ’;—; and £* = p_ or

k < —E+ and €* = p. Thus it is sufficient to study the minimization problem
g

E 2
min | Ha BB
n€lo_ o] En?
Now we show that n* is of the form n* = o_xp + o4 xpc for some event B. In-

deed, if En* = y, then En*? = 20)y — o_o, and n* is the maximizer of the problem
max,, g,—y Fn?, since for any 7, with En = y we have

En? = E(n-— JM)2 + 200y — cr%/[

2
< (M> + 200y — 03y =200y —0_0y = En*?.

2
Hence
. (,U/a + KE??)2:| .
min  |~———| = min .(y),
nefo—.o4] { En? ofgygu?’b 2
where 1), (y) = % Since
K2 k2 (2omEe + o_o.)?

P (y) =

200 20Mm (20pmy —0_04)?

the equation v/, (y) = 0 has two roots:

u fa | 0_04
ylll = 77&5 yg = —= + .
KR KR oM
_ MHa _ la o_o4 o_o4 o_o4 .
Ify = —E= € [o_,0,], then y§ = 0 Jar S vals [;0;_ + = ,.70_.+ “o*] and vice
versa. Moreover, [0, 0| N [~oy + 7275, —o_ + Z-24] = (). Since limy 100 Yo (y) =

+00, the smallest root is the maximizer and the biggest one is the minimizer. The case of y{ €
[o0_, 0] is equivalent to the case k € [— ;—*, —Z—’] , which yields min ¢, (y) = ¥4 (y§) = 0.

From the relation y§ € [0_,0.] follows that —o + 72>+ < —he < —g, — 7225

om
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which is equivalent to the relation k € (— oo, — ] U [—££—~—,00). In that case,

min, <y<o, Ya(y) = Ya(ys) = KM%
Now we will consider step by step all the possibilities of displacement of « in the intervals
formulated in the proposition.

a H a 23 14
)k € (—oo,#]. Since Jﬁ < —2*, we have Kk € (—oo,—a—f] and
&* = py. Moreover, minw+( )=, (yd) = 112’”2#
M
)k € (%, B£]. From k < —£+ it follows that y = —£* < o_ and from
oM
Kk > # it follows that yj = &= + % < o_. Hence 4 (y) is increasing on
[o_,04] and argmmg <y<oy, V4 (y) =o0_
Hre (=5 -] Then y = -+ ¢ [a,,aJr] and min v, (y) = 0.
hre (==, %};].Then7>a+—‘7¢;;* andy; = 5= < -0+ 7+ <o,
y, ==+ oot > o4 Hence ¢ (y) is decreasing on [0, 04 ] and arg min 1/J+(y) =0y.
5) & € (5=, 00]. Then x > L= and £&* = p_. On the other hand, from “= <
oM
o — 7>+ it follows that y, € [0, 04]. Hence min, <y<o, ¥—(y) = ¥ (y5 ). O
Lemma A.1. Let u(y), fi(z), f2(2),..., fn(2) be Lipschitz functions and —co = ag <
ay < -+ < ay = oo are such points that f(ax) = fr+1(ag), k =1,..., N — 1. Then the
function

l/(y) = fk(u(y))7 if ap—1 < u(y) S ag, k= 23 .. '7N7
is also a Lipschitz function.

Proof. For the sake of simplicity we consider the case N = 2. It is clear that fi(u(y)),
k = 1,2, 3, are Lipschitz functions, i.e. there exists a constant C' > 0 such that | f.(u(y1) —

Jr(u(y2))l < Clyr — ya|- Suppose Ay = {y : u(y) < a1}, Az ={y :u(y) > a1} and set
y1 € A1 ya € As. Since u(y1) < a; < u(yz), by the continuity of u there exists ¢ such that
w(y) = a1, y1 <y < yo. Hence we have

[w(y1) — v(y2)l = [fi(u(yr)) — fa(uy2))] = |f1(w(y1)) — fi(a1) + f2(a2) — f2(u(y2))]
< [fi(u(yr)) — fr(u(@)] + | f2(w(@)) — f2(u(y2))]
<Cly1 — gl + Cly2 — 3l = Cly2 — y1). O

APPENDIX B

Let 58,a,b, H € Cy(R) and , ¢, g be some constants. We consider the Cauchy problem

g u(t,y) + 2uyy( y) + By)uy(t,y) +vug(t,y) + aly)

2
+¢ min (b(y) + 1+ gouy (t,y))* 0 B.1)
(n,0)eK 20p0 —0_04
u(T,y) = H(y). (B.2)

Proposition B.1. Let 3,a,b, H be such that o’ ,b', H' € Cy(R). Then the Cauchy problem
(B.1), (B.2) admits a classical solution with bounded u(t,y), u,(t,y).



Stochastic Analysis: Applications to Statistics and Finance 165

Proof. By condition of the proposition there exists N > 0 such thata’(y),b'(y) = 0, H'(y) =
0,if |[y] > N. Thus a(y) = a™, b(y) =b*, H(y) = H*,ify > Nanda(y) =a™, b(y) =
b=, H(y) = H,ify < —N for some constants a™,a~,b",b~, H*, H~. The solutions of

(3.5) on the intervals (—oco, —N] and [N, c0) are u™ (t) = a~ (T—t)—i—c(bij;+)2 (T-t)+H~
T
and ut(t) = at (T —t) + c(bt#(T —t) + H™, respectively. Now let us consider the
+
Cauchy-Dirichlet problem on the bounded domain (0,7") x (—N, N)

0
Sulty) + Syt ) + B)uy(6.9) + 702 (1) + d(y)
ve min PWEptgonty)

(n,0)EK 20p0 —0_04
w(T,y) = H(y), u(t,£N)=u"(t).
Suppose

! 2 - (b(y) + p + gop)®
t =Zp, aft = — —yp? —d(y) — .
ar(t,y,u,p) = 5p, alt,y,up) = =B(y)p —p° — d(y) e P

Hence we get the Cauchy-Dirichlet problem for @ (¢, y) = (T — t,y) in the form of [24]

0

_ 0 _ - - _
§’U/(t7 y) - @al (t7 Y, u(tv y)a Uy (t7 y)) + a(t> Y, U(t, y)7 uy (ta y)) - 07

@(0,y) = H(y), a(t, £N) = u*(T —t).

It is easy to see that a(t,y,u,p) is the Lipschitz function on the each ball of its domain,
a(t,y,u,0)u is a lower-bounded by a quadratic function of the type —byu? — by, by, by > 0
and all the rest conditions of Theorem 6.2 (Chapter V, p. 457) of [24] are satisfied. Therefore
there exists a classical solution of (3.5), (3.6) with bounded w, (¢, y). O

Remark B.1. The existence of classical solution of equation (B.3) with boundary conditions
uw(T,y) =0, uy(t,£N) + u(t,=N) = u=(t) follows also from Example 3.6 of [18].
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NEW PROOFS OF SOME RESULTS ON BMO MARTINGALES USING BSDES

B. CHIKVINIDZE AND M. MANIA

Abstract. Using properties of backward stochastic differential equations we give new proofs
of some well known results on BMO martingales and improve some estimates of BMO norms.

Key words and phrases: BMO martingales, Girsanov’s transformation, Backward stochastic
differential equation

MSC 2010: 60G44.

1. INTRODUCTION

The BMO martingale theory is extensively used to study backward stochastic differential
equations (BSDEs). Some properties of BMO martingales was already used by Bismut [3]
when he discussed the existence and uniqueness of a solution of some particular backward
stochastic Riccati equations, choosing the BMO space for the martingale part of the solution
process. In the work of Delbaen et al [6] conditions for the closedness of stochastic integrals
with respect to semimartingales in L? were established in relation to the problem of hedging
contingent claims and linear BSDEs. Most of these conditions deal with BMO martingales
and reverse Holder inequalities. BMO martingales naturally arise in BSDEs with quadratic
generators. When the generator of a BSDE has quadratic growth then the martingale part of
any bounded solution of the BSDE is a BMO martingale. This fact was proved in [10, 13, 14,
15, 17, 20] under various degrees of generality. Note that in [4] the existence of a solution was
proved to BSDE with quadratic growth and unbounded terminal condition, where the terminal
value satisfies certain exponential moment condition. In this case the martingale part of a
solution of such equation is not a BMO martingale in general, but the stochastic exponential
of the martingale part (as for BMO martingales) is a uniformly integrable martingale (see
[18] for details). Later, the BMO norms were used to prove an existence, uniqueness and
stability results for BSDEs, among others in [1, 2, 5,7, 9, 16, 19, 20].

The aim of this paper is to do the converse: to prove some results on BMO martingales
using the BSDE technique.

It is well known that if M is a BMO martingale, then the mapping ¢ : L(P) > X —
X = (X, M) — X € L(P) is an isomorphism of BMO(P) onto BMO(P), where dP =
Er(M)dP. E. g., it was proved by Kazamaki [11, 12] that the inequality

IX 1| parogpy < Crcaz(M) - | X || Barop)

is valid for all X € BMO(P), where the constant Cg,.(M) > 0 is independent of X
but depends on the martingale M. Using the properties of a suitable BSDE we prove this
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inequality with a constant C'(M) which we express as a linear function of the BMO(P)
norm of M = (M) — M and which is less than Ck,. (M) for all values of this norm.

Using properties of BSDEs we also prove the well known equivalence between BMO
property, Muckenhoupt and reverse Holder conditions (Doleans-Dade and Meyer [8], Kaza-
maki [12]) and obtain BMO norm estimates in terms of reverse Holder and Muckenhaupt
constants.

2. REVERSE HOLDER AND MUCKENHOUPT CONDITIONS AND RELATIONS WITH
BSDEs

We start with a probability space (€2, F, P), a finite time horizon
0 < T < oo and a filtration F' = (F;)o<i<7 satisfying the usual conditions of right-
continuity and completeness.

We recall definitions of BMO martingales, Reverse Holder and Muckenhaupt conditions
(see, e.g., Doleans-Dade and Meyer [8], or Kazamaki [12]).

Definition 1. A continuous, uniformly integrable martingale (M, F;) with My = 0 is said
to be from the class BM O if

|M]| po = sup HE[(]\/OT — <M>T|]-"T}1/2H < 00,

where the supremum is taken over all stopping times 7 € [0, 7] and (M) is the sharp bracket
of M.

Denote by £(M) the stochastic exponential of a continuous local martingale M:
1
E(M) = exp {Mt - §<M>t}

Throughout the paper we assume that M is a continuous local martingale with (M) < oo
P- a.s. This implies that £ (M) > 0 P-a.s. forall ¢t € [0, T, which allows to define &, (M)
as & (M) =Er(M)/E-(M).

Definition 2. Let 1 < p < oo. £(M) is said to satisfy (R,) condition if the reverse Holder
inequality
E[{&,T(M)}p fT] <c,

is valid for every stopping time 7, with a constant C, > 0 depending only on p.

If £(M) is a uniformly integrable martingale then by the Jensen inequality we also have
thatE{{EnT(M)}p’]-"T} > 1.
A condition dual to (R,,) is the Muckenhoupt condition (A,).

Definition 3. £(M) is said to satisfy (A,) condition for 1 < p < oo if there is a constant
D,, > 0 such that for every stopping time 7 € [0, T]

E[{&,T(]\/[)}iﬁ

Note that, since £(M) is a supermartingale, the Jensen inequality implies the converse
inequality

]—"T] <D,.

Bl{&r()} 7|7 ] > {E[&,T(Mﬂm}*ﬁ > 1.
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In this paper we shall consider only linear BSDEs of the type

t
n=%—/@¥+WA /¢WW+M,h—1
0

where « and [ are constants.

A solution of such a BSDE is a triple (Y, v, N), where Y is a special semimartingale,
is a predictable M -integrable process and NN is a locally square integrable martingale with
(N, M) =0.

Let us define the space S> x BMO(P) x H?(P) equipped with the following norms

Yoo = Y7z, where Y7 = sup [V,
t€[0,T]

I Milsssor =suw 5] [ w2acaniz] |

IN|l > = E2[N]r,
where [N] is the square bracket of N.

Note that, since the martingale M is assumed to be continuous, only the latter term of
this equation may have the jumps, i.e., AY = AN. In order to avoid the definition of BMO
norms for right-continuous martingales, we are using the H 2 norms for orthogonal martingale
parts. This is sufficient for our goals, since the generators of equations under consideration
do not depend on orthogonal martingale parts.

Sometimes we call Y alone the solution of BSDE, keeping in mind that ) - M + N is the
martingale part of Y.

Lemma 1. Let M be a continuous local martingale.
a) E(M) satisfies (Ry) if and only if there exists a bounded, positive solution of BSDE

Y, = Yo — [y[B2RY, 4 pyp|d(M) + [ sdMy + Ny,
Yr=1.

)

b) E(M) satisfies (A,) if and only if there exists a bounded, positive solution of equation

t t
{&z%—kgﬁwxfﬁg%WMn+k%w@+m

2
Xr=1 @)

Proof. a) Let first show that if £(M ) satisfies (R,,), then the process Y; = F {{&:,T (M)}* ‘]—'t]

is a solution of BSDE (1). It is evident that Y is a bounded positive process and that
Yi{&(M) }p is a uniformly integrable martingale. Therefore, since £ (M) > 0, the process
Y will be a special semimartingale. Let Y; = Yy+ A;+m; be the canonical decomposition of
Y, where m is a locally square integrable martingale and A a predictable process of bounded
variation. Using the Galtchouk-Kunita-Watanabe decomposition for m, we get

t
n=n+&+/wmm+m, 3)
0

where NV is a locally square integrable martingale strongly orthogonal to M.
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Now using the It6 formula we have

V&MY =Y, +/O [@YS + ps [ {E€s (M) }F (M),

t
+ / {E5(M)}PdAs + 1y, 4)
0

where 7 is a local martingale.
Because Y; {Et (M) }p is a martingale, equalizing the part of bounded variation to zero, we
obtain that

mz—AT“ﬂ;”n+m4me

which implies that Y; = E [{Et,T(M) }p ’.7-}] is a solution of equation (1).

Now let equation (1) admits a bounded positive solution Y;. Using the It6 formula for
the process Y;{& (M) }" we get that Y;{&(M)}" is a local martingale. Hence it is a su-
permartingale, as a positive local martingale. Therefore, from the supermartingale inequality
and the boundary condition Y7 = 1 we obtain that [{Et_yT(M) }p ‘ft} <Y;. Because Y is

bounded, this implies that £(M) satisfies (R,,) condition.
b) The proof is similar to the proof of the part a), we only need to replace p by — p%l. (I

Let £(M) be a uniformly integrable martingale. Denote by P anew probability measure
defined by dP = Ep(M)dP and let M = (M) — M.

Now we shall give a new proof of the well known equivalence (Doleans-Dade and Meyer
[8], Kazamaki [12]) between BMO property, Muckenhoupt and reverse Holder conditions.

Theorem 1. Ler E(M) be a uniformly integrable martingale. Then the following conditions
are equivalent:

i) M € BMO(P).

ii) £(M) satisfies the (R),) condition for some p > 1.

iii) M € BMO(P).

iv) (M) satisfies the (A,) condition for some p > 1.

Proof. For the sake of simplicity, in all proofs given here, we shall assume without loss of
generality that all stochastic integrals are martingales, otherwise one can use the localization
arguments.

i) = ii) Let M € BM 0(15) According to Lemma 1 it is sufficient to show that equation
(1) admits a bounded positive solution for some p > 1. Let us rewrite equation (1) in terms
of the P-martingale M:

{n=%—£V%“%+@—U%WM%—ﬁ%ML+M’
Yy = 1.

Since (N, M) =0, N is a local P- martingale orthogonal to M.
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Define the mapping H : S x BMO(P) x H?(P) into itself, which maps (y,,n) €
on

) X
5°° x BMO(P) x H?(P) onto the solution (Y, ¥, N) of the BSDE (1), i.e.,
D,

YtEP[lJr/t [( }

_/thfdeerNt—EPUOT [p(p;”yﬁ(p—l)zbs}dmh

[Py e,

We shall show that there exists p > 1 such that this mapping is a contraction.
Let

Y =Y —Y2? dy=y' —¢? 60 =0 — 02 5= —¢? SN = N' — N2,
It is evident that 6Y7 = 0 and

+ (p = 1) |d(),

and

|

t B t ~
5Y; = 0Yo — / [ways +(p— 1)5%} d(M), — / SU,dM, + 6N;.
0 0

Applying the It6 formula to (§Y;)? — (6Y7)? and taking conditional expectations we have

EP[/TT (p — 1)0Y.0ysd(M), ]-'} +EPUTT2(p1)5Y95de<M>S

and using elementary inequalities we obtain

(6Y;)% + EP {/T(ams)m(ms

fT] + B7[5N)r ~ [oN),

d

v+ e?| | " owa)aqn,

| + 53 - o1,

7]

o1 1)
< Y12+ P01, - 001

< 19112 010y

p— 2 - y
+(0 = DIMI %0005 16Y 1% + (0 1>H / WMHBMoas)'

Because the right-hand side of the inequality does not depend on 7, we will have

3p(p
(1= 22 =Dtz o) — 30 - )IIMHBMO(P))IléYIIio

/6\I/dMH NI,

|57 )2 MO(P)||§yH2 +3(p—1) H/&deHBMO(P 5)

< 3p(p2— 1)

Since

3
1_5( _1)p+2)||MHBMO )>0
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for p sufficiently close to 1, one can make the constant of ||§Y ||%, in the left-hand side of (5)
positive and we finally obtain the inequality

2
2 v 2
oy 2, + || /&IfdMHBMO(P) 6N

~ 112
< a(p) - |0y)% + Bw) - | /MdMHBMouS)’ ©
where -
?)p(p - ]-)”M”ng]uo(f?)
a(p) = VilE ’
2=3(p =D+ 2IMI% 005,
6(p—1)
B(p) = y '
T T PR T

It is easy to see that lim,; a(p) = lim,j; B(p) = 0. So, if we take p* such that
a(p*) < Land 5(p*) < 1 we obtain that there exists 0 < C' < 1 such that

2
2 Y 2
IV I+ | [ owasit]| 15N

2

< C (ol + | [ vant|

for any (y,v,n) € S x BMO(P) x H*(P).

