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ABSTRACT

This initial paper begins to define the challenges in creating a relevant (and usable) menu of
performance-based motivational technigues by describing the main organizational categories of
educational institutions and the various (ypes of motivational behavior commonly observed in
their staff. Further, it addresses what additional research is necessary for the final dissertation.
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Some values-based framework issues are relevant to other organizations and some are
completely unique within the educational sphere. This dichotomy also applies to what motivates
staff in such educational institutions. Having been involved in hundreds of organizations, I can
easily say that the staff (including lecturers) in the educational sector have a more diverse and
varied set of behavioral norms that challenge the development of a set of motivational techniques
that cover the range necessary to be usable.

Educational Institutional Frameworks

Educational Institutions have both unique and common characteristics related to their values-
based frameworks, depending on their legal status as follows:

e Private — operate as businesses, fully subject to market conditions regarding
supply/demand; tuition pricing; quality of educational product; competition. My
contention 1s that the definition of clients is an easy one — those organizations that hire
the students and graduates. Financials can be more complicated where there is a reliance
on endowments and research grants for economic viability. Usually, private institutions
make program decisions based on demand from the hiring organizations.

¢ Public — in addition to market conditions, they are extensions of government and reliant
on government subsidies/funding; political factions. Depending on the governmental



oversight and limited budget conditions, some public institutions may be held to a higher
standard regarding financial viability. Public institutions also have a different role to play
in providing programs that may or may not be in great demand — that is providing
“education for education sake”.

Not-for-Profit — similar to other NGO's where, although not saddled with the links to
government, there are issues when donor funding is required and often blurs the lines
when defining who are the real clients — students, donors, or hiring organizations.
Program decisions are often more complicated and again, subject to influence from
donors when necessary.

All the categories of educational institutions above struggle with decisions as to optimum size
and as mentioned — what programs to include in their curricula.

What motivates staff in educational institutions?

Financial — similar to every other organizational staff member. There are numerous
studies which define this characteristic, including “how much is enough™ and methods,
timing and forms of payment. Equal pay for equal work is also relevant here.

Benefits — both formal and informal - including vacation, holidays, sick leave,
maternity/paternity leave, insurance, pension/retirement, sabbaticals, training, access to
courses, discounts for family members, etc. Is a menu approach to benefits better for
motivating staff? Similar to the financial characteristic, there 1s a plethora of research on
this subject.

Status & title, including “trappings” — including public exposure, facilities, office space,
equipment, etc.

Organizational & managerial — being involved in a complex organizational structure.
Leadership role — being and “being considered” as a leader within the organization, with
the students, and outside the institution

Imparting knowledge and developing minds and character of students — a combination of
assuming one has something which is of value to the students and a truly altruistic
concept of wanting to see students grow in knowledge and maturity.

Improving society in general and a sense of “giving back™ — where there is a realization
that education 15 a key aspect in the growth and success of society. Also, many mvolved
in education feel a responsibility to give something back to the same society that gave
them whatever measure of success they feel.

Being associated with a younger generation — there is definitely a motivating factor of
being associated with a dynamic younger generation.

Learning from students — with some similarities to being associated with a younger
generation, it can be very motivating to actually learn from the students, especially when
there are international and adult students’ programs.

Social interaction — this motivation for social interaction can be manifested with other
staff and/or with students.



Generally, the motivating factors listed above are considered positive. [ have chosen to avoid any
factors that could be construed as negative, although they do exist, as they would not clearly be
related to enhancing performance of the institutions.

History of Autonomy and Tenure

There are some issues that also challenge the link between motivation and performance in
educational institutions.

One is that education in general (including the institutions and lecturers — regardless of legal
status) has historically been considered to have a semblance of autonomy. That concept of being
autonomous is decreasing and educational institutions are held more accountable to all
stakeholders. As an example, Deans are not only responsible for ensuring high-quality curricula
with qualified lecturers — the Deans must also liaise with hiring organizations to better
understand their program needs and also work with the university marketing departments to
increase student enrollment mn their specific faculties (schools).