Thus, the mapping H is a contraction and there exists a fixed-point of H, which is the
unique solution (Y, ¥, N) of (1) in S®° x BMO(P) x H?(P).

Since a(p) and 5(p) are decreasing functions of p € (1, 00), the norms ||Y||o and || -
M|l Mo(p) are uniformly bounded, as functions of p for p € [1,p*]. Therefore, for any

onl|2., - 7
BMO(IB) + || nHH?(P))? ( )

p € [1,p*] we have

Y, = BP [1 + /T [@Y +(p - 1w, |d), ft] (8)
t
and
Y2 1= P8 iy 012,00 — P T
_p%lH‘I’ ’ M||2BMO(15) 20

for some p sufficiently close to 1. Hence, there exists a bounded positive solution of equation
(1) for some p > 1, which implies that £(M) satisfies the R,, condition, according to Lemma
1.

ii) == iii) Let £(M) be a uniformly integrable martingale and satisfies the (R,,) condition
for some p > 1. Then the process Y; = E {{StyT(M) }p ‘}}} is a solution of equation (1) and
satisfies the two-sided inequality

1<Y; <C,. )
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Applying the Ité formula to e~?Y+, integrating from 7 to 7" and taking conditional expec-
tations we have

_ T
e B _ e BYr — ﬁ%E[/ YSG—BYSd<M>S

7]

+E[/TT e AYs (%21/13 +5pws)d<M>s ]—"T} + ﬂ;E[/TT e BYe q(N°), ]_-T}

+F {ZT@ST (e_BY" —e Y- 4 BB_BYS‘AYS) ]-'T}.

Since %ng—kﬁpws > —% and e AYs —e=FYs- 1 Be=BYo~ AY, > 0 we obtain the inequality
T
gE[/ (Blp—1)Ys —p)e Pod(M),|F;] < e P —e 7.
Then from the two-sided inequality (9) it follows that for any 5 > ﬁ

(B —1) ~p)e P B[(M)r — (M),

which implies that

fT] <e BB, (10)

) 2(65(01;—1) —1)
Mlizsow = 6 -1 —7)
since the right-hand side of (10) does not depends on 7.

iii) = iv) If M is a BMO(P) martingale, then according to Lemma 1 it is sufficient
to show that equation (2) admits bounded positive solution for some p > 1, which can be
proved similarly to the implication i) = ii). By the same way one can show that for the
mapping H

X, = E[1+/tT [2(1)? jzve pi 1@8}d<M>s J:t]»

where — | Ot ®.dM, + L, is the martingale part of X, the inequality (6) holds with

3Pl M 1% vr0p)
2(p—1)2 = (9 — ) M5 50(p)

6(p—1)

20— 12— (9 — 6% 000
where lim,_ o, a(p) = lim,_, B(p) = 0. So if we take p large enough we obtain that the
mapping H is a contraction.

iv) == 1) The proof is similar to the proof of the implication ii) = iii) and we only give
a brief sketch of the proof.

Since £(M) satisfies the (A4,) condition for some p > 1, according to Lemma 1 the
process X; = B {{ Eer(M )}71’%1 ‘}}} is a bounded positive solution of equation (2), which
can be written in the following equivalent form

a(p) =

B(p) =

t t
p p ~
X =X — X — sld{M)g — <dMg + L
1= /0[2@—1)2 p— 17 /0“” s
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in terms of P martingale M = (M) — M. Note that (M) = (M) and L is also a local P
martingale orthogonal to M.

Applying the It formula for e ~#X7 —e =X+ using successively the elementary inequality
%2903 — %gps > — ﬁ, the convexity of the function e ~#* and the two-sided inequality
1 < X; < Dy, similarly to the implication ii) = iii) we obtain the following estimate for
the BMO norm of M

- 2(p — 1) -
2 ﬁ(Dp 1) _
H]W”BMO(F’) < p(B—p) (e 1)
valid for any 3 > p, where D, is a constant from Definition 3. ([

3. GIRSANOV’S TRANSFORMATION OF BMO MARTINGALES AND BSDES

Let M be a continuous local P-martingale such that £(M) is a uniformly integrable mar-
tingale and let dP = Er(M)dP. To each continuous local martingale X we associate the
process X = (X, M) — X, which is a local p-martingale according to Girsanov’s theorem.
We denote this map by ¢ : £L(P) — L(P), where £(P) and £(P) are classes of P and P
local martingales.

Let consider the process

Y, = EP[<X>T - <X>t‘-7:t] = E[gt,T(M)(<X>T - <X>t)|}—t] (1
Since (X) = (X)) under either probability measure, it is evident that
HYHOO = HXH%M()(}B)' (12)

Let M € BMO(P). According to Theorem 1 condition (R,,) is satisfied for some p > 1.
The (R,) condition and conditional energy inequality (Kazamaki [12], page 29) imply that
for any X € BMO(P) the process Y is bounded, i.e., ¢ maps BMO(P) into BMO(P).
Moreover, as proved by Kazamaki [11, 12], BMO(P) and BMO(P) are isomorphic under
the mapping ¢ and for all X € BMO(P) the inequality

X112 0r07) < Cha=(M) - 1X I 3ar0(p) (13)

is valid, where

(r—1)/p

o (81) = 2p- 27 sup | P [{&, 20} 77| 7] (14)

and p > 1 is such that
M| grrocp) < V2(v/p—1). (15)

The conditional expectation in (14) is bounded, if p satisfies inequality (15), according to
Theorem 2.4 from [12]. Note also that the similar inequality holds for the inverse mapping
¢! by the closed graph theorem.

Similarly to Lemma 1 one can show that for any X € BMO(P) the process Y (defined
by (11)) is a positive bounded solution of the BSDFE

t

t
Y, =Yy —(X); — / wsd(M) +/ wsdMs+ Ly,  Ypr =0. (16)
0 0
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Indeed, it is evident that (Y; + (X)) (M) is a local martingale. Since £(M) > 0 P-a.s.
for all t € [0, T, the process Y will be a special semimartingale with the decomposition

t
Yy :YO+At+/ @sdMy + Ny, A7)
0

where A is a predictable process of bounded variation and N is a local martingale orthogonal
to M.
By the It6 formula

(Y +(X))& (M) = /Ot Es(M)[dAs + d(X)s + sd(M),] + local martingale,

which implies that A, = —(X); — fg psd{M)s. Therefore, it follows from (17) that Y
satisfies equation (16).

Now we give an alternative proof of the inequality (13) with a constant expressed as a
linear function of the BM O norm of the martingale M.

Theorem 2. If M € BMO(P), then ¢ : X — X is an isomorphism of BMO(P) onto
BMO(P). In particular, the inequality

1 ~
Xl smor) < X samop)
(1 + ?IIMHBMO(M)
N
< (1 + THM”BJVIO(ﬁ)) 1 X Baro(p)- (18)

is valid for any X € BMO(P).

Proof. Applying the It6 formula to (Y, +¢)? — (Y +¢)P (for 0 < p < 1, £ > 0) and taking
conditional expectations we obtain
T

(vete)'—er = B[ [ ptvereytapo ]+ 22 g | kL. |
o [ (B2 0928t it )
—E [ET<SST((Y5 +6)f = (Yoo +6)P = p(Yso +2)P TAY) ff] (19)

Because f(x) = zP is concave for p € (0, 1), the last term in (19) is positive. Therefore,
using the inequality

p(1 —p)
5

from (19) we obtain

b

Yo+’ 202 +p(Ys + )P s + o
)P + A 30 —7)

(Ys+e)? >0

(Y + )P — el > E[ / ' p(Ye + )P 1d(X),

F]

pE[/T(YS + )Pd(M), J-"T] (20)

2(1—p)
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Since0 <p<1

T

-1

7,

p(IY lle +2)" " B|(X)r — (X)

from (20) we have

p(IY llso + )" E[(X)r = (X)-

7]

< (Yr+e)’ —eP+ p)E[/TT(YS + e)Pd(M), fT]

21—-p

and taking norms in the both sides of the latter inequality we obtain

—1
P(||Y||oo+€)p 'HX”QBMO(P) < (||Y||oo+€)p—5p+ (||Y||oo+5)p'”M||QBMO(P)'

_pr
2(1 =p)
Taking the limit when ¢ — 0 we will have that for all p € (0, 1)

1

1
2
X Brmop) < (Z; + 2(1

L) R

Therefore,

1 1
2 : 2
X lsrowr < min (5 + 57 1M Iarow)) -1Vl

\@ 2
= (14 S IMllsaom)) 1Y llos @

since the minimum of the function f(p) = % + ﬁ M3 mo(p) 18 attained for p* =

2
V2/(V2+ 1M pror) and £(5) = (1+ LM saoer) ) -
Thus, from (21) and (12) we obtain

1
(1 + ?HMHBMO(P)

) IXllsraowr) < Xl ro)-

Now we can use inequality (21) for the Girsanov transform of X.
Since dP/dP = ET’l(M) =&r(M), M,X € BMO(P) and
p(X) = (X, M) - X =X,
from (21) we get the inverse inequality:

_ o
X parop) < (1 + 7“M”BMO(15)) | X Baro(p)- (22)

The theorem is proved. O
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Comparison of constants C'(M) and C,.(M). Let us compare the constant

) 3
C(M) =1+ 7||M||BMO(15)

from (18) with the corresponding constant C',, (M) from (13) (Kazamaki [12]).
Since by the Jensen inequality

BP[{&-n(3)} 7T

F| =1,

it follows from (14) that the constant CKGZ(M ) is more than /2p, where p is such that
M|l 5 Mo(B) < \/5(\/]3 — 1). Since the last inequality is equivalent to the inequality

V2

2, ~ 2
p>(1+ 7||M||BMO(15)) ;
we obtain from (14) that at least
- 1 -
CQ(M) < icg{az(M)
It is evident that in the trivial case M = 0 we have that P = P and X = X. Note that, if
M = 0 then (18) gives the two-sided inequality
X IBarop) < ||XHBMO(13) < [ XllBrocp),

implying the equality X = X, whereas from (13) we only have

1 -
sIXlsrmor) < Xl pyow) < 21XIsmocr).-
This shows that the following simple corollary can not be deduced from inequality (13).

Corollary. Let (M",n > 1) be a sequence of BMO(P) martingales such that
lim, 00 [ M™||ppmocpy = 0. Let dP™ = Ep(M™)dP and X" = (X, M") — X. Then
forany X € BMO(P)

nlgr& I X"l 5amocpny = IX|I Bro(p)-

Proof. The second inequality of (18), applied for X = M™ and M = M™ gives

rn \/i rn n
| M™|| rropry < (1+7||M HBMO(P"))”M | Bro(P)-

Therefore,
1

? + 1/||MnHBMO(P")

which implies that lim,,_, . || M"|| 5 mo(pn)y = 0. Now, passing to the limit in the two-sided
inequality (18) we obtai

< |[M"[|Brmo(p),

< i X" ny < )
X[l Barocpy < Tim [[X*[paroen) < 1 XBaocr) O

Remark. Note that the converse of Theorem 2 is also true. l.e., if M is a continuous local
martingale and £(M) is a uniformly integrable martingale, Schachermayer [21] proved that
if M ¢ BMO(P) then the map ¢ is not an isomorphism from BMO(P) into BMO(P).
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RECURSIVE ESTIMATION PROCEDURES FOR ONE-DIMENSIONAL
PARAMETER OF STATISTICAL MODELS ASSOCIATED WITH
SEMIMARTINGALES

N. LAZRIEVA AND T. TORONJADZE

Abstract. The recursive estimation problem of a one-dimensional parameter for statistical
models associated with semimartingales is considered. The asymptotic properties of recursive
estimators are derived, based on the results on the asymptotic behaviour of a Robbins—Monro
type SDE. Various special cases are considered.

Key words and phrases: Stochastic approximation, Robbins—Monro type SDE, semimartin-
gale statistical models, recursive estimation, asymptotic properties

MSC 2010: 62L.20, 60H10, 60H30

INTRODUCTION

Beginning from the paper [1] of A. Albert and L. Gardner a link between Robbins—Monro
(RM) stochastic approximation algorithm (introduced in [19]) and recursive parameter esti-
mation procedures was intensively exploited. Later on recursive parameter estimation proce-
dures for various special models (e.g., i.i.d models, non i.i.d. models in discrete time, etc.)
have been studied by a number of authors using methods of stochastic approximation (see,
e.g.,[2,3,4,7,8, 14, 15, 20, 21, 22]). It would be mentioned the fundamental book [18] by
M. B. Nevelson and R. Z. Khas’minski (1972) between them.

In 1987 by N. Lazrieva and T. Toronjadze a heuristic algorithm of a construction of the
recursive parameter estimation procedures for statistical models associated with semimartin-
gales (including both discrete and continuous time semimartingale statistical models) was
proposed [9]. These procedures could not be covered by the generalized stochastic approx-
imation algorithm with martingale noises (see, e.g., [17]), while in discrete time case the
classical RM algorithm contains recursive estimation procedures.

To recover the link between the stochastic approximation and recursive parameter estima-
tion in [10, 11, 12] by Lazrieva, Sharia and Toronjadze the semimartingale stochastic dif-
ferential equation was introduced, which naturally includes both generalized RM stochastic
approximation algorithms with martingale noises and recursive parameter estimation proce-
dures for semimartingale statistical models.

In the present work we are concerning with the construction of recursive estimation pro-
cedures for semimartingale statistical models asymptotically equivalent to the MLE and M-
estimators, embedding these procedures in the Robbins—Monro type equation. For this reason
in Section 1 we shortly describe the Robbins—Monro type SDE and give necessary objects to
state results concerning the asymptotic behavior of recursive estimator procedures.

Published in Trans. A. Razmadze Math. Inst. 171 (2017), no. 1, 57-75.
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180 Recursive Estimation Procedures

In Section 2 we give a heuristic algorithm of constructing recursive estimation procedures
for one-dimensional parameter of semimartingale statistical models. These procedures pro-
vide estimators asymptotically equivalent to MLE. To study the asymptotic behavior of these
procedures we rewrite them in the form of the Robbins—Monro type SDE. Besides, we give a
detailed description of all objects presented in this SDE, allowing us separately study special
cases (e.g. discrete time case, diffusion processes, point processes, etc.).

In Section 4 we formulate main results concerning the asymptotic behaviour of recursive
procedures, asymptotically equivalent to the MLE.

In Section 5, we develop recursive procedures, asymptotically equivalent to M -estimators.

Finally, in Section 6, we give various examples demonstrating the usefulness of our ap-
proach.

1. THE ROBBINS—-MONRO TYPE SDE

Let on the stochastic basis (Q, F, F = (F;);>0, P) satisfying the usual conditions the
following objects be given:

a) the random field H = {H;(u), t > 0, u € R'} = {Hy(w,u),t > 0, w € Q,
u € R'} such that for each u € R' the process H(u) = (Hi(u))i>0 € P (ie. is
predictable);

b) the random field M = {M(t,u), t > 0, u € R'} = {M(w,t,u),w € Q, t > 0,
u € R} such that for each u € R! the process M (u) = (M (t,u))i>0 € M (P);

c) the predictable increasing process K = (K;);>o (i.e. K € VT N P).

In the sequel we restrict ourselves to the consideration of the following particular case:
for each u € R' M(u) = @(u) -m + W(u) x (u — v), where m € ME (P), p is an
integer-valued random measure on (R x E,B(R1) x &), v is its P-compensator, (E, ) is
the Blackwell space, W (u) = (W (¢, z,u),t > 0,x € E) € P ® €. Here we also mean that
all stochastic integrals are well-defined.

t
Later on by the symbol [ M (ds,us), where u = (u;);>0 is some predictable process, we

0
denote the following stochastic line integrals:

/Ot ©(s,us) dmg + /(:/E W (s, x,us)(pu — v)(ds, dz)

provided the latters are well-defined.
Consider the following semimartingale stochastic differential equation

t t
2t = 20 —l—/ Hy(zs—) dK, —|—/ M(ds,zs—), zo € Fo. (1.1)
0 0

We call SDE (1.1) the Robbins—Monro (RM) type SDE if the drift coefficient H;(u),
t >0, u € R! satisfies the following conditions: for all ¢ € [0, 00) P-a.s.

H:(0) =0,
Hi(u)u <0 forall u#0.
The question of strong solvability of SDE (1.1) is well-investigated (see, e.g., [5]).

(A)

ISee [16] for basic concepts and notations.
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We assume that there exists a unique strong solution z = (z;);>¢ of equation (1.1) on the
whole time interval [0, o0) and such that M € M2 _(P), where

loc

~ t
Mt:/ M(ds, zs_).
0

Sufficient conditions for the latter can be found in [5].

The unique solution z = (z;);>0 of RM type SDE (1.1) can be viewed as a semimartingale
stochastic approximation procedure.

In [10] and [11], the asymptotic properties of the process z = (z;)¢>0 as t — oo are
investigated, namely, convergence (z; — 0 as t — oo P-a.s.), rate of convergence (that
means that for all § < %, ¥z — 0ast — oo P-as., with the specially chosen normalizing
sequence (7;)¢>0) and asymptotic expansion

2.2
Xt?t = ~— /3

(L)'
with the specially chosen normalizing sequence X7 and martingale L = (L¢);>0, where
Ry — 0ast — oo (see [10] and [11] for definition of objects Xf, L; and R;).

2. BASIC MODEL AND REGULARITY

Our object of consideration is a parametric filtered statistical model
E = (Q,]:,F = (]:t)tZO, {Pg; 0 e R})

associated with one-dimensional F-adapted RCLL process X = (X;);>¢ in the following
way: for each € R! Pj is assumed to be the unique measure on (2, F) such that under
this measure X is a semimartingale with predictable characteristics (B(8),C(0),vg) (W.r.t.
standard truncation function h(x) = I <1}). For simplicity assume that all Py coincide
on Fy.

Suppose that for each pair (6,60") Py o Py:. Fix some 6y € R and denote P = Py,
B = B(6,), C = C(6y), v = ve,.

Let p(0) = (p:(6))>0 be a local density process (likelihood ratio process)

APy
f) = =L
pt( ) dPt )

where for each 6 Py, := Py|F;, P, := P|F; are restrictions of measures Py and P on F,
respectively.

As it is well-known (see, e.g., [6, Ch. III, §3d, Th. 3.24]) for each 6 there exists a P-
measurable positive function

Y(0) = {Y (w,t,336), (w,t,2) € Q x Ry x R},
and a predicable process 3(0) = (5:(9))¢>0 with
Ih(Y(0) = 1)|xv € AL (P), B%(0)oC € Al (P),

loc loc
and such that
(1) B)=B+p8(0)oCH+h(Y(0)—1)xv,

2) CcO)=C, (3) w=Y()- v (2.1)
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In addition, the function Y () can be chosen in such a way that
ar = v({t}, R) = 1 < a,(6) = vp({t}, R) = /Y(t, 1 0)({t})dz = Ty(0) = 1.

We give a definition of the regularity of the model based on the following representation
of the density process as exponential matringale:

p(0) = E(M(9)),

where

Y(0) -
%&a I{o<a<1}) #(p=v) € Mioe(P), (22)

M(0) = B(9) - X° + (Y(H) 1+

E:(M) is the Dolean exponential of the martingale M (see, e.g., [16]). Here X ¢ is a continu-
ous martingale part of X under measure P.

We say that the model is regular if for almost all (w, ¢, x) the functions 3 : 8 — §;(w;0)
and Y : 0 — Y (w,t,x;6) are differentiable (notation 5(6) := %,8(0), Y(0) = %Y(G))
and differentiability under integral sign is possible. Then

9 )
20 Inp(0) = L(M(0),M(0)) := L(0) € Mioc(P),
where L(m, M) is the Girsanov transformation defined as follows: if m, M € M,.(P) and

Q@ < P with % = E(M), then
L(m, M) :=m — (14+AM)™! o [m, M] € Mye(Q).
It is not hard to verify that
L(6) = B(6) - (X° = B(6) 0 C) + B(6) * (1 — vp), (2.3)

where )
Y(0) ()
- Y(0) 1-a(6)
with I¢,=1ya(f) = 0,and 0/0 = 0 (recall that %}7(0) = a(0)).

Indeed, due to the regularity of the model, we have

M(0) = B(0) - X+ (Y(o) - f(g)

s I(O<a<1)> * (1 —v)

and (2.3) simply follows from (1.16)—(1.18) of [13, Part I] with

a(f) —a
o) =v©@) -1+ D=

1—a
. a6
1/1(9) = Y(9) - 1% I(0<a<1) .
a
The empirical Fisher information process is I;(6) = [L(6), L(8)]; and if we assume that

for each § € R' L(#) € M2 (Py), then the Fisher information process is
1,(0) = (L(0), L(0))¢-
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3. RECURSIVE ESTIMATION PROCEDURE FOR MLE

In [9], a heuristic algorithm was proposed for the construction of recursive estimators of
unknown parameter 6 asymptotically equivalent to the maximum likelihood estimator (MLE).

This algorithm was derived using the following reasons:

Consider the MLE § = (é\t)tZO’ where 5,5 is a solution of estimational equation

L:(6) = 0.

The question of solvability of this equation is considered in [13, Part II].
Assume that

1) foreach € RY, I;(f) — oo ast — oo, Py-a.s., the process (I;(6))/2(8; —0) is Py-
stochastically bounded and, in addition, the process (9t)t20 is a Py-semimartingale;

2) for each pair (¢',0) the process L(0') € M3 _(Py) and is a Py-special semimartin-
gale;

3) the family (L(6),0 € R') is such that the [t6—Ventzel formula is applicable to the
process (L(t,6;))1>0 w.r.t. Py foreach 6§ € R';

4) for each § € R! there exists a positive increasing predictable process (v:(6)):>o,
70 > 0, asymptotically equivalent to I, *(8), i.e.

Y(OL0) 21 as ¢t — .

Under these assumptions using the Ito—Ventzel formula for the process
(L(t, @))@0 we get an “implicit” stochastic equation for § = (@)tzo. Analyzing the or-
ders of infinitesimality of terms of this equation and rejecting the high order terms we get the
following SDE (recursive procedure)

do; = ’Yt(et—)L(dtﬁp% (3.1)

where L(dt,u,) is a stochastic line integral w.r.t. the family {L(¢,u), u € R',t € R, } of
Py-special semimartingales along the predictable curve u = (u;);>0.

Note that in many cases under consideration one can choose v, (8) = (I;*(8) + 1)1, or
in ergodic situations such as i.i.d. case, ergodic diffusion one can replace I;(6) by another
process equivalent to them (see examples).

To give an explicit form to the SDE (3.1) for the statistical model associated with the
semimartingale X assume for a moment that for each (u, #) (including the case u = )

@ ()| * 1€ A (Po). (3.2)
Then for each pair (u, 8) we have

Y
B(u) (1= ) = B+ s = v0) + 0(0) (1= T ) v,
Based on this equality one can obtain the canonical decomposition of FPy-special semi-
martingale L(u) (w.r.t. measure Pp):

L(u) = B(u) o (X = B(0) 0 C) + ®(u) * (1u — vg)

+ Bw)(B(6) — B(w)) o C + ®(u) <1 - Y(“)> % g (3.3)
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Now, using (3.3) the meaning of L(dt, u;) is

[ wtas.ny = [ Bt s = 5@ 000t [ [ 0o, vas,

+/0 Bs(us)(ﬁs(e) - ﬁs(us))dcs

Finally, the recursive SDE (3.1) takes the form
t .
6, = 0o + / Yo () Ba(0,)d(X° — B(B) 0 C),
t
s(0s—)D(s, 2,05 — ds,d
+/0/7( JB(s, . 6o (11 — v5) (ds, di)
t
/ A(0)B2(02) (Bu(0) — Ba(60.))dCs

Vs r
0
/Ot /%(95)@(3,37,95)(1 _ W)V@(d&dm), (3.4)

+
- Y(s,.)

Remark 3.1. One can give more accurate than (3.2) sufficient conditions (see, e.g., [6, 16])
to ensure the validity of decomposition (3.3).

Assume that there exists an unique strong solution (6;);> of the SDE (3.4).

Fox arbitrary § € R!. To investigate the asymptotic properties, under measure Pp, of
recursive estimators (6;):>0 as ¢ — oo, namely, a strong consistency, rate of convergence
and asymptotic expansion we reduce the SDE (3.4) to the Robbins—Monro type SDE.

For this aim denote z; = 6; — 6. Then (3.4) can be rewritten as

2 = 20+ /0 a0+ 2 VB0 + 20 ) (Ba(0) — Bu(60 + 2 )dCs

K Y(s,z,0+ z5_)
+/O /75(9+zs_)@(s,x,9+zs_)<1 - W)ug(ds,dx)
¢

+ [ 0+ 20300 +2)d(x° = 5(6) 0 ),
+ /0 /75(9 + 25 )®(s, 2,0 + 25— ) (. — vg)(ds, dz). (3.5)

For the definition of the objects K, { H%(u), u € R'} and {M?(u), u € R'} we consider
such a version of characteristics (C, vg) that

Ct = Cg ] Atg,
vg(w,dt,dz) = dAfBzyt(dx),
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where A% = (AY);>0 € Af (Py), ¢ = (¢!)i>0 is a nonnegative predictable process, and
B (dx) is a transition kernel from (Q x Ry, P) in (R, B(R)) with BY ,({0}) = 0 and

AA!BY (R) <1

(see [6, Ch. 2, §2, Prop. 2.9]).
Put K = AY,

HY(u) = (0 + u>{6t<e ) (Bu(0) — Bu(0 + )<l

Y(t,z,04+u)\ o

MO(t0) = [0+ 0560+ 0d(X7 = 5(6) 0 ),
+/0 /75(9+u)(1>(s,x,9+u)(u— vp)(ds, dz). (3.7
Assume that for each u, u € R, M%(u) = (M°(t,u))i>0 € M2 _(Py). Then
@)= [ 0+ )0 +) Pl
’ 2 2 0 6,c
Jr/o 78(9+u)</<b (s,x,GJru)Bw,S(d:c))dAs
2 0 2 0
+ [rorwstmf [0 600w
@) [ #o2.0+ Wit (an)) paage

BY (d=z
where a,(0) = AAIBY (R), ¢, ,(dx)I{a,(0)>0) = ﬁ((m) Ia,(0)>0}-
Now we give a more detailed description of ®(6), 1(8), H?(u) and (M?(u)). This allows
us to study the special cases separately (see Remark 3.2 below). Denote

dv§ qf, ,(dx) o N
dyi = F(0), m = fui(z,0) (= fi(0)).
Then
Y(0) = FO Ly + 2 160) 11050
and
70) = FO a0 + (U2 100+ D2 0)) 11001
Therefore ) ]
10 O i)
°0) = 75 o=+ { 753 * 1 2oy o o

with T(a(9)50y | % ¢’ (dz) = 0.
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Remark 3.2. Denote 3(6) = £°(9), & F<9> = 07(0), Hg} == L0(0), wrmriiagayy = L°(0)
Indices i = ¢, m,d,b carry the followmg loads: “c” corresponds to the continuous part,
“r” to the Poisson type part, “4” to the predictable moments of jumps (including a main
special case — the discrete time case), “b” to the binomial type part of the likelihood score
£(0) = (¢(0), £7(9), £°(6), ().
In these notations we have for the Fisher information process:

1,(6) = / (02 + / t / (07 (2:0))2 B, (dr)d A%

+ [ B [ |+ [y - o
(3.9)

For the random field H (u) we have
HE (00 =206 + 0] 656+ ) 51(6) = 5ul8-+ ) (3.10)
/E z;0 + u) ( _ A= 9+u)> BY (dx) A x9—0y

Ft(l' 0)
ar(0) — ar(6 + u)
ar(0)

H{ [a@orad.ano bBL ()T sy G1D

Finally, we have for (M (u)):
(MO = 0 400 40 o Al [ 52040 [0 4B (@t
0
! 2 0 S (. b 2 0
+ [0 st ][00+ 20+ 0P )

—as(0) ( /(eg(x; 0+ u) + 26 + u))qu’s(dx))2}dAg’d. (3.12)

Thus, we reduced SDE (3.5) to the Robbins—Monro type SDE with K¢ = AY, and H? (u)
and M (u) defined by (3.6) and (3.7), respectively.
As it follows from (3.6), (3.11)

HP(0)=0 forall t>0, Ps-a.s.
As for condition (A) to be satisfied it ie enough to require that for all ¢ > 0, u # 0 Py-a.s.

Be(0 +u)(Be(0) — Be(0 +u)) <0,
Ft,a:,H U F(t,z;0 +u
</ th,xﬁ i Ug (1 - (F(t,x;;) )>Bzvt(dx)>I{AAf—0}“ <0,
(/f (t, ;0 +u ;qf(dx)>I{AAf>o}u<O,
0) —

t,x; 0+
at(0 + w)(as( ar(0 4 u))u <0,
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and the simplest sufficient conditions for the latter ones is the strong monotonicity (P-a.s.)
of functions 3(0), F(6), f(6) and a(8) w.r.t. 6.

4. MAIN RESULTS

We are ready to formulate main results about asymptotic properties of recursive estimators
{0;, t > 0} as t — oo, (Py-a.s.), which is the same of solution z;, ¢ > 0, of equation (3.5).

For simplicity we restrict ourselves by the case when semimartingale X = (X;)¢>0 is
left quasi-continuous, so v(w; {t},R) = 0 for all t > 0, P-as., and A% = (A%);>¢ is a
continuous process. In this case

HY(u) = 74 (0 + u>{ﬁ't<o W) (B(0) — Bul0 + )]

F@0+u) (B0 +u)
Fyi(z;0 4+ u) <1_ Fi(x;0) )B‘*”t(dm)}’ “4.1)

(M°(w) = /0 (3064 ) (0 4 ) A°
+/0tvs(9+u)(/(m> B x)>dA§7 ws)

I,(0) = / (Bs(0))*cldA? + / / ( ) (dz)dA?. 4.3)

Theorem 4.1 (Strong consistency). Let for all t > 0, Pg-a.s. the following conditions be
satisfied:
(A) HY(0)=0, Hf(uw)u<0, u#0,
(B) hl(u) < BI(1 + u?), where B® = (BY);>¢ is a predictable process, B! > 0,
Bo AZO < 00,

d(M° (u)),

() = =
t

4.4)
(C) foreache, € > 0,

inf |H%(u)u| o A%, = co.

e<lul<t
Then for each 6 € R
6, — 0 (or zz —0), as t— oo, Py-as.

Proof. Immediately follows from conditions of Theorem 3.1 of [10] applied to prespecified
by (4.1)-(4.3) objects. O

In the sequel we assume that for each § € R*
L)
Py 1 =1]=1
o (ﬂ& 1.(9) ’
from which it follows that v;(6) = I, (). Denote

it =S = Gord v [ (50 Bustas) @5
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We assume also that z; — 0 as t — oo, Py-a.s.

Theorem 4.2 (Rate of convergence). Suppose that for each 6, 0 < 6 < 1, the following
conditions are satisfied:

0o 0 +
@ [ [s% -0t aal < oo, Pras,
0

Iy
HY (u)
_tia U 7é 07
h O(u) = v 4.6
where 3 (u) lim Hf(u), w=0. (4.6)
u—0 u

(id) / (L(0))°hY (2)dA? < o0, Py-as.
0
Then for each ® € R, 5,0 < 6 < 1,
I2(0)z2 -0 as t — oo, Py-as.

Proof. Tt is enough to note that conditions (2.3) and (2.4) of Theorem 2.1 from [11] are
satisfied with I;(0) instead of y;, dg¢ /I;(0) instead of r{ and B¢ (u) instead of S (u). O

In the sequel we assume that for all §,0 < § < %,
I(0)z; - 0 as t — oo, DPy-as.

It is not hard to verify that the following expansion holds true

0
1/2 _ L 0
It (Q)Zt - <L‘9>i/2 to (47)
where LY, RY will be specified below.
Indeed, according to “Preliminary and Notation” section of [11]
= HY (u)
0 _ 1 t _ g1 0
By = llblg}) ” I ()
Further,
- t dI,(0)
0 0 —1 s ‘]
- A= I;°(0 dA; =1In1,(0).
Bot Ae()dAs(e) s nt()
Therefore
0 _ —1(_70 . 260\ _
Iy =e, (=870 AY) = 11(0) (4.8)
and .
L? :/ r%amO(s,0)
0
with
t t
@)= [ ER0r0). = [ BOL0dE) =16, @)
0 0
Finally, we obtain
X! =T0L 7 = 1% (0). (4.10)

As for RY, one can use the definition of R; from the 'same section by replacing of objects by
the corresponding objects with upperscipts “0”, e.g. 3, by 3%, L; by LY, etc.
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Theorem 4.3 (Asymptotic expansion). Let the following conditions be satisfied:

() (L) is a deterministic process, (L%), = 0o,
(i1) there exists e, 0 < € < %, such that

o [ 180 = BT O 0 as 1 e, Pras,
(iii)
<L19>t /Ot 12(0)(RY (25, 25) — 2h% (25, 0) + hs(0,0))dA? 240 as t — oo,
where

d(M® (u), M°(v))
A7 '

he (u,v) = 4.11)

Then in equation (4.7) for each 0 € R
RY %0 as t— 0.

Proof. 1t is not hard to verify that all conditions of Theorem 3.1 from [11] are satisfied with
(L%, instead of (L), B%(u) instead of Bs(u), I, '(6) instead of ~v;, AY instead of x;, I'?
instead T, and 13/2(9) instead of x, hY(u,v) instead of hy(u,v), and, finally, P? instead
of P. O

Remark. Tt follows from equation (4.7) and Theorem 4.3 that, using the Central Limit Theo-
rem for martingales

12(0)(6, — 0) % N(0,1).

5. RECURSIVE PROCEDURE FOR M -ESTIMATORS
As stated in previous section the maximum likelihood equation has the form
Ly(0) = Ly(My, My) = 0.
This equation is the special member of the following family of estimational equations
Li(mg, Mp) =0 (5.1

with certain P-martingales my, § € R;. These equations are of the following sense: their
solutions are viewed as estimators of unknown parameter 6, so-called M -estimators. To pre-
serve the classical terminology we shall say that the martingale my defines the M -estimator,
and Py-martingale L(my, Mpy) is the influence martingale.

As it is well known M -estimators play the important role in robust statistics, besides they
are sources to obtain asymptotically normal estimators.

Since for each § € Ry Py is an unique measure such that under this measure X = (X;)¢>0
is a semimartingale with characteristics (B(8), ¢(6), vy) all Py-martingales admit an integral
representation property w.r.t. continuous martingale part and martingale measure (u — vg)
of X. In particular, the P-martingale My has the form (see Eq. (2.2))

My = B(6) o X* + 1% (1 — v), (5.2)
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where

-~

Y(t,0)—a

0(s,2,0) = ¥ (t,2,0) — 1+ —

I(0<a<1)
and my € Mo.(P) can be represented as
m(0) = g(0) o X+ G(0) * (u—v) (5.3)

with certain functions ¢g(6) and G(9).
It can be easily shown that Py-martingale L(myg, My) can be represented as

L(mg, Mg) = @m(0) - (X = B(0) 0 C) + 05, (6) * (10 — vo), 54
where the functions ¢,,, and ®,, are expressed in terms of functions 3(6), ¥(6), g(#) and
G(9).

On the other hand, it can be easily shown that each Py-martingale My can be expressed as
L(mg, My) with P-martingale my defined as

7%9 = L(Mg,L(—Mg, Mg)) S MloC(P)

(since % = &(L(—My, My)), according to the generalized Girsanov theorem

L(Mg, L(—.ZW@7 M@)) S MloC(P)).
Therefore without loss of generality one can consider the M -estimator associated with the
parametric family (Mpy, 6 € R) of Py-martingale as the solution of the estimational equation

M,(0) = 0. (5.5)

In the sequel we assume that for each 6 € Ry, My € MZ (Py). Assume also that there
exists a positive decreasing predictable process 7;(6) with ¥ (6) = 1 such that 5, (6) (Mp), i
last — oo.