The other issue is that of tenure with certain university professors where there is a guarantee of
continued employment after a defined number of years of service. It is easy to see where this
concept could have a negative impact on motivational techniques,

Defining the Need for Additional Research

The next step in this dissertation development is to conduct research as follows:

e Review existing research on financial and benefits to determine their applicability to the
educational sphere.

» (Conduct additional research within a relevant educational mstitution to determine the
relevancy of other motivational techniques on behavior that will enhance their
performance within their mstitutional frameworks.
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ABSTRACT

The paper covers the issues related to organizational culture engineering process and the role of the symbol in
it. There are discussed the concepts of spiritual and symbolic production in organization, and presented some
ideas related to the symbolic sphere of culture, symbolic forms and areas where symbol realized itself through

this forms.

qumrds: cultural engineering, organizational culture symbolism, symbolic forms, spirirual.

Pay heed, my brothers, to every hour where
your spirit wants to speak in symbols: there

lies the origin of your virtue [1]
F. Nietzsche
“Culture” in casual Latin language meant land cultivation; later human education and
learning. Later Marcus Tullius Cicero and Plutarkh expanded culture into a complex context
by adding “animi” (from “animus” - spirit). So “cultura animi’ - cultivation of the spirit, got

meanings like self-cultivation, self-creation, and care for the spiritual growth of others [2].

Nowadays the processes of spiritual production (including those in organizations) create
framework for developing mind, based on the historically accumulated social experience,
specifically symbolizing experience. Culture saves and transmits this experience from
generation to generation. There are mastered the symbolizing practice, generated new

programs of activity, behavior and communication. Creating the world of symbols is the



priority of a human in the culture-creating activities. Social philosophy underlines the key
difference of homo sapiens, - it is mind, - i.e. ability for heuristic symbolic modelling of the
world through abstract, logical and verbal thinking. Much information circulating in culture
is made tangible by symbolic forms: signs, images, metaphors. Symbol is a ‘border’
phenomenon, symbolic sphere connects and divides the form and the content, creating
meaning, and integrating the world of explicit and implicit, nature and culture, one culture
state with another. Symbol presents the unique connection, it is a connection itself, -
connection of meanings. One meaning is not a must connected with another one, however
the chain of associations in signs, metaphors and images builds the chain of meanings

connected and leading to the one transcendent prime-sense of symbol.

Culture consists of meanings connections, related to spiritual, symbolic processes. They are
not tangible in their meaning, but can be found in tangible forms in organizational culture
(like artifacts, stories, behavioral patterns, leadership styles, etc.). Organizational culture
satisfies the human need in spiritual, it gives the special space to express the meanings of real.

It is a space of reflection and the indivisible need of a person to symbolize the world around.

Spiritual has many explications, - Greek philosophers, religion and nowadays humanity
sciences. For example, by M.S. Kagan spiritual includes not only the spiritual product, but as
well its generating process. The philosopher defines four aspects in spiritual explication: in
the process of learning about reality, in its transformation, its values realization, and
communication of people in their common activities. It can be presented as the spiritual
sphere of society. The same four aspects can be found in organizations, representing the
spiritual sphere of organization, where all spiritual processes take place (like spiritual needs

genesis, spiritual activity launching, spiritual consumption).

Spiritual and symbolic processes are treated by many experts as in connection. For E. Cassirer

in his philosophy of symbolic forms, the main general notion becomes not ‘cognition’, but



‘spirit’, associated with the ‘spiritual culture’. Cassirer underlines that ‘culture’ understanding
is indivisible with the main forms and directions of spiritual creativity [3]. Spiritual is
arranged in symbol, “symbolic form” (Cassirer). Symbolic forms (language, myth, religion,

art, scientific knowledge) philosopher defines as the spiritual culture dimensions.