Now using the same arguments as in Section 3 we introduce the following recursive pro-
cedure for constructing estimator (gt, t > 0) asymptotically equivalent to the M -estimator
defined by relation (5.5) as the solution of the following SDE

dby, = 7, ()M (dt, 0, ). (5.6)

To obtain the explicit form of the last SDE, recall that Mg has an integral representation
property

Mi(6) = 4(0) o (X = B(0) o (X)) + D(6) * (1 — ).
We can obtain the canonical decomposition of FPy-semimartingale ]\Z(u), u € R (wrt.
measure )

M(u) = @(u) o (X = B(6) 0 C) + ®(u) * (1 — v)
~ z y(u)
+ [B@)(B0) - Bw)] o C + ¢<u>(1 - y<9>) e (im o).

Based on the last expression we can derive the explicit form of SDE (5.5)

6, = 6o+ / Fe(0s)P(s5, 05 )d(XE — 3(6) 0 C)
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+/0 /%(98_)5(5,9;,55_)(”— v)(ds, dz)

T / Tu(Bu)B(5, o) (Ba(8) — a(6s_))dC
0

+/Ot/%(9s_)§>(s,x,§5_)(1 _ %)W(ds,dm). (5.7)

To study the asymptotic properties of the solution of this equation (@, t > 0) (e.g. consis-
tency, rate of convergence, asymptotic normality) is more convenient to rewrite this equation
as (z¢ =60, —0)

= 20+ /0 5.0+ 20 )3(5, 0+ 2 )d(X° — B(6) 0 C)
+ A /%(9 + ,zs_)%(s7 2,0+ 25— ) (1 — vg)(ds, dx)

+/5JWH@f@9+%JWA®—&Wﬁ%$DﬂE

Y(s,x,0 4 z5-)
/ /’yé (0 + 25— )P(s, 2,0 + 25— )(1— W)V@(ds,dx). (5.8)

6. EXAMPLES

To make the things more clear let us begin with the simplest case of i.i.d. observations.

Example 1. Let {py, 6 € Ry} be the family of probability measures defined on some mea-
surable space (X, B) such that for each pair 6, 6', pg ~ py-.

PutQ = X, F, = B(X"), F = B(X*), Py = py xpg x- - -. Then for 6,6', Py = Ppr.
Fix some 6y € R; and denote p = pg,. Letdpy/dp = f(x, 6). Then the local density process

dm
pn(0) . HfXﬁ En(Mp), 6.1)

where
n

M(0) = (f(Xi,0) - 1)

i=1
is a P-martingale. Here (X,,),,>1 is a coordinate process, X, (w) = p.
Assume that for all z, f(z,6) is continuous differentiable in 6 and denote % f(X,0) =
f(X,0). Assume also that 2 [ f(z,0)p = [ f(z,0)p(dz). Then M, (0) =" f(X;,0)
i=1

is a P-martingale.
In these notation the MLE takes the form
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The Fischer information process

I,(0) = (L(My, My)) = nI(6), (6.2)

where 1(6) = Eq( ;E:’zg )2, assuming that the last integral is finite.
The recursive estimation procedure to obtain the estimator 6,,, asymptotically equivalent

to MLE is well known:

1 f(X'ru enfl)
nI(0n-1) f(Xn,0n-1)
Let us derive this equation from the general recursive SDE.

n
For this aim consider the process S, = > X;, n > 1. This process is a semimartingale

i=1
with the jump measure

p(w,[0,n] x B) = ZI{XiEB}
i<n
and its Py-compensator is
vg(w,[0,n] x B) = ZP@(Xi €B)= n/ f(z,0)p(dz).
i<n B
Note that a,,(0) = v(w,{n}; X) =1foralln > 1land € R;.
It is obvious that vy = Y - v, where Yp(w, n, ) = f(z,0). Besides,

RO O )
0 =Yo) T Ta@ ~ 7.0)

At the same time the general recursive SDE for this special case can be written as

B 1 f(l'menfl) _ 1 f(amu) f(ac,u)
R (b eyt oy e o KA

But | f(a:7 u) dp = 0 and thus the last term equals zero and we come to equation (6.3).
In terms of z,, = 6,, — 0 equation (6.3) takes the form
1 1

Zn = Zn—1+ P T b0, zn—1) + PTG Amy,,
where
b(6,u) = / ;Ei Z; F@,0)du, Am, = Amy(u), Am, = ;Ei Z; —b(6,u).
Concerning to M -estimators recall that by the definition the estimational equation is
L,(m(0),M(0)) =0, (6.4)
where m(6) is some P-martingale, m.,(0) = ; g(X;,0) with [ g(x,8) dp = 0.

Equation (6.4) can be written as

2w ~

i<n



Stochastic Analysis: Applications to Statistics and Finance 193

Thus, without loss of generality, we can define M -estimator as the solution of the equation

M, (0) =" $(X;,0) =0, (6.5)

i<n

where
/ (a1, 0) (1, 0) p(dx) = 0, (NE(0) = 1 / G (2,0) (2, 0) p(d) = nI, (0).

Now using the same arguments as in the case of MLE we obtain the following recur-
sive procedure for construction the estimator asymptotically equivalent to the M -estimator
defined by (6.5)

1

0n =0y _ _—
1t nI¢(9n_1)

w(Xnv en—l)'
Example 2. Discrete time case.

Let Xo,X1,...,X,,... be observations taking values in some measurable space
(X, B(X)) such that the regular conditional densities of distributions (w.r.t. some measure p)
filxi, 01, ..., 20), i < n,n > 1exist, fo(xo,0) = fo(zg), & € R is the parameter to
be estimated. Denote Py corresponding distribution on (2, F) := (X°°, B(X*°)). Identify
the process X = (X;);>o with coordinate process and denote Fy = o(Xy), F, = 0 (X,
i<n). Ifp =9(X;, X;-1,...,X0)is ar.v., then under Ey()|F;_1) we mean the following
version of conditional expectation

Eo(y | Fica) = /¢(27Xi—1,---7X0)fi(279 | Xic1,..., Xo)p(dz),

if the last integral exists.
Assume that the usual regularity conditions are satisfied and denote

0 .
% fi(xiu 0 | Ti—1y--- 7$0) = fi(ivi, 0 | Ti—1y--- 7ZC0)7
the maximum likelihood scores
l1(9) = % (X“ 9 | Xi—la . ,Xo)

and the empirical Fisher information
n
i=1
Denote also
bn(e,u) = Eg(ln(e + U) | .7:7171)
and indicate that for each € R', n > 1
bn(0,0) =0 (Py-a.s.). (6.6)

Using the same arguments as in the case of i.i.d. observations we come to the following
recursive procedure

Hn = 971—1 + Igl(en—l)ln(en—l)y 90 S ]:O-
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Fix 0, denote z,, = 6,, — 0 and rewrite the last equation in the form
Zn =21+ L0+ 20 1)bn (0, 20-1) + 1,1 (0 + 2,_1) Ay,
zZo0 — 0 — 0,

where Am,, = Am(n, z,—1) with Am(n,u) = 1,,(0 + u) — Ep(1,,(0 + u)|Frn-1).
Note that the algorithm (6.7) is embedded in SDE (1.1) with

Hy(u) = 1, (0 + w)bn(0,u) € Fuoy,  AKy =1,
AM (n,u) = I, (0 + u) Am(n, u).

This example clearly shows the necessity of consideration of random fields H,,(u) and
M(n,u).
The discrete time case was considered by T. Sharia in [20, 21].

6.7)

Example 3. Recursive parameter estimation in the trend coefficient of a diffusion process.
Here we consider the problem of recursive estimation of the one-dimensional parameter
in the trend coefficient of a diffusion process £ = {&;, t > 0} with

d&r = a(&, 0) dt + o(&) dwy, &o, (6.8)

where w = {wy, ¢t > 0} is a standard Wiener process, a(-, 8) is the known function, § € © C
R is a parameter to be estimated, © is some open subset of R, 02(~) is the known diffusion
coefficient.

We assume that there exists a unique weak solution of equation (6.8).

For each § € © denote by P? the distribution of the process & on (Clo,00)5 B).

Let X = {X;, t > 0} be the coordinate process, that is, for each x = {x¢, t > 0} €
C[O,oo)’ Xt(l') = T, t 2 0.

Fix some 6 € © and assume that for each ' € ©, P? (te) P? . Then the density process
p(X, 6) can be written as

dP/! B b a(Xs,0)— a(Xs,0") (dXs— a(Xs,0)ds)
apy K)o { /O o(X,) o(X,)

t —a " 2
L (e

Recall that if for all ¢ > 0 P?-a.s.

pe(X,0) :=

1
/ 0%(X,)ds < o0, (6.9)
0
t

then the process {Xt — [a(Xs,0)ds, t > 0} € M3 (P%) with the square characteristic
0

on(Xs) ds.
0

Under suitable regularity conditions if we assume that for all ¢ > 0 P%-a.s.

"X 0)\?
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we will have

{zfe Inp,(X,0) = /Ot <‘m> d(X, — a(X,,0)ds), t> o} e M2 .(PY),

where a(-, 0) denotes the derivative of a(-, 0) w.r.t. 6.
Below we assume that conditions (6.9) and (6.10) are satisfied.
Introduce the Fisher information process

wo - ()

Then, according to equation (3.4), the SDE for constructing the recursive estimator (6;,¢ > 0)
has the form

dfy = 1,(0,) [Q(X“et)

o?(Xs)

a(Xy, 0r)
o?(Xt)

Fix some 0 € ©. To study the asymptotic properties of the recursive estimator {6;,¢ > 0}
as t — oo under measure PY let us denote z; = 0; — # and rewrite (6.11) in the following
form:
d(Xt,6+Zt) G(Xt,0+2t)

o?(Xs) o?(Xy)

In the sequel we assume that there exists a unique strong solution of equation (6.12) such
that

dZt:It(6+Zt)|: dXtc+ (a(Xt,G) —a(Xt,G—i—zt))dt} (612)

t a(Xs,0 + z) }
L0+ 2) ——=—~ " dX¢ t>03 € ME(Pp),
{ [ o+ 500 2.(Po)

that is, for each t > 0 P%-a.s.

/0t1§<e+zs> (W)st < 0.

To study the asymptotic properties of the process z = {z;, ¢ > 0} as t — oo (under
the measure P?) one can use the results of Theorems 4.1—4.3 concerning the asymptotic
behaviour of solutions of the Robbins—Monro type SDE

t t
2= 20 +/ H(zs—) dK; +/ M(ds, zs—). (6.13)
0 0

Note that equation (6.13) covers equation (6.12) with K; = ¢,

Hy(u) :== Hf(u):It(G—l—u)W(a(Xt76‘)—a(Xt,9+u))7 HY(0)=0, (6.14)
t .
M(u) == M (u) = {Me(t,u) :/ I,(0 + ) WdXsc, t> O}. (6.15)
0 0% (Xy)
Let for each u € R the process M?(u) € M2, (P?). Then

(Me(u),Me(v»t:/ o, v) ds,
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where

a( X, 0+ u)a(Xe, 0+ v)
o?(Xy) '

This problem is fully studied by Lazrieva and Toronjadze in [9].

hi(u,v) = hY (u,v) = I;(0 + u)I;(0 + v) (6.16)

Example 4. Let (0, F = (Fi)i>0, P, Py, 0 € Ry) be filtered probability space and M =
(M,;)¢>0 be a P-martingale with the deterministic characteristic (M), (M) = oo. Let
for each § € R; Py be unique measure on (€2, F) such that the process X (¢) follows the
equation

Xt = Xo + CL(Q)<M>t + Mt,
where a(6) is known function depending on the unknown parameter . Then for each pair
(0,0, Py o Py:. Fix some 6y € R;. Then the local density process

dPy
6) = 2
Pt( ) dPg,

where
M;(0) = (a(0) — a(00)) (Xt — a(B0)(M)4). (6.17)
Assume that a(0) is strongly monotone function continuously differentiable in 6. Then

Li(0) = o 0 pu(6) = LVI(6), M(0)) = a(0) (X, — a(0){M))

and the Fischer information process os
14(0) = (L(0), L(0))¢ = a(0)]* (M) .

Put v4(0) = [d(ﬂ)}*zm = [a(#)]"2~,; ! (with the obvious notation , = (M), + 1).

Therefore the recursive estimation procedure to obtain estimator asymptotically equivalent to
the MLE 6, is

B t 1 a(f) — a(fs)
=00+ | i S ),

t 1 1
+/0 T3 0, gy AWK —alf)M),). (6.18)

Denote z; = 6; — 6 and rewrite the last equation
1 a(f) —a(0 + z) d

da = (MY, +1 a0+ z) M
1 1
T 1 a0+ =) d( Xy —a(0){M)y). (6.19)
Further, denote
Hi(0,u) = L a®) —a(0+2)

(M);+1 a(0+ z)

| 1
Mi0.0) = [ i s A — a0 (0.
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In these notation equation (6.19) is the Robbins—Monro type equation
dzy = He(0, z0)d{M ) + dM¢(0, 2t). (6.20)
Indeed, condition (A) of Theorem 4.1 is satisfied since
H:(0,0)=0 and Hi(0,u)u <0 forall u 0.

We study the asymptotic behavior of z; as ¢ — oo under measure Fy.
1) Convergence: z; — 0 ast — oo Py-as. or 6y — 6 ast — oo Py-a.s. (strong
consistency).

Proposition 6.1. Let the following condition be satisfied
[a(0 +w)]*(1+u?) > ¢, (6.21)
where c os some constant depending on 0. Then
zz—0 as t — oo Py-a.s.

Proof. Let us check conditions (A), (B), (C) of Theorem 4.1. (A) is evident. Concerning
condition (B) note that

1 t 1
0. = G ), o e 400
and
hdaau):: : !

(a(0 +u))? (M), +1)%

Then if we denote B; = m, taking into account equation (6.21) we simply obtain

hi(0,u) < By(1 +u?) with Bo (M), < cc.

As for condition (C), we have to verify that for each ¢ > 0
a(8) — a(6 + u) /°° d(M),
_— —_— =
o (M)r+1
The last condition is satisfied if for each e > 0

a(f + u)
a(f) — a(0 + u)
a(f + u)

inf

1
e<u<;

>0,

e<|lul<?
which holds since a(6) is continuous. O
2) Rate of convergence. Here we assume that z; — 0 as ¢t — oo Py-a.s.
Proposition 6.2. Forall 5,0 < § < %, we have
Yoz = (M) +1)°2 =0 as t— oo, Py-as.
Proof. We have to check conditions (i) and (ii) of Theorem 4.2.
Condition (ii) is satisfied. Indeed, forall 0 < § < 1

/0 () 100+ )]

(Zﬁiﬁi;ij§d<ﬂfﬁ < 00.
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As for condition (i), it is enough to verify that for all §,0 < § < L

o a(@) —a 2)17
[ s -t 0020

t —+ 1 Zt CL(9 —+ Zt>
But [§ — I(;,—0) — % Itzz01] " = 0 eventually since 2, — 0. O

3) Asymptotic expansion. Here we assume that for all §, 0 < § < %, Yz — 0ast — oo
Py-as.

Proposition 6.3. Let there exist some € > 0, v > 0 and c(0) such that
|a(0 +u) — a( +v)| < clu— o] (6.22)

for all (u,v) € O(0), then all conditions of Theorem 4.3 are satisfied and the following
asymptotic expansion holds true

L
()"
where Ry — 0 ast — oo P-a.s., Ly = [a(0)] 1 (X; — a(0)(M),).

(1+(M)o)"2a(6)z = + Ry,

Example 5 (Point process with continuous compensator). Let (2 be a space of piecewise
constant functions © = (z;);>0 such that zp = 0, 2y = 24— + (0 or 1), F = o{z : a5,
s>0}and Fy = of{x: xs,0 < s <t} Letforz € Q

To(z) =inf{s:s>0, z, =n}
setting 7, (00) = oo if tlim e < n. Let 7o (z) = lim 7,(x).
— 00 n— oo
Note that z = (x;);>0 can be written as
2o =Y Ir (<t}
n>1
and so (z):>0 and the family of o-algebras (F;)¢>¢ are right-continuous.

Let for each § € Ry Py be a probability measure on (€2, F) such that under this measure
the coordinate process X;(w) = x; if w = (z4)+>0 is a point process with compensator
A(0) = A(0)A(t), where A(t) = A(t,w) is an increasing process with continuous trajecto-
ries (Pp-a.s.), A(0) = 0, Pp{As = oo} = 1, and foreacht > 0 P;(A; < o0) =1, A(f)isa
strongly monotone deterministic function, A(#) > 0, and A(f) is continuously differentiable
(denote A(9) = L A(0)).

Assume that for each pair (6,6"), Py o Py, Fix as usual some 6y € R;. Then the local

density process p;(6) = <% can be represented as

= dPsy
pe(0) = E(M(0)),

where
M(0) = (5~ 1) (X~ Al ),

Therefore L (0) = % In p;(0) has the form

L) = LUVI(0), M(0) = 30 (X, A@)AW).
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The Fisher information process is

1) = (L), MO = | 55| 46)A).

Put v,(0) = [j((:))]z A(t1)+1‘ It is evident that
JHm 5 (0)1(0) = 1.

Note that the process (X;);>o is a Pp-semimartingale with the triplet of characteristics
(A(6)A(t),0, A(0)A(t)). Therefore, according to Section 3,

_ _ A0 _A®)
F(H)—F(w,t,x,H)—A(QO), ()_A(Q)’
Ao
£06) = £(6) = 6) =0, ()= )
Thus from (3.11) we obtain
1 A(0) — A(0 +u)
HY (u) = :
(= A A0 + )
1 |
M =~ / d(Xs — A(0)A(s)),
60 = S ) 2 71 A~ A@AG)
and the equation for z; = 6; — 0 is
1 A0) — A0+ =) 1 1
= - A - X:—A(0)A 2
FEADTL A+ POTAG T Ay (T AOAN), 629
where (6;);>0 is recursive estimation satisfying the equation
iy = — L AO=AOC) jay L L gk~ aw)aw)).

Alt)+1 A(6y) A(t)+1 A(6y)

As one can see the equation (6.23) is quite similar to (6.19) with A(6) instead of a(6) and
A(t) instead of (M);.

Now if conditions (6.21) and (6.22) with A(0) instead of a(6) and A(t) instead of (M),
are satisfied, then the asymptotic expansion holds true

1/2 4 2 = L, )
(A(t) + 1) /2 A(6) i TR

where R, — 0 as t — 0o Py-as., Ly = [A(0)]1(X, — A(0)A(t)).
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ON REGULARITY OF PRIMAL AND DUAL DYNAMIC VALUE FUNCTIONS
RELATED TO INVESTMENT PROBLEM AND THEIR REPRESENTATIONS AS
BACKWARD STOCHASTIC PDE SOLUTIONS

M. MANIA AND R. TEVZADZE

Abstract. We study regularity properties of the dynamic value functions of primal and dual
problems of optimal investing for utility functions defined on the whole real line. Relations
between decomposition terms of value processes of primal and dual problems and between op-
timal solutions of basic and conditional utility maximization problems are established. These
properties are used to show that the value function satisfies a corresponding backward sto-
chastic partial differential equation. In the case of complete markets we give conditions on
the utility function when this equation admits a solution.

Key words and phrases: Utility maximization, Complete and incomplete markets, Duality,
Backward stochastic partial differential equation, Value function

MSC 2010: 90A09, 60H30, 90C39

1. INTRODUCTION

We consider a financial market model, where the dynamics of asset prices is described by
the continuous semimartingale S defined on the complete probability space (€2, F, P) with
continuous filtration F' = (F, ¢ € [0,T]), where F = Fr and T < co. We work with
discounted terms, i.e. the bond is assumed to be a constant.

Denote by M€ (resp. M) the set of probability measures ) equivalent (resp. absolutely
continuous with respect) to PP such that S is a local martingale under Q).

Throughout the paper we assume that the filtration F' is continuous (i.e. all F-local mar-
tingales are continuous) and

M £ 0. (1)
The continuity of F' and the existence of an equivalent martingale measure imply that the
structure condition is satisfied, i.e. S admits the decomposition

t t
Sy = M, +/ As d{(M)s, / N2 d(M), < oo
0 0

for all ¢ P-a.s., where M is a continuous local martingale and ) is a predictable process.
LetU = U(x) : R — R be a utility function taking finite values at all points of real line R
such that U is continuously differentiable, increasing, strictly concave and satisfies the Inada
conditions
U'(x) = lim U'(x) =0, U'(-o0)= lim U'(x) = oo. )
xT—r00 T—r—00
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We also assume that U satisfies the condition of reasonable asymptotic elasticity (see [6] and
[13] for details), i.e.

) U'(x) .. xU'(z)
llgiILSolip e <1, gglr;of i) > 1.
We consider the utility maximization problem, i.e. the problem of finding a trading strat-
egy (m,t € [0,T7]) such that the expected utility of terminal wealth X7°™ becomes maximal.
The wealth process, determined by a self-financing trading strategy 7 and initial capital z, is
defined as a stochastic integral

3)

t
Xf’”z;v—}—/ TudSe, 0<t<T.
0

The predictable, S—integrable process m we call admissible if the stochastic integral
( fg TudSu, t € [0,T]) is uniformly bounded from below.
The value function V' associated to the problem is given by

T
V(z)=sup E [U (J: + / Tu dSu>} , 4
well 0

where I is the class of admissible strategies.
For the utility function U we denote by U its convex conjugate

U(y) = sup(U(z) — zy), y>0. )
The dual problem to (4) is

V(y) = inf E[U(yp?

V(y) ok [U(ypr)ls v >0, (6)

where p? = dQ;/dP; is the density process of the measure () € M€ relative to the basic
measure P.

Let 7 be a stopping time valued in [0, T']. Denote by IT the class of admissible processes,
such that 7 = 71(; 7). Define

pr dQ
ZT = Y'Y: ) :7’
u =1 v T = g

The dynamic value functions of primal and dual problems are defined as

Q € M°(5)}.

T
V(r,z) =esssup £ {U (az + / Ty dSu> FT} , 7
mell, T
V(r,y) = essinf E[U(Y) | Ff}, y > 0. ®

Y

For V(0,z) and V (0, y) we use the notation V () and V () respectively. Following [13] we
make the following assymption.

Assumption 1. For each y > 0 the dual value function ‘7(y) is finite and the minimizer
Q*(y) € M¢ (called the minimax martingale measure) exists.

We shall also need two complementary assumptions:
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Assumption 2. For the process Zr(y) = de W) — = ypi(y) let
liminf Zp(y)/y > 0.
Yy—r00

This assumption we need to ensure an existence of the inverse flow of the optimal wealth
X, (x) (more exactly, to ensure the relation lim,._, o, X;(2) = —00), see Theorem 1.4 from
[11].

Assumption 3. The utility function U is two times differentiable and there are constants
c1 > 0and ¢y > 0 such that

U// (:L,)
U'(x)
The last condition is similar to the condition on relative risk-aversion introduced in [5].
U,((x)) =~y is a con-
stant and condition (9) is also satisfied for linear combinations of exponential utility functions
with different risk-aversion parameters.

Let 11, be the class of predictable S integrable processes m such that U(z + (7 - S)r)
L(P) and 7-S is a supermartingale under each () € M® with finite U-expectation EU (—g
where the notation 7 - .S stands for the stochastic integral.

Denote Q(z) = Q" (y) = Q" (V'(x)).

It was proved in [12] that under Assumption 1 the optimal strategy 7(x) € II,. of problem
(4) exists, is unique and V(z) = EU(Xrp(x)), where the optimal wealth Xr(z) = x +
fOT 7y () dS,, is a uniformly integrable Q(z)-martingale.

In addition, the following duality relations hold true almost surely:

U'(Xr(z) = Zr(y), y="V'(x), (10)

¢
V'<t,z+/ 7o () dSu> =Z(y), tel0,T], (11)
0

where y = V'(x) (see [13] and Proposition A3 from [11] for the dynamic version). Hereafter
we shall use these results without further comments.
It is well known (see, e.g., [10]) that for any « € R the process (V (¢, z),t € [0,T]) is a
supermartingale admitting an RCLL (right-continuous with left limits) modification.
Therefore, using the Galchouk—Kunita—Watanabe (GKW) decomposition, the value func-
tion is represented as

c < — <co, x€R 9

Note that for exponential utility function the risk-aversion coefficient —

€
)

Vt,x) =V(0,2) — A(t, x) +/0 U(s,x)dMs + L(t, x), (12)

where for any z € R the process A(t,x) is increasing and L(¢,x) is a local martingale
orthogonal to M.
Let us consider the following assumptions:

a) V(t,x) is two-times continuously differentiable at « P- a.s. for any ¢ € [0, 17,
b) for any 2 € R the process V (¢, x) is a special semimartingale with bounded variation
part absolutely continuous with respect to (M), i.e.

At z) = /0 a(s, @) d(M),,
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for some real-valued function a(s, z) which is predictable and (M )-integrable for
any z € R,

¢) for any x € R the process V' (¢, x) is a special semimartingale with the decomposi-
tion

V'(t,z) =V'(0,z) — /0 a'(s,x)d{M) —|—/0 ' (s,x)dMs + L' (t, x),

where V', d’, ¢’ and L’ are partial derivatives at x of V, a, v and L, respectively.

We shall say that (V' (¢,x),¢ € [0,T]) is a regular family of semimartingales if for V'
conditions a), b) and ¢) are satisfied.
We shall consider also the following conditions:

d) the conditional optimization problem (7) admits a solution, i.e., for any ¢ € [0,7]
and x € R there exists a strategy 7 (¢, z) such that

T
V(t,x) :E(U(x—i—/ 7o (t, ©)dSy)| F}), (13)

e) for each s € [t,T) the function (X,(t,2) = x + [ mu(t, x)dS,, s > t) is continu-
ous at (t,z) P—a.s. .
The aim of the paper is to study the properties of the dynamic value functions and the optimal
solutions corresponding to primal and dual problems, their representations and existence of
a regular solution of backward stochastic partial differential equation (BSPDE) . Although
such results are interesting to derive BSPDE:s, to study conditions a)-e) separately is also
important as they bring information on the structure of such objects.
It was shown in [8, 9, 10] (see, e.g., Theorem 3.1 from [10]) that if the value function
satisfies conditions a)-e), then it solves the BSPDE

R
+/0 o(s,z)dMs + L(t,z), V(T,z)=U(z), (14)

and optimal wealth satisfies the following SDE

[ X)) AV (5, X))
Xo) = V(s X () 1%

One of our main goal is to study conditions on the basic objects (on the asset price model
and on the objective function U) which will guarantee that the value function V' (¢, x) is a
regular family of semimartingales and conditions d) and e) are also satisfied, in order to show
that the solution of equation (14) exists. This goal, for general objective functions, is reached
only in case of complete markets. In Theorem 5.1 sufficient conditions on utility functions
are given to ensure properties a)-e) and thus existence of a solution to the BSPDE (14) is
established.

The typical example, where all conditions a)-e) are satisfied in the incomplete market, is
the case of exponential utility function U(x) = —e™7* with risk aversion parameter v €
(0, 00). In this case U(y) = %(ln% — 1) and Assumption 1 is equivalent to the existence
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of ) € M€ with finite relative entropy EZ? In chg (see e.g. [1]). The corresponding value
function is of the form V (¢,2) = —e~7*V;, where

V, = esseirrllf E(e‘V(J}T mdsu)‘}-t) (15)

is a special semimartingale and the BSPDE (14) for V' (¢, x) is transformed into a usual back-
ward stochastic differential equation (BSDE) for V;
t

1 K 9+>\9V9 2
vtzvo+§/ (st AVe). 7 “) d<M>s+/ pdM+ Ly, V=1,  (16)
0 s 0

where L is a local martingale strongly orthogonal to M. It is evident that for V(¢,z) =
—e~ 7V, conditions a)- c) are satisfied and Theorem 3.1 from [10] implies that solution
of (16) exists. On the other hand an existence of a solution of equation (16) follows also
from general theory of quadratic BSDEs, but in the theory of BSPDEs there are no results
implying an existence of a solution of equations of type (14) (to our knowledge, the theory
about existence of these equations covers only the quasi and semi-linear case). In Theorem
5.1 of Section 5, as mentioned above, we provide conditions in the case of complete markets
when a solution of this equation exists.

The first main result of the paper is given as Theorem 2.1 and proves that under Assump-
tions 1-3, if the dual problem is well posed so is the dynamic primal problem. We also
relate the optimal strategy of the static problem (that is, V' (0, z)) with the one of the dynamic
problem, associated to V (¢, z).

It was shown in [13] that if we start at time 7 with the optimal wealth X (z), then the
optimal value in (7) is attained by (7, z) = 7(0, z) [}, 11, i.e.,

T
E[U(Xr(2))|F,] > E[U(X,(z) +/ 10dSy) | By, m € 11,

which is well understood from the Bellman principle.

Under Assumptions 1-3 we show (see Theorem 2.1) that if we start at time 7 with the
wealth equal to arbitrary amount z, then the optimal strategy (7, z) of (7) is expressed in
terms of the optimal strategy 7(z) = (0, x) and the optimal wealth X (z) = X, (0, z) of
(4) at time 7 by the equality

m(rx) = (X N 2), t>71 pt¥ —ae.,

where X, !(x) is the inverse of the optimal wealth X;(z) and {5’ is the Doleans measure
of (S).

In Section 3, we establish the relation between Doob-Meyer decomposition terms of the
value process V (¢, x) (12) with corresponding terms of the dual value process V (¢, y). The
second main result is stated as Theorem 3.1, where conditions are given when regularity of
the primal value function implies the regularity of the dual value function and we derive
BSPDE for I7(t, y) from BSPDE (14). To obtain this result in addition to continuity of
filtration we require an integral representation property with respect to M and an orthogonal
local martingale M=, in order to avoid stochastic line integrals in BSPDE representation of
V(t,y).

The problem related with condition a) was studied in [5] for utility functions defined on
the positive real line for value functions at time 0 and in [11] for dynamic value function



206 On Regularity of Primal and Dual Dynamic Value Functions

V(t,x) corresponding to utility functions defined on the whole real line. In particular, it
was shown in [11] that for any ¢ € [0, 7] the value function is continuously differentiable
at x and the second derivative exists in probability, which is weaker than condition a). In
addition, in [11] was proved that under Assumptions 1-3 for any ¢ the optimal wealth is an
increasing function of 2 P-a.s. and an adapted inverse of X, (x) exists. The problems related
with conditions a), b) and c¢) we connect with an existence of the inverse flow X, *(z) of
the optimal wealth. In Proposition 4.1 of Section 4, under stronger conditions we derive a
stochastic differential equation for the inverse of the optimal wealth 1, (z) = X, *(z) and
deduce from it that the finite variation part of the value process is absolutely continuous with
respect to the square characteristic(.S) of the asset price process. This result is the main step
for obtaining properties a)-c) in Proposition 4.2 of Section 4.

Finally we formulate the main result of Section 5. In this section we assume that the
market is complete.

Let .
U"(x
Ry(z) =— U’((x))’ Ry(x) =

We shall use one of the following conditions:

B U/// (l,)
Ul/ (I)

, z€R. (17)

rl) U is three-times differentiable, R;(x) is bounded away from zero and infinity and
Ry (x) is bounded and Lipschitz continuous,

r2) U is four-times differentiable and the density Z7 of the unique martingale measure
is bounded.

Theorem 5.1. Assume that the market is complete and that one of the condition r1) or r2) be
satisfied. Then conditions a)-e) are fulfilled and the value function V (t, x) satisfies BSPDE
(14).

In the paper [3] a new approach was developed, where the solution of the problem (4) was
reduced to the solvability of a system of Forward-Backward equations which is also a heavy
task. Note that they showed that in case of complete markets this system admits a solution
under conditions similar to condition r1) given above.

In the work [4] the wealth inverse process and duality relations are used to derive some
type SPDE and SDE for the forward dynamic utility (defined on the half real line), its
derivative and Fenchel conjugate. In forward utility framework, in contrast to the classical
utility theory, there is no prespecified terminal time at the end of which the utility datum is
assigned. Thanks to this freedom at terminal time, it was shown in [4] that there exists a
whole class of dynamic value functions satisfying regularity conditions of the present paper,
which is hard to do for traditional utilities (since the value function is obliged to satisfy the
boundary condition V' (T, 2) = U(x)) and needs stronger conditions on the basic objects.

2. THE RELATION BETWEEN THE BASIC AND CONDITIONAL UTILITY MAXIMIZATION
PROBLEMS

In this section we study basic and conditional utility maximization problems in incomplete
markets for utility functions defined on the whole real line and establish relations between
optimal strategies of these problems.

To this end we first give some definitions and auxiliary assertions.
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We shall say that an adapted stochastic process (X¢,t € 1, T]) is a generalized martingale
(resp. supermartingale) if

1) E(|Xy|/F;) < oo, forany ¢t € [1,T]

2) E(X:/Fy) = Xy (resp. < Xy ) forany ¢’ <t, where t',t € [, T]

(see the definition of generalized conditional expectations and of generalized supermartin-
gales for discrete time in [14])

Definition 2.1. A predictable S integrable process 7 is in IT,, -, if E(U(z + fTT w0 dSy)/ Fy)
is finite and ((7- S )t, t > 7) is a generalized supermartingale under each Q € M with finite
U-expectation EU ( )

The proof of the following assertion follows from Theorem 4.1 and Proposition 3.1 of
[11].

Proposition 2.1. Let Assumptions 1-3 be satisfied. Then for any t € [0,T] there exists a
modification of the optimal wealth process (X(x),z € R) (resp. of Z¢(y)) almost all paths
of which are strictly increasing and absolutely continuous with respect to dx (resp. dy).
Besides

Xj(@) >0, BUO(Xp(2))* <C, (18)
lim X(z) =00, lim X;(x)= —o0 (19)
Tr—00 r—r—00

P-a.s. for any t € [0,T] and the adapted inverse X, ' (x) (resp. Z; *(y)) of the optimal
wealth process exists.

We shall need also the continuity properties of the square characteristics (X (z) — X (y))
which can be deduced from Proposition 2.1.

Lemma 2.1. Let conditions of Proposition 2.1 be satisfied. Then, for any t € [0,T] the
random field ({(X (x) — X (y))+, x,y € R) admits a continuous modification.

Proof. Tt follows from Proposition 2.1 that X;(b) — f X, (x)dz and

/ EQ(‘”)<X’(x)>Tda::/ EQ(I)(XlT(I)) dr < 00

a a

VX1 @) (X7(z))pda < 0o, P — a.s. Thus by continuity of

and by the Fubini theorem f e

V'(z) :
T X (2)) Ve obtain

b / b rrr T
/a (X'(2))pdx < Jnax U,&(T() ) / v gf(Tx() ) (X'(z))rdr < o0, P — a.s.

Therefore, using the Kunita-Watanabe and Holder’s inequalities we have

(X(0) t_// (y))edwdy
/ / I <>>2/2dxdy:(/ab<X’<x>>i/2dx>2

_(b—a)/ (X'(z))rdr < 00, P —a.s.
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and it follows from inequality
(X(¥) = X(a)) — (X(b) — X(a)),
< (X)) — X (0)),H(X (V) — X(a) + X(b) — X(a)),"*
+(X(d) — X(a)),2(X (V) - X(d) + X (b) — X(a));"*

that (X (b,) — X(an))r = (X(b) — X(a))t, P — a.s. when b,, — b, a, — a. Thus the
stochastic field defined by

w | limp gy (X (1) — X (1"))e, 7 are rational,
(X(@) - X)) = { 0, if the limit does not exist

is continuous and stochastically equivalent to (X (z) — X (y))+. O

Theorem 2.1. Let Assumptions 1-3 be satisfied. Then there exist the maximizer of (7) and
the minimizer of (8) in the classes 11, ,, and Z. , respectively and equalities

Xr(r,z) = Xp(X N @), m(r, @) = m(X (@), t > 7, (20)
- Zr(Z7 ()

Y(ry) =202 W) oF (r) = ¥ () =27 1)
are satisfied.
Moreover P-a.s.
T
V(r,z) = E[U(m +/ WU(X;l(x))dSu> | FT}
™ (22)
V(ry) = B[U(Zr(Z7 () | Fr).
the duality relation
T
v’ <w —|—/ WU(XTl(SC))dSu> =Zr(Z7 (), y =V'(7,x) (23)

holds and the process
ZU(Z7 () XX (@), te[rnT], where y=V'(r,x), (24)
is a generalized martingale.