In organizations these spiritual culture dimensions are presented in the social glue of
organizational culture. Organizational culture functions as a symbolic system, as it seizes
intangible nature of inner-organizational connections and as well the meaning of
organization in relation to the external environment. Spiritual processes setting and change
constitute the cultural engineering processes, where symbol with its prime-sense keeps the
central position, and with its transformational potential provides the background for cultural
engineering. Organizational culture is the product of the human symbolic activity, and
organizational culture engineering is the fluctuating process of the system of metaphors,

images and signs. The system is rocked and meanings are transferred and transformed.

Cultural engineering as a vague term, more a concept in transitions, is understood like
cultural management with the help of practical strategies design, more applied to cultural
institutions. In our interpretation cultural engineering is the process of understanding and
developing spiritual foundations in organizations with the help of symbolic forms (like
metaphors, signs and images) design and management. 5o, cultural engineering related to the
work with meanings in organizations. Managers compose and decompose the meanings in
their departments, teams and at the organizational level. They do that consciously or
unconsciously, which is the specificity of culture as organizational phenomenon. Symbol
with its prime-sense creates the intangible and transcendent center for organizational culture
existence. Symbol with its transitional forms (signs, images and metaphors) creates the
transformational ability (change in organizational culture). There forms create the
dimensions of symbolic in organizational culture as the following: communicative (sign),

semantic (metaphor), and psychological (image).



In the communicative area symbol is realized by the sign (sign system). Symbolizing results
function as sign systems with the language codes and multiple interpretations. This is what
we call the language element of organizational culture, like culture ‘talks’, expressing itself
(in culture it can be literature, architecture, music, dance etc.; in organizational culture it is
jargon, architecture and design of the offices and workplaces, employees creativity, missions,

states goals, etc.).

Semantic area realizes symbol by metaphors. Symbolizing results in this area function as
metaphoric meanings and senses, used in interpretations. Semantic area deals with meanings
and their transition mechanics. In organizational culture we can meet stories, different
interpretations of the existing rules and goals, and some mechanics (like gamification) to help

employees deal with metaphorical meanings.

In the psychological area of the symbolic sphere of culture symbol is realized through image
as its symbolic form. In the psychological area symbolizing results function as images, which
create the subjective picture of the world, including the subject, other people, environment,
and time perceptions. In organizational culture this area is presented by the perception and
the behaviors people tend to demonstrate based on their perceptions, attitudes, and
assumptions. Psychological area is the introverted one, closed in its inner world, dealing with
inner spiritual attitudes, moral principles and values. In organizational culture it is related to

ethical codes, values and inner image of organization.

Cultural engineering process is a spiritual development of organization, including change in
organizational culture and in symbolic fields (symbols functioning with the prime-sense
keeping). Symbol through its symbolic forms creates the tension in meanings, and by this
makes cultural engineering process related to the spiritual and cultural transitions. Effective
management of organizational culture means effective understanding and design of symbolic

forms in order to keep the symbolic transitional energy active.
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ABSTRACT

Management, this is the field where we can’t consider any specific issue or problem to be fully
researched or decided. There is no situation which has the one and only right decision or
explanation. This is the field which needs continuous research and update. Important challenge
that is discussed in this paper is learning. Learning is widely studied by psychology. Modern
researches shows us that psychology is tightly connected to the management, as long as the main
task of management is human and getting the best results from them. The paper discusses
learning from the organizational point of view. Organizations, as independent entities as well can
learn and become more competitive on the market, attract best employees, retain and develop
them, create mmnovative and competitive product/service and achieve goals by continuous
improvement and innovation implementation.

«Tell me and I forget,
teach me and I may remember,

involve me and I learn. ™

Benjamin Franklin

Development of management as independent field of study and research has long history,
beginning from the late 19* century. During the 20" century many theories have been
worked out by leading scientists to distinguish the factors which affect effective workplace

environment and productivity.