Proof. By the optimality principle (see, e.g. [10]) V (¢, X;(x)) is a martingale and since
V(T,z) = U(z) we have that for any z € R

V(r, X;(2)) = E(U(Xr(2))/F;) P—as. (25)
Since for any 7 the functions V (7, z) and X (z) are continuous for almost all w € €, the
equality (25) holds P-a.s. for all € R and substituting X ~*(z) in this equality we obtain
that

V(r,2) = E(UX7r(X ' (2)/F;) P-—a.s.,

which means the maximality of X7 (X~ 1(z)). Let us show that X7 (X *(z)) is equal to the
stochastic integral

T
Xp(X Y2) =2+ / 7 (X1 (2))dS, (26)
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and that 7(X ~1(z)) belongs to the class II, ..

In order to show equality (26) it is enough to show that fTT Ty (2)dS,, |;c=§ = fTT T (€)dSy,
for & = X (x).

Let us consider the sequence of simple random variables &,, = Z?:_ oo Ck1a,, Where
Ap = (% <¢E< %), ¢ = £. We have ¢, — £ uniformly and

T n

T oo T
/ 7Tu(fn)dsu = Z / ﬂ-u(ck)lAdeu
o k=—occ“T
o T T
= Z 1a, / 7y (C)dSy = / Wu(x)dsu‘xzfn.
k——oco T T
On the other hand

T

/ mu(@)dSa|,_, - / mu(@)dSL],_ = Xr(€2) = X7 (&) — (Xr(§) = X, (€) = 0,

T

as m — 0o, since X;(x) is continuous and

T
/ () — 7u(€))%d(S)u
= (X(z) = X(y))r — (X(z) - X(y)>7|a;:§n,y:g —0, P—a.s.

as n — 00, by continuity of (X (x) — X (y));. Hence fTT 7 (€n)dSy — fTT 7y (£)dS,, in
probability and [ m,(2)dS.|,_, = [ mu(¢)dS, — P-as.
)

Since E|U(Xr(x))| < oo and EQ|X;(z)| < oo,t € [0, T] forany Q € M? and X! (x)
is F.-measurable we have that

ElUX (XY x)| | Fr] < 00, EQ(|X(X Y(x))|/F,;) <oco P-as.,t>T.

On the other hand, since for any ¢ € [0,7] the function (X(z),z € R) is continuous and
increasing, the supermartingale inequality E9(X;(z)/Fy) < Xy (z), t' < t < T, implies
that

E9(Xy(X;(2)/Fy) < Xu (XN (@), 7<t <t<T,

for any Q € M, hence 7(7,z) = m(X!(x)) belongs to the class II, , and the equality

(22) holds. Similarly one can show the minimality of Z7(Z-1(y)), so conditional density of
—1

the minimax martingale measure to the problem (8) is w

Since for any ¢ € [0, 7] the functions V'(t,z),x € R and Z(y),y > 0 are continuous
and the inverse of Z;(y) exists, from (11) we have that P-a.s.

2NV (@) = V/(X7 (@) @7)

which together with (10) implies the conditional duality relation (23).

Note also that since Z;(y)X;(x) is a martingale (see Theorem 1 from [13]), by continuity
of X (z) and Z(y) the process (Z;(V'(X- 1)) X (X 1(z)),t > 7) will be a generalized
martingale and by equality (27) this is equivalent to (24). U
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3. RELATIONS BETWEEN DECOMPOSITION TERMS OF THE VALUE PROCESSES OF
PRIMAL AND DUAL PROBLEMS

In this section in addition to the continuity of the filtration F' we assume that any orthog-
onal to M local martingale L is represented as a stochastic integral with respect to the given
continuous local martingale M. Therefore, the value process V (¢, ) admits the decompo-
sition

t t
Vt,x) =V (0,2) — A(t, x) +/ o(s, z)dM; +/ w1 (s,z)dM;,
0 0

where A(t, ) is an increasing process for any x € R, ¢ and ¢ | are M and M~ integrable
predictable processes respectively. Since the value process V (¢, y) of the dual problem is a
submartingale for each y > 0 it is decomposable as

. . ™ t t
V(t,y)=V(0,y)+A(t,y)+/ 6(s,y)dMs+/ P (s,y)dM;", (28)
0 0

with M and M~ integrable predictable processes @ and &, and an increasing process g(t, ).
It is known that the value processes of the primal and dual problems are related by the
equality

V(tv _vl(tv y)) = ‘7(75) y) - y"?l(t y) (29)

We are interested in how the decomposition terms A, ¢ and ¢ are related to g, pand @,
respectively.

Theorem 3.1. Assume that the filtration F' is continuous and any orthogonal to M local
martingale L is represented as a stochastic integral with respect to a local martingale M.
Assume that V (t,x) is a regular family of semimartingales (i.e., satisfies conditions a)-c) of
the introduction) and that V' (t,y) is a semimartingale with the decomposition

t t
V() = V'(0,9) + Blt.y) + / 3 (s, y)dM, + / F(sy)dME. (0)
0 0

where B (t,y) is the process of finite variation for any y.

Then (V(t,y),y > 0) is a regular family of semimartingales and
o(s, y) = @(87 _‘7/(57 y))’ M<M>

PL(sy) =pi(s,—V/(s,y), p™

a.e., (€29)
a.e., (32)

R R A L

,1 /t (QDIJ_(‘S, 7V/(57y)))2d<MJ_>S' (33)
0

2 V”(S,*V’(S,y))
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In addition, V (t,y) satisfies the BSPDE
¢
~ ~ _ 1 ~
V(t.0) =VOw)+ [ (A5 (s00) — uX20" (s,0)alM).
0

L[ (@0 00 e

t ~ ~
T / G (s, y)dME, V(T,y) = U(y). (34)
0

Proof. Using the duality relation (29) and the 1t6-Ventzel formula (see, e.g., [7] or [15]) we
have

- t t

V(t7 _Vl(tvy)) = V(O’ _‘7/(O7y)) +/0 90(5’ _‘7I(Sa y))dMs +/0 (pJ_(S7 _‘7/<57y))d]\45l

- /0 Vs, T (5,0)F (5,y) M, — /0 Vs, (5,0 (5, )M
[ atos s~ [ Vs, -6, )aB)
+s /0 Vs, (s9) @ (5. 01),
#3 [ V6T B,
-/ (52— (5,)) (5, 9)A( M) — / (5~ (5, ) (5, )M )
— Alty) + / B, )M, + / (5, y)dM -

~yB(t,y) —y /O t &' (s,y)dM, —y /0 t & (s,y)dM. (35)

Since V'(s, —V'(s,y)) = y, from (35) we obtain that

/ (s, 7 (5,9))dM, + / o1 (5, V" (5,4))dM
0 0

+ [ als =V satd + 5 [ Vs )@ )P0,

+é/0 V/'(S,—{7’(57y))(@l(87y))2d<ML>s

- / o (5~ (5,9))F (5, 9))d(M) o — / oy (5.~ (5,9))F (5, 9))d (M),

t t
= Alty) + / (s, y)dM, + / B (s,y)dME. (36)
0 0
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Equalizing the martingale parts in (36) we obtain equalities (31) and (32). Since X~/(t, y) is
two-times differentiable and

1

V) =~ T

(37)

we have that ¢(s, y) and @, (s, y) are also differentiable and

~ / T ] /(57 —V’(s,y)) M
o' (s,y) = —¢ (s, =V (s,y))V"(s,y) = <p—~7 ,u< ) a.e., (38)
V//(S7 _V/(Say))

~7 ’ T 7 ¢ (s, =V"(s,¥)) (M)
Y) = — ,=Vi(s,y)Vi(s,y) = ———=—""5, .e. 39
P'L(s,y) = =¥\ (s (5,9)V"(s,9) Vits T (a.9) m a.e (39)

Therefore,

90/(87 _Vv/(s’y))@ﬁ(&y)) = VH(S7 _‘7/(& y))(gzl(s, y))2> M<M> a.e.,
4103_(3’ _‘7/(8, y))&ﬁ_(sv y) = V//(Sv _‘7/(8’ y))(@l(& y))27 U<MJ_> a.c.

and equalizing the finite variation parts in (36) we deduce that equality (33) holds.
Let us show now that V (¢, y) satisfies the BSPDE (34). It follows from (14) that

AV (s,2) + ¢/ (5, 7))
V" (s, x) ’
1" (yhs + ¢ (s,=V'(5,9)))?
/

[ etV supaan. = 5 Vi Ty

1
a(s,x) = 3

_ ! (s _1 2)\2777 (g 1 i (90/(51_‘7/(5»?4)))2
= [ oA ) - 5V ) an. + 5 [ ().,

which (together with (33)) implies that

t . t (>t s 2
At = [ (36— u 7 .+ 5 [ LB aqurs),. o

Now, (28) and (40) imply that IN/(t7 y) satisfies (34). O

Remark 1. It follows from (28), (33) and (37) that ‘7(7&, y) satisfies also the forward SPDE
derived in [4], which takes in this case the following form

V) = V(0.0) + [ als =V )dd). + 5 [ (5.~ (5027 ()],
+3 [ T ) PP s paar ),

t t
4 / (s, V' (s,4))dM, + / o (5, (5, )M
0 0
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4. DIFFERENTIAL EQUATION FOR THE INVERSE FLOW OF THE OPTIMAL WEALTH

By Proposition 2.1, if the filtration F' is continuous and Assumptions 1-3 are satisfied then
the adapted inverse X, !(x) of the optimal wealth process exists. Under stronger conditions
we shall derive for the inverse process X, !(x) a Stochastic Differential Equation (SDE)
which will be used to show the absolute continuity of bounded variation parts of V (¢, z) and
V'(t, z) with respect to square characteristic (.5).

For stochastic process & (z) by &, (x) we denote the derivative with respect to z, u‘
denotes Dolean’s measure for (S}, i.e. the measure d(S)dP on [0,T] x Q. If F(t,z) is a
family of semimartigales, then fOT F(ds, &) denotes a generalized stochastic integral (see
[7], Chapter 3), or stochastic line integral by terminology from [2]. If F'(¢, z) = G, where
G, is a semimartingale, then the generalized stochastic integral coincides with the usual one
denoted by [, £,dG or (€ - G)r.

Now we shall derive an SDE for the inverse of the optimal wealth 9/, (x) = X; *(z) of the
form

dipy = o4 (Pi)dSe + pe () d(S)e, Yo = x, (41)

z 7\'2 z !
where 01(2) = ~ %, m(2) = s (B3)

Proposition 4.1. Let X|'(z), m,(x) exist and be locally Lipschitz functions with respect to x
1) —a.e.. Then SDE (41) or equivalently

_ () T (Vi) e (Y1) _ lXt/'(wt)Wtz(%//t)
R () R ¥ A e R U
Yo = (43)

admits a unique maximal solution and it coincides with X; ' (x).

Proof. The SDE (41) admits unique maximal solution up to time 7(z) <7, where [¢,(,)_| =
oo if 7(x) < T (see [7], Theorem 3.4.5). Applying the Itd—Ventzel formula for X;(¢;) =
X (t, 1) (see [7], Chapter 3 or [15]) and using that v, satisfies (42) we get

dX (t, ) = X (dt,¥y) + X' (t, ¢e)depy + %X "t ) d(Y)y

va{ [ X @), ve)

t

= e (Yr)dS+X{(r) [ - ;T(Z((ZZZ)) dS; + Wﬂ&t
1 XY ()77 (1) 1 X} ()77 (¢br) () me (ve) _
- a0+ e s - Mg ais =
Yo(x) = x.

Hence X (t,%;(2)) = x on [0, 7(x)) . Since | X} (x)| < oo, we have 7(z) = T P—a.s.
1

7(x)
and Yy (x) = X; " (2). O
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Remark 2. Let my(z) = Hi(X:(z)). Then

_Ht(Xt(wt))dSt n Hi (Xe(¢1)) He (Xt (41)) L
X{(¢r) Xi(¥e)? 2 X! (1h)?
X @) _ ) (2)

Using equalities X; (v (z)) = =z, m =,(x), and — X)) = iz We obtain
the linear partial SDE

dijy = a5y, — LXIWOHE(Xi($))

d(S);.

dipi(x) = —Hy(x) ¥ (x)dS, + Hy(x)Hy ()i (2)d(S): + %Hf(fv) ¢ (x)d(S):
or an SPDE in the divergence form
Atu(a) = (@)} (2)dS, + 5 (HZ ()} (@) d(S).
Let us define martingale random fields
M(t,z) = E[U(Xr(z)|F],
M(t,x) = E[U'(X7(2)|F].

Proposition 4.2. Let conditions of Proposition 4.1 be satisfied.

i) If M(t,x) is two times continuously differentiable with respect to x, then the finite
variation part of V(t,x) = M(t,y:(x)) is absolutely continuous with respect to

(S).

ii) If M(t,z) is two times continuously differentiable with respect to z, then V'(t, x) is
a special semimartingale and the finite variation part of V'(t,x) = M(t, ¢ (x)) is
absolutely continuous with respect to {S). Besides V' (t, x) admits the decomposition

w@@:w@m—/

¢
a'(s,z) d{(M)s + / W' (s,x) dMg + L' (t, x). (44)
0 0

Proof. 1) By the optimality principle V (¢, X;(x)) is a martingale and since V (T, z) = U(x)
we have that V' (t, Xy (2)) = E[U (X7 (z))|Ft] = M(t, x). Therefore by duality relation (11)

M (t,x) = V'(t, Xi(2)) X (2) = Zi(y) X{(2) (45)

is a martingale and let
t
M (t,x) =V'(z) +/ hy(x)dM, + Li(z), L(x)LM
0
be the GKW decomposition of M’ (¢, x). From (42) we have

g . T T _ ! z - (¢r(2))
([ Mt oopow) == [ geas,. o
Since V (t,2) = M(t, X; *(z)), by the Ito—Ventzel formula we get
V@mzvmm+AA«@¢g+Aﬂm@%m%

o "M (s )+ ([ s wr<x>>,w<x>>t. 47)
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In view of (42) and (46) one can verify that all finite variation members of (47) are integrals
with respect to (S). Namely,

[T T (e (@) (Yr (@) 1 X (4 (2)) 7 (¥ ()
—A(t,{L‘) - /O M (T‘,’(/)T(LL')) < X/(wr( )) - 5 X’(?/)T(I))g )d<s>7’
L R @) e (2)
+ [ (GMr oo L b o) D ags),

ii) It follows from (10) and (11) that
M(t,z) = E[U' (X7 (2))| Y] = E[Zr(y)|F] = Ze(y) = V'(t, Xo(2)),  (48)
which (together with (45)) implies that M and M are related as
M (t,x) = M(t, z) X{(x) (49)

and V'(t,2) = M(t, X; ! (x)). It follows from (48) that ﬂl(t, x) = Zi(y)V"(x) is a mar-
tingale and

- e
{/ M(dr,wr<x>>,w<m>>t | e G, oo

where ﬂ/(t,z) =V"(z)+ fo x)dM, + Ly(z), L(z)LM is the GKW decomposition
of M (t,z). Therefore the Ito- Ventzel formula implies that V'(¢,2) = M(t, X; () is

a special semimartingale and similarly to i) one can show that the finite variation part of
V'(t, z) is absolutely continuous with respect to (S). Therefore, V' (¢, ) is decomposable as

V'(t,z) =V'(0,2) +/0 b(r,x)d(M), —|—/O g(r,x)dM, + N(t,z), (51)

for some local martingale N (¢, ) orthogonal to M for any 2 € R and M and (M) integrable
processes g and b respectively. The Itd-Ventzel formula and conditions of this proposition
also imply that b(r, z) and g(r, z) are continuous at z. Therefore, integrating the equation
(51) with respect to dx (over a finite interval) and using the stochastic Fubini theorem (taking
decomposition (12) in mind), we obtain (44). O

5. THE CASE OF COMPLETE MARKETS

In this section for the case of complete markets we provide sufficient conditions on the
utility function U which guarantee existence of a solution of BSPDE (14).
Hereafter we shall assume that the market is complete, i.e.

dQ = ZTdP, where ZT = (C:T(—)\ . ]\4)7
is the unique martingale measure.

Lemma 5.1. Let the market be complete and condition rl) be satisfied. Then the optimal
wealth X1 (x) is two-times differentiable and the derivatives X/.(z), X}.(x) are bounded
and Lipschitz continuous.
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Proof. Since U(y) and U () are conjugate, U () is also three-times differentiable and
1 ~ . U"(x)
TN (e

Therefore the functions By (y) and Bs(y), where
Bi(y) =yU"(y) = 1/Ri(x), Bal(y) = y*U"(y) = Ra(z)/Ri(x) (53)
respectively, are also bounded. This implies that the second and third order derivatives of

U(yZr) are bounded, hence the function V(y) = EU(yZy) is three-times differentiable
and

U"(y) = — y=U'(z). (52)

V"'(y) = EU" (yZr) Z3-

Since V (y) and V (z) are conjugate, V (z) is also three-times differentiable.
The duality relation (10) takes in this case the following form

U'(Xr(z) =yZr, Xr(z)=-U'(yZr), y="V'(2). (54)

This relation implies that the function Xr(x) is two-times differentiable for all w € Q' =
(Zr > 0) with P(£2') = 1 and differentiating the first equality in (54) we have that

U"(Xr(2))Xp(z) = V" (2) Zr, (55)
U"(Xr(2)) (X7 (2))? + U" (Xr(2)) X7 (2) = V" (2) Zr- (56)

From (54) and (55) we obtain that
V'(z) U'(Xr(z))

X = .
"= Ve) UXa(@)
By condition r1) and Proposition 1.2 from [11] ¢; < “///,,((;7)) < c¢s. Therefore this implies
that X/.(z) is bounded, in particular
C1 C2
—< X < = 57
T < xp(@) < 2, (57
where ¢; and ¢y are constants from (9).
Comparing equations (55) and (56) we have that
U (Xr(x)) V()
X7 Xi(z))? = X(z). 58

Since E¢X/.(x) = 1 and EQ X/ () = 0, taking expectations with respect to the measure Q)
in equation (58) we get
V///(a,;) _ EQ U///(XT (x))
V"(x) U"(Xrp(x))
V() .

which together with (57) and condition 1) implies that ¥ e is bounded.