More than a century, scientists work on developing and finding better understandings, better

ways of managing. While they think and contemplate, environmental issues change around



them and what was considered to be true for specific moment can become totally wrong
after several years. These circumstances leave no room for scientists to be sure that this or
that issue is completely researched and analyzed; there is no moment to relax and think that
solutions have been made. There are no exact answers that can be resistant to time. This field
cannot be considered as scientifically exact, every decision can be right in a specific moment

and every decision can be wrong in another specific moment.

The field of management is full of dilemmas that need to be researched and analyzed. Our
paper will discuss only one of them, namely, learning. Learning is the tool to change human
behavior. When we learn something it affects our way of thinking and way of doing things
that is so much important for successful transformation of ourselves and our behavior.
Managers always face the situation when they need to change behavior of their employees,
change their way of doing job, change the way they think and perceive their jobs and
organizations, change their attitudes towards internal or external environment. These tasks

are impossible to achieve without both teaching and learning as the whole process.

Learning makes us different, it makes us think more. We learn when we study at school,
when we attend University or other courses; we learn when we work and gather experience;
we learn when we observe others, see their success or failure; we learn on our mistakes and

failures.

Learning makes thing achievable, more tangible and accessible for us. We invest in our
learning as well as learning of our children and we strongly believe we will have important

return. Mostly this happens.

We learn and we teach. Knowledge needs to be transferred and shared to have its effect. We
invest not only financial resources in this process but as well effort. We use effort to teach
our children, friends, employees, peers, managers or students, everyone who we need to
change their way of thinking or doing things. To make them better, make better ourselves

and our general environment.



We learn to learn. We need to know how to be able to learn. We are all different, that means
we need different approaches and methods to achieve desired results. We need to learn how
to teach others, what their opportunities are and what the best approach is to make others

learn and change their selves.

Learning is widely studied by psychology. This is connected to the key psychological factors.
Learning shapes our thought and language, our motivations and emotions, our personalities
and attitudes. Great contributors in researching this issue are scientists like J.B. Watson, 1.

Pavlov and B. F. Skinner with their important ideas and experiments.

Contemporary business and management uses the principles of learning to improve their
results and effectiveness as well as motivation and commitment of its employees. From one
point of view people are learning, from another organizations are learning as an independent
entity able to learn and develop. Learning in organizations is based on some key factors that
decide what changes will be caused by this experience. The key elements or the major factors
that affect learning are motivation, practice, environment, and mental group. Motivation -
the encouragement, the support one gets to complete a task, to achieve a goal is known as
motivation. It is a very important aspect of learning as it acts gives us a positive energy to

complete a task. Example - the coach motivated the players to win the match.

Practice — we all know that “practice makes us perfect”. In order to be a perfectionist or at
least complete the task, it is very important to practice what we have learnt. Example - we

can be a programmer only when we execute the codes we have written.

Environment - we learn from our surroundings, we learn from the people around us. They
are of two types of environment — internal and external. Example - a child when at home
learns from the family which is an internal environment, but when sent to school it is an

external environment.

Mental group — It describes our thinking by the group of people we chose to hang out with.

In simple words, we make a group of those people with whom we connect. It can be for a



social cause where people with the same mentality work in the same direction. Example — a

group of readers, travelers, etc. (Tutorials Point Simply Easy Learning, 2017).

Organizations can use diverse tools to increase learning degree inside their employees.
Nowadays there are lots of methods like individual or group trainings, lectures, degree
program financing, on-job trainings, coaching, mentoring and so forth. Saving company
expenses on learning and development of human resources is not considered to be the right
decision any more. Environment on labor market has proven the importance of skilled and
educated employees. This is as well seen in results, that companies achieve using well-
trained people, who in addition have increased motivation by the fact that organization cares

on their future growth and development (Professor Arun Kumar, arunk.com).

As popularized by Senge (1990), a learning organization is “an organization that has woven a
continuous and enhanced capacity to learn, adapt and change into its culture. Its values,
policies, practices, systems and structures support and accelerate learning for all employees”

(Nevis et al., 1995).

Another interesting term connected to learning and organizations is organizational learning.
This is the process whereby an organization becomes a learning organization. It requires that
an organization