Therefore, it follows from (58) that X7 (z) is also bounded, hence X/.(z) is Lipschitz
continuous.

Since the product of bounded Lipschitz continuous functions are Lipschitz continuous, it

follows from (59) that “///,/,/((f)) is Lipschitz continuous and (58) implies that X/.(x) is also

Lipschitz continuous, since all terms in (58) are bounded and Lipschitz continuous. U

(X7 ()%, (59)
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Lemma 5.2. Let the market be complete and condition r2) be satisfied. Then the optimal
wealth Xr(x) is three-times differentiable, X/.(x) is strictly positive and the derivatives
Xh(x), X/ (x) and X7 (x) are uniformly bounded on every compact [a,b] C R.

Proof. Since U(xz) and U(y) are conjugate, Condition 72) implies that U(y) is also four
times differentiable and the derivatives of ﬁ(yZT) are bounded for any y € R, hence the
function V (y) = EU (yZr) is four-times differentiable.

Then V() is also four-times differentiable, since V' (z) is the inverse of —V’(y). There-
fore, the duality relation

Xrp(x) = =U'(V'(z)Zr)

implies that the optimal wealth Xp(x) is three-times differentiable and the derivatives
X5 (x), X/(z) and X7/ (z) are bounded on every compact [a, b] € R. Therefore the deriva-
tives X7.(z), X7.(x) satisfy the local Lipschitz condition.

Besides,

X(z) = V" (2) ZrU" (V' (2) Z7)) > 0

since V"' () < 0 and U" (y) > 0. O

Corollary 5.1. The process (X[ (x), (t,x) € [0,T] x R) admits a continuous modification.

Proof. Since X|'(z) is a Q—martingale, by the Doob inequality and the mean value theorem
we get

E9sup | X/ (z1) — X/ (22)]* € et E9|X (1) — X[ (22)[?
+<T

< el — 22|EQ sup | XY (axy + (1 — o)) < colzy — )2
a€el0,1]

for some constants ¢y, co. By the Kolmogorov theorem the map
R>z— X'(z) € C[0,T)

admits a continuous modification, which implies the continuity of X/’ (x) with respect to the
variables (¢,x), P—a.s.. O

Proposition 5.1. Assume that the market is complete and that either condition r1) or r2) is
satisfied.

Then the optimal wealth X,(x), the optimal strategy T(x) (u'-a.e.), martingale flows
M(t,z) and M(t,x) are two-times continuously differentiable at = for all t, P—a.s. and the
coefficients of equation (42) satisfy the local Lipschitz condition.

Proof. First assume that condition rl) is satisfied. According to Lemma 5.1 the optimal
wealth X7 (z) is two-times differentiable and the derivatives X/.(x), X7.(z) are bounded
and Lipschitz continuous.
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To show an existence of 7’(z) we use the decomposition X/.(z) = 1 + fOT 7" dS, with
some predictable S-integrable integrand (1) () and inequalities

T 2
B / (”t(l)@f +e)— m(”(x)) d(S); = B (X' (z +¢) = X'(x)) 7
0
= B9 (Xh(z +¢) — Xpp(2))® < 2E9 max | X7 (z + se)|?
< e2Const,

By the Kolmogorov theorem 7(!) () is continuous with respect to - 115 -a.e.

Note that, if instead of r1) condition r2) is satisfied, then we shall have that there exists
a u'S-ae. continuous modification of 7(!) () on each compact of R which will imply an
existence of continuous modification on the whole real line.

Thus by the stochastic Fubini theorem (see [15] )

To — X1 +/ (ﬂ'r(xg) — Wr(l'l))ds = XT(LCQ) XT(I'l)

/ X (x dx—xz—xl—l—/ / x)dxdS,

and consequently 7, (z2) — m-(z1) = ff i (x)dx pi-ae.. Hence 71 (z) = 7/(x)

1) -a.e. and
T
Xh(z) =1 +/ 7. (x)dS, (60)
0

for all x P—a.s.
It follows from (60) and from the Fubini theorem that

Xi(ws) — Xolar) = w2 — a1 + / (o (102) — 7 (21))dS,

fw27x1+// da:dSrf/ X, (x)dx

for any o > z1 P—a.s. and lemma A3 from [11] implies that for each fixed ¢ there exists a
modification of (X;(x),x € R) which is absolutely continuous with respect to the Lebesgue
measure dx. Since (X/(z),t € [0,T1]) is a Q-martingale

| Xi(22) — X{(21)| < B X7 (2) — X7(21)|/F) < Claz — 1] (61)

for any x5 > 27 P—a.s. and Lemma 5.1 and Corollary 5.1 imply that there exists ' C
Q, P(£Y) =1, such that at each w € €' the inequality (61) is fulﬁlled for all (¢, z).

Since EX7(z) = 0 and the market is complete we have X/.(z fo (2) x)dS, for

some predictable S-integrable integrand 7(2). Similarly as above one can show that < )( )

is continuous at 2 p{%-a.e., 7?) (z) = 7" (x) u{S)-a.e. and, hence X/ (z) admits the repre-
sentation

¢
X{’(x):/ ! (z)dS,.
0
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Similarly we can show that one can choose a modification of X;(x) which is two-times
differentiable and such that X" (x) is Lipschitz continuous.

In case when instead of r1) the condition 12) is fulfilled X" (x) will satisfy the local Lip-
schitz condition. So, in both cases (i.e., if condition r1) or r2) is satisfied) the coefficients of
equation (42) will be locally Lipschitz continuous.

Since the market is complete M(t, ) = V'(x)Z; and it is evident that M (¢, z) is two-
times continuously differentiable. Besides, equality (49) implies that M (¢, z) is also two-
times continuously differentiable at x. (I

Theorem 5.1. Assume that the market is complete and that one of the condition r1) or r2) be
satisfied. Then conditions a)-e) are fulfilled and the value function V (t, x) satisfies BSPDE
(14).

Proof. 1t is evident that boundedness of B;(y) and Bz(y) (defined by (53)) implies that
the dual value function V' (¢,y) = E(ﬁ(yzz—f) /Fy) is two-times continuously differentiable.
Since

1
V(ty)
the value function V (¢, ) is also two-times continuously differentiable, hence condition a) is
fulfilled.

It follows from Proposition 5.1 that under the presence assumptions all conditions of
Propositions 4.1 and 4.2 are satisfied, therefore these propositions imply that V (¢, x) satisfies
conditions b) and c), hence V (¢, x) is a regular family of semimartingales.

Let us show that the condition e) is also satisfied. By optimality principle (see [10])
for any ¢t € [0, 7] the process (V (s, X;s(t,x)),s > t) is a martingale, where X;(¢t,z) =
z+ : 7y (t, 2)dS,, is the solution of the conditional optimization problem (14). This implies
that P-a.s.

V' (t,z) = — y="V'(z),

V(t,z) = E(V (s, X;s(t,x))/F}). (62)
On the other hand using again the optimality principle we have
V(t, Xi(2)) = E(V (s, Xs(2))/ F),
and substituting in this equality the inverse of the optimal capital X;(x) we get
V(t,z) = B(V (s, Xo(X; ' (2))/F). (63)

Since for any ¢ the function (V' (¢, ),z € R) is strictly convex, comparing (62) and (63) we
obtain that P-a.s X,(t,z) = X,(X; *(z)). By continuity at (¢, z) of X; *(z) as a solution
of SDE (42) we obtain that condition e) is satisfied.

Thus, all conditions of Theorem 3.1 from [10] are satisfied which implies that V' (¢, z) is a
solution of the BSPDE (14). O

Corollary 5.2. Let conditions of Theorem 5.1 be satisfied. Then the process
~ ~ 7
ity = E(U)/F). tel.T],
t

satisfies the BSPDE (34).
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Proof. According to Theorem 3.1 it is sufficient to verify that the process
~ Zr ~,, Z
Vi(t.y) = E(-U'(y5)/F). t€0.T],
Zy Zy
is a special semimartingale. B
Let V(t.y) = E(%U’(yZT)/Ft).}t is evident that V' (¢, y) Z%V(t, 7). But by the
duality relation (10) V(t.y) = E(Z7U'(yZr)/F:) = —Z;X¢(x) and the martingale field
V(t.y) is two-times differentiable by Proposition 5.1. Therefore the Itd-Ventzel formula

implies that Z%V(t, #-) is a special semimartingale, hence so is the process V'(t,y). O

We would like to thank anonymous referees for useful remarks and comments.
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CONNECTIONS BETWEEN A SYSTEM OF FORWARD-BACKWARD SDES
AND BACKWARD STOCHASTIC PDES RELATED TO THE UTILITY
MAXIMIZATION PROBLEM

M. MANIA AND R. TEVZADZE

Abstract. Connections between a system of Forward-Backward SDEs derived in [4] and
Backward Stochastic PDEs (from [9]) related to the utility maximization problem is estab-
lished. Besides, we derive another version of Forward-Backward SDE of the same problem
and prove the existence of solution.

Key words and phrases: Utility maximization problem, backward stochastic partial differ-
ential equation, forward backward stochastic differential Equation

MSC 2010: 90A09, 60H30, 90C39

1. INTRODUCTION

We consider a financial market model, where the dynamics of asset prices is described
by the continuous R?-valued continuous semimartingale S defined on a complete probability
space (92, F, P) with filtration F' = (F;,t € [0,T1]) satisfying the usual conditions, where
F = Frand T' < oco. We work with discounted terms, i.e. the bond is assumed to be
constant.

LetU = U(z) : R — R be a utility function taking finite values at all points of real line R
such that U is continuously differentiable, increasing, strictly concave and satisfies the Inada
conditions

U'(00) = fh_)n;c Ux) =0, U'(-oc0)= mgmoo U'(x) = co. (1.1)
We also assume that U satisfies the condition of reasonable asymptotic elasticity (see [5] and
[14] for a detailed discussion of these conditions), i.e.,

/
lim sup U'(z)

.. aU(x)
1, 1 f 1. 1.2
mSup s <1, limin > (1.2)

Z——00 U(aj)

For the utility function U we denote by U its convex conjugate
U(y) = sup(U(x) — zy), y > 0. (1.3)

Denote by M€ (resp. M) the set of probability measures () equivalent (resp. absolutely
continuous) with respect to P such that S is a local martingale under Q).
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Let M, (resp. MF,) be the convex set of probability measures ) € M (resp. M®) such
that
=~ (dQr
BU(520) < . 1.4
aPr 00 (1.4)
It follows from Proposition 4.1 of [13] that (1.4) implies Eﬁ(y%) < oo for any y > 0.
Throughout the paper we assume that

o #0. (1.5)

The wealth process, determined by a self-financing trading strategy 7 and initial capital z,
is defined as a stochastic integral

t
Xf’”:z+/ TudSy, 0<t<T.
0

We consider the utility maximization problem with random endowment /7, where [ is a
liability that the agent must deliver at the terminal time 7". H is an F’r-measurable random
variable which for simplicity is assumed to be bounded (one can use also weaker assumption
1.6 from [11]). The value function V' (z) associated to the problem is defined by

T
V(z) = sup E[U(ajJr/ 7rudSu+H)}7 (1.6)
well, 0
where II, is a class of strategies which (following [14] and [11]) we define as the class of
predictable S- integrable processes 7 such that U(x + (7 - S)r + H) € L*(P)and 7 - S is a
supermartingale under each Q) € M.
The dual problem to (1.6) is

V() = ,inf, E[U(yp?) +ypSH], y>0, (1.7)

where p? = dQ:/dP; is the density process of the measure () € M¢ relative to the basic
measure P.

It was shown in [11] that under assumptions (2) and (5) an optimal strategy 7(x) in the
class II,, exists. There exists also an optimal martingale measure Q(y) to the problem (1.7),
called the minimax martingale measure and by p* = (p; (y), ¢ € [0, T]) we denote the density
process of this measure relative to the measure P.

It follows also from [11] that under assumptions (2) and (5) optimal solutions 7*i(z) €
II,i and Q(y) € Mg, are related as

T
U <x + / 7 (x)dSy, + H) =ypr(y), P-as. (1.8)
0

The continuity of S and the existence of an equivalent martingale measure imply that the
structure condition is satisfied, i.e. .S admits the decomposition

t t
Sy = M, +/ d(M) s, / M d(M)y A < o0
0 0

for all ¢ P-a.s., where M is a continuous local martingale and ) is a predictable process. The
sign 7 here denotes the transposition.
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Let us introduce the dynamic value function of problem (1.6) defined as

T
V(t,z) :esssupE<U(x+/ wudSunLH) ’ Ft). (1.9)
well, t
It is well known that for any = € R the process (V (¢, z),t € [0,T7]) is a supermartingale
admitting an RCLL (right-continuous with left limits) modification.
Therefore, using the Galchouk—Kunita—Watanabe (GKW) decomposition, the value func-
tion is represented as

Vt,z) =V (0,2) — A(t,x) + /01 Y(s,x)dMg + L(t, x),

where for any z € R the process A(t,x) is increasing and L(¢,z) is a local martingale
orthogonal to M.

Definition 1.1. We say that (V' (¢,x),t € [0,T7]) is a regular family of semimartingales if

a) V (¢, x) is two-times continuously differentiable at x P- a.s. for any ¢ € [0, T],

b) for any = € R the process V (¢, x) is a special semimartingale with bounded variation
part absolutely continuous with respect to an increasing predictable process (K, t € [0,T]),
ie.

A(t,x):/o a(s,z)dK,

for some real-valued function a(s, z) which is predictable and K-integrable for any = € R,
¢) for any x € R the process V'(t, x) is a special semimartingale with the decomposition

V'(t,z) =V'(0,x) —/

0
where a’, ¢’ and L' are partial derivatives of a, ¢ and L respectively.

t

t
a' (s, z) dK +/ W' (s,2)dMg + L' (t, x),
0

If F'(t,z) is a family of semimartigales, then fOT F(ds, &) denotes a generalized stochas-
tic integral, or a stochastic line integral (see [6], or [2]). If F(¢,z) = xG, where Gy is a
semimartingale, then the stochastic line integral coincides with the usual stochastic integral
denoted by fOT &sdGgor (- G)r.

It was shown in [7, 8, 9] (see, e.g., Theorem 3.1 from [9]) that if the value function satisfies
conditions a)—c), then it solves the following BSPDE

V(t,x) =V(0,x)

+% /0 ﬁw& ) + M)V (s,2)T d(M) (¢ (5,2) + M)V (s, 2))

t
—|—/ o(s,x)dMs + L(t,z), V(T,z)=U(x), (1.10)
0

and optimal wealth satisfies the SDE
t 7 /
¢'(s, Xs(x)) + A(s)V' (s, X, (2))
X =x— dSs. 1.11
@ == Vs X () | -
This assertion is a verification theorem since conditions are required directly on the value
function V' (¢, ) and not on the basic objects (on the asset price model and on the objective
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function U) only. In the case of complete markets ([10]) conditions on utility functions are
given to ensure properties a)-c) and thus existence of a solution to the BSPDE (1.10), (1.11)
is established. Note that the BSPDE (1.10), (1.11) is of the same form for random utility
functions U (w, x), for utility functions defined on half real line and properties a)-c) are also
satisfied for standard (exponential, power and logarithmic) utility functions.

In the paper [4] a new approach was developed, where a characterization of optimal strate-
gies to the problem (1.6) in terms of a system of Forward-Backward Stochastic Differential
Equations (FBSDE) in the Brownian framework was given. The key observation was an ex-
istence of a stochastic process Y with Y7 = H such that U’(X; + Y;) is a martingale. The
same approach was used in [12], where these results were generalized in semimartingale set-
ting with continuous filtration rejecting also some technical conditions imposed in [4]. The
FBSDE for the pair (X,Y) (where X is the optimal wealth and Y the process mentioned
above) is of the form (see, [12])

t "X. }/g 1 " Xs }/s /Xs 1/g 2
0

SUMX,+Y.) 27° U" (X, + Y,)?

1 t UIII(X8+Y.S) t
— ———d(N ZsdMg+ Ny, Yr = H, 1.12
2/ U//(Xs+}/;)d< >s+/0 sd s+ ty T ) ( )
t l
B U(Xs+7Ys)
Xt 7‘%*\/0 ()\SerZS)dSS, (113)

where N is a local martingale orthogonal to M.

Note that in ([4]) and ([12]) an existence of a solution of FBSDE (1.12), (1.13) is not
proved, since not all conditions of corresponding theorems are formulated in terms of basic
objects. E.g., in both papers it is imposed that E(U’(X% + H))? < oo and it is not clear if
an optimal strategy satisfying this condition exists. Note that in [4] in the case of complete
markets an existence of a solution of FBSDE (1.12), (1.13) is proved under certain regularity
assumptions on the objective function U.

One of our goal is to derive another version of FBSDE (1.12), (1.13) and to prove the
existence of a solution which will imply the existence of a solution of the system (1.12),
(1.13) also.

The second goal is to establish relations between equations BSPDE (1.10), (1.11) and
FBSDE (1.12), (1.13). Solutions of these equations give constructions of the optimal strategy
of the same problem. BSPDE (3.6),(3.7) can be considered as a generalization of Hamiltom-
Jacobi-Bellman equation to the non Markovian case and FBSDE (1.12), (1.13) is linked with
the stochastic maximum principle (see [4]), although equation (1.12)—(1.13) is not obtained
directly from the maximum principle. It is well known that the relation between Bellman’s
dynamic programming and the Pontriagin’s maximum principle in optimal control is of the
form ¢, = V'(t, X;), where V is the value function, X an optimal solution and 1) is an
adjoint process (see, e.g., [1], [15]). Therefore, somewhat similar relation between above
mentioned equations should be expected. In particular, it is shown in Theorem 3.1, that the
first components of solutions of these equations are related by the equality

}/t - —UI(V/(t,Xt)) — Xt-
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In addition, conditions are given when the existence of a solution of BSPDE (3.6),(3.7)
imply the existence of a solution of the system (1.12)—(1.13) and vice versa.

2. ANOTHER VERSION OF THE FORWARD-BACKWARD SYSTEM (1.12)—(1.13)

In this section we derive another version of the Forward-Backward system (1.12), (1.13)
in which the backward component P; is a process, such that P, + U’(X}) is a martingale.

Theorem 2.1. Let utility function U be three-times continuously differentiable and let the
filtration F' be continuous. Assume that conditions (1.2) and (1.5) are satisfied. Then there
exists a quadruple (P,v, L, X), where P and X are continuous semimartingales, 1 is a
predictable M —integrable process and L is a local martingale orhogonal to M, that satisfies
the FBSDE

AP+ AU (XL) + 0,
Xt:x—/ APu b AU (X) ¥ by @.1)
0

U”(XS)

¢ 1 AP + AU (Xs) +5) 1"
P, =P —=U"(X,
t */ {A U U (X,)?

A(M) s (A PeA AU’ (Xo)+105)

t
+/ YsdMg+ Ly, Pr=U'(Xr+ H)-U'(X7). (2.2)
0

In addition the optimal strategy is expressed as

oMbt MU' (Xy) +
t U”(Xt)

2.3)

and the optimal wealth X* coincides with X.
Proof. Define the process
P =E(U (X7 + H)/F) - U'(X]). (2.4)

Note that the integrability of U’ (X}.+ H) follows from the duality relation (1.8). It is evident
that Pp = U'(X; + H) — U'(X}).

Since U is three-times differentiable, U’ (X;) is a continuous semimartingale and P; ad-
mits the decomposition

t
Po— Pyt A+ / YudM, + L, 2.5)
0

where A is a predictable process of finite variations and L is a local martingale orthogonal
to M.
Since p; is the density of a martingale measure, it is of the form p; = &(—A - M +
R), RLM. Therefore, (1.8) and (2.4) imply that
t
B(U'(X¢+ H)/F) = o =y~ [ ApldM. + R
0

t
=y / (Ps + U'(X7))AsdM;s + Ry, (2.6)
0

where y = EU’(X% 4+ H) and R is a local martingale orthogonal to M.
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By definition of the process P, using the Itd formula for U’(X;") and taking decomposi-
tions (2.5), (2.6) in mind, we obtain

t t
%+&+/deﬁlﬁw—/(ﬂ+me&M%+&
0 0

t 1 t
Ue) -~ [ U mTanA - 5 [ U m T
0 0
t
—/ U (XHmEdMs. (2.7)
0
Equalizing the integrands of stochastic integrals with respect to dM we have that (M) -a.e.
MNP 4+ MU(X]) + 4y
= — d 2.8)
' Ur(Xy)
Equalizing the parts of finite variations in (2.7) we get
t
1
A= / (U (XA + U (X)) (M) (2.9)
0
and from (2.8), substituting the expression for 7* in (2.9) we obtain that
' 1 (AsPs + AU'(X5) +5) T
Ay = As — U (X d(M)s
t /0\ |: 2 ( ) U//(XS)Q < >
X (AsPs + AU (X)) + 1hs). (2.10)

Therefore, (2.10) and (2.5) imply that P, satisfies equation (2.2). Integrating both parts of
equality (2.8) with respect to d.S and adding the initial capital we obtain equation (2.1) for
the optimal wealth. (]

Corollary. Let conditions of Theorem 2.1 be satisfied. Then there exists a solution of FBSDE
(1.12), (1.13). In particular, if the pair (X, P) is a solution of (2.1), (2.2)S, then the pair
(X,Y), where

Y, =-U'(P,+U'(Xy)) — Xy,

satisfies the FBSDE (1.12), (1.13).
Conversely, if the pair (X,Y") solves the FBSDE (1.12), (1.13), then (X, P, = U'(X; +
Y:) — U'(Xy)) satisfies (2.1), (2.2).

3. RELATIONS BETWEEN BSPDE (1.10)—(1.11) AND FBSDE (1.12)—(1.13)

To establish relations between equations BSPDE (1.10), (1.11) and FBSDE (1.12), (1.13)
we need the following

Definition 3.1 ([3]). The function u(t, z) is called a decoupling field of the FBSDE (1.12),
(1.13) if

u(T,z) = H, a.s. (3.1)
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and forany x € R,s,7 € R4 suchthat 0 < s < 7 < T the FBSDE
Y = u(s, x)

¢ UX,+Y,) 1 ,U0"X,+Y)U (X, +Y,)?
AP e v Lo L+ ZD)d(M) A,
+/S N T Ty 2t U"(X, 1 Y,)3 20 )diM)
1 t U”/(XT+YT) t
2 eI Ny, Z,dM, + N, — N,, Y, = u(r, X,), 2
2/5 U”(XT—FYT) < > Jr/S + Ny U(T ) (3.2)
LoU(X+ Y
Xi=x— A2 4+ 7.)dS,, 33
t=2 /6 ( U(X, +Y,) + ) (3.3)
has a solution (Y, Z, N, X) satisfying

Y, =u(t,Xy), a.s. (3.4)

forall ¢t € [s, 7]. We mean that all integrals are well defined.
We shall say that u(¢, x) is a regular decoupling field if it is a regular family of semimartin-
gales (in the sense of Definition 1.1).

If we differentiate equation BSPDE (1.10) at = (assuming that all derivatives involved
exist), we obtain the BSPDE

t "s. V(s x T , , /
V’(t,a:)zV’(O,m)—G—%/O <(<p(, )\/t(é Z)( ) d{M)s(¢'(s,2) + XV (s,x)))

t
+ / S5, 2)dM, + L' (tz), V'(T,a) = U'(x + H). 35)
0
Thus, we consider the following BSPDE

t Mg o s /" s, T
V’(t,x):V’(O,x)+/O {(V (&, %/A/;(:f)( )

"(s,2)\g (s, z))T , ,
—%V’"(s,x)(v(’ E,(;f)( ) d(M)s(V'(s,2)As + ¢' (s, 7))
N / ") dM,+ Dt x), VI(T.2) = U'e + H), (3.6)
0

where the optimal wealth satisfies the same SDE
_ /t (s, Xs(2)) + A(s)V' (5, Xs(2))
0 V(s, Xs(x))

The FBSDE (1.12), (1.13) is equivalent, in some sense, to BSPDE (3.6),(3.7) and the follow-
ing statement establishes a relation between these equations.

Xi(x) = dsS,. (3.7)

Theorem 3.1. Let the utility function U(x) be three-times continuously differentiable and let
the filtration F' be continuous.

a) If V' (t, x) is a regular family of semimartingales and (V' (t,x), ¢'(t, ), L' (t,x), X¢)
is a solution of BSPDE (3.6),(3.7), then the quadruple (Y, Zy, Ny, X), where

Y, = —U'(V'(t, X)) — X, (3.8)
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~ (t, Xt) + MV (t, Xy)
7, — / / X ' ( s 431 )
= MU' (V'(t X)) + VIt X)) )

(3.9)

Ntz—/0 U”(V’(S,XS))d(/O L'(dr, X,)), (3.10)

will satisfy the FBSDE (1.12), (1.13). Moreover, the function u(t,z) = —U'(V'(t,z)) — =
will be the decoupling field of this FBSDE.

b) Let u(t, x) be a regular decoupling field of FBSDE (1.12), (1.13) and let (U'(X; +
Y:),s <t < T) beatrue martingale for every s € [0, T). Then (V'(t,x), ¢ (t,x), L' (t, z), X)
will be a solution of BSPDE (3.6), (3.7) and following relations hold

V'(t,z) =U'(z + u(t,z)), hence V'(t,X;)=U'(X;+Y2), 3.11)

U'(X:+Yy)

"(t, X¢) = (Z, L
P X0 = A M gy )

Wt Xe) = MU' (Xe + Y2), (3.12)

t t
/L’(ds,Xs):/ U (X, + Y2)dN,, (3.13)
0 0

where fg L' (ds, X) is a stochastic line integral with respect to the family (L' (t,z),z € R)
along the process X.

Proof. a) It follows from BSPDE (3.6), (3.7) and from the It6-Ventzel formula that V' (¢, X})
is a local martingale with the decomposition

t t
V’(t,Xt):V’(O,a:)—/ ASV’(S,XS)dMS+/ L'(ds, Xs). (3.14)
0 0

Let Y, = —U'(V'(t, X;)) — X;. Since U is three-times differentiable (hence so is U ), Y
will be a special semimartingale and by GKW decomposition

t
Y, = Yo + A, +/ ZudM, + Ny, (3.15)
0

where A is a predictable process of finite variations and NV is a local martingale orthogonal
to M.
The definition of the process Y, decompositions (3.14) , (3.15) and the 1t6 formula for

U'(V'(t, X;)) imply that

t
Ay +/ ZsdMg 4+ N,
0

:/ ﬁ”(V’(s,XS))V’(s,XS))\SdMS—/ ﬁ”(V’(s,XS))d(/SL’(dr,XT))
0 0 0

N |

2 0 0
V(5. X0) + (5 X,) NIV (s, X,) + (5, Xo)T

M. d M . 1
+/o Vi X) O ”/o Vs xy LA G16)

(=)

/t ﬁ///(vl(S,Xs))vl(S,X5)2A3d<M>S/\S _ 1/t ﬁ///(vl(s7Xs)>d</. L/(dn Xr)>s
PV (s
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Equalizing the integrands of stochastic integrals with respect to dM in (3.16) we have that
(M)

wi-ae.
AV (8, Xs) + ' (5, Xs) | /o /

Zs = U'(V' (s, X)) V' (8, Xs)As- 3.17

Ty UV s X))V (s X) (3.17)
Equalizing the orthogonal martingale parts we get P-a.s.
t s

N, = _/ U”(V’(S,Xs))d(/ L’(dr,X,.)>. (3.18)
0 0

Equalizing the parts of finite variations in (3.16) we have

EXTV! (5, X)) + ¢/ (5, Xo)T
A — S ) S ) S M
! /O V”(SaXS) d< >5)\S

1"~
- 5/ U" (V' (5, X))V (5, X )2AEd(M) N
0
- 7/ U’”(V’(s,XS))d</ L’(dr,Xr)> (3.19)
2 0 0 S
and by equalities (3.17), (3.18) we obtain from (3.19) that
t _ 1~ T
A= [ (2= 070 6 XDV X~ 50V (5. XV (5, X ) D)
0
1 rt T (Y X
_,/ Md(N}S. (3.20)
2Jo U"(V'(s,X,))?

Therefore, using the duality relations
VI(t, X;) =U'(X: + Y7),
1
B U'X:+Y) ’
U" (X +Yy)
(U"( Xt +Y2))*

U"(V'(t, X,)) =

(NJ”’(V’(t,Xt)) _
we obtain from (3.20) that
o /t \ U(Xs+Ys) 1. U"(X,+Y)U (X, +7Ys
T \CUM(X Yy 270 U" (X, + Ys)3

_1/t U”I(Xs‘i‘}/s)
2 J, U'(X, +Y)

Thus, (3.15) and (3.21) imply that Y satisfies equation (1.12).
Since

9 T
) +ZS) d(M) s

d(N), (3.21)

1
- U”(Xs + Ys) ’
from (3.7) and (3.17) we obtain equation (1.13) for the optimal wealth.

The proof that the function u(t,z) = —U'(V'(t,z)) — x is the decoupling field of the
FBSDE (1.12) is similar. One should take integrals from s to ¢ and use the same arguments.

U"(V'(s, X))V (s, X,) =



230 Connection between FBSDEs and BSPDEs related to UM Problem

b) Since the quadruple (Y%, Z5% N*% X% satisfies the FBSDE (3.2), (3.3), it follows
from the It6 formula that for any ¢ > s

t
U Y = U+ alsia)) = [ AU 4 Yy,
t
+/ U"(X5" +Y,5")dN,. (3.22)

Thus U'(X;"* + Y;>"),t > s, is a local martingale and a true martingale by assumption.
Therefore, it follows from (3.1) and (3.4) that

UX)"+Y>")=EU (X3 +H)/F,) =V'(t, X;""), (3.23)
where the last equality is proved similarly to [13]. For ¢ = s we obtain that
U'(z +u(s,z)) = V'(s,z), (3.24)

hence
u(t,z) = =U'(V'(t,z)) — x. (3.25)

Since U(x) is three-times differentiable and w(t, z) is a regular decoupling field, equality
(3.24) implies that V’(t, ) will be a regular family of semimartingales. Therefore, using the
[t0-Ventzel formula for V' (¢, X;*") and equalities (3.22) , (3.23) we have

i U/(Xs,x + Ys,x)
/ s,x\ _ /! S.T T T S,T
/S [g@ (r, X%) = V" (r, X%) (A 07X 17 + Z; )] dM,

¢ ¢
+/ L’(dr,Xr)—i-/ a'(r, X>")dK,

t / T
U'(X7" +Y7) " "
— Ar L L zZ5% ) d{M), , X5\ , X5
| (M oy 2% AV XA (X))

1 t " U/(Xs,m+ys,a:) T
- XS A'r r T VAL d(M -
5 | V7 xem) (N ey + 22 ) dlan)
UI(XS,I+YS,:E)
)\/r Tsw T‘SI ZS,(L’
X( U//(X7-7 —I-Y;-’ )+ T )

t t
- / AU (X5 + Y5 dM, + / U"(X5% + Y%)dN,. (3.26)

Equalizing the integrands of stochastic integrals with respect to dM in (3.26) we have that

pK-ae.

AV (r X07) 4/ (r X37) | U(X3" 4 )
Vi, X2 TUNXET YT

75 = (3.27)
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Equalizing the parts of finite variations in (3.26), taking (3.27) in mind, we get that for any

t>s
t t " "
V' (r, X2\ 4+ " (r, X37))
/ XS,:E dK — ( U r ? r
L a (T? T ) s /S |: V//(T, Xf,w)
(V' (r, X2") A + ' (r, X207))
V”(T, X;"L)Q

XA(M) (V' (r, X2 )\ + ' (1, X27)). (3.28)
Let 7,(c) = inf{t > s : K, — K, > €}. Since (M? M7) << K forany 1 < i,j < d,
where K = Zle (M), taking an increasing process K + K (which we denote again by K),
without loss of generality we can assume that (M) << K and denote by C; the matrix of

Radon-Nicodym derivatives C; = ‘1&7%2{ Then from (3.28)

TE TV, XA+ @ (r, X)) TC (V! (1, X2 )A 4 (r, X))
l { Vi, X;")
(V! (1, X2y + ', X2 TCHV (1, Xp)s ', X27)
V7 (r, X3F)2

T

1
75‘/”/(“ X:,I>

1
_5‘////(7“7 X:,x)

—a/(r, X5")|dK, = 0. (3.29)

Since for any € R the process X>* is a continuous function on {(r,s),r > s} with
X2 = z (as a solution of equation (3.3)) and V' (¢, x) is a regular family of semimartingales,
dividing equality (3.29) by ¢ and passing to the limit as ¢ — O from [7] ( Proposition B1 ) we
obtain that for each x

(V" (s,2)As + ¢"(5,2)) " Cs (V' (5, 2)As + ¢/ (5,2))

@(s,2) = Vi (s, x)
1 " (V/(S7 x)>\5 + <ID/(S’ x))TCS(V/(S7 :L.)AS + w/(s7 x))
_§V (5,2) V' (s, x)?
(St S O Nt S, e, a0

which implies that V' (¢, x) satisfies the BSPDE

t "(s,2)\s "(5,2)TCs(V' (s, 2)Ns "(s,2))\’
V/(t,f):vl(o,x)+%A <(V(v ))\ +<P( ‘)/?H(Sa(f)/( ))\ +Q0( ))) K.,

t
Jr/ o' (s,x)dMs+ L' (t,x), V'(T,z)=U'(z+ H). (3.31)

0
The theorem is proved. (]

Remark 3.1. In the proof of the part a) of the theorem we need the condition that V' (¢, x) is
aregular family of semimartingales only to show equality (3.14) and to obtain representation
(3.10). Equality (3.14) can be proved without this assumption (replacing the stochastic line
integral by a local martingale orthogonal to M) from the duality relation

V'(t, Xi(x) = pe(y), y=V'(x),
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where p;(y)/y is the density of the minimax martingale measure (see [14] and [11] for the
version with random endowment). Since p;(y)/y is representable in the form £(—X- M + D),
for a local martingale D orthogonal to M, using the Dolean Dade equation we have

t t
VI(tX) = pi=y / NepudM, + / pudD,
0 0

t
=1- / AV (s, Xs)dM;s + Ry,
0

where R; = (Z-D); is a local martingale orthogonal to M. Further the proof will be the same
if we always use a local martingale R; instead of the stochastic line integral fot (L'(ds, Xs).
Hence the representation (3.10) will be of the form

t
N, = —/ 0" (V'(s, X,))dR,.
0

Remark 3.2. It follows from the proof of Theorem 3.1, that if a regular decoupling field
for the FBSDE (1.12), (1.13) exists, then the second component of the solution Z is also
of the form Z; = g(w,t, X;) for some measurable function ¢ and if we assume that any
orthogonal to M local martingale L is represented as a stochastic integral with respect to the
given continuous local martingale M+, then the third component N of the solution will take
the same form N; = fg g+ (s, Xs)dMZ, for some measurable function g=.

Remark 3.3. Similarly to Theorem 3.1b) one can show that u(¢,z) = V'(¢t,2) — U'(z) is
the decoupling field of (2.1), (2.2).
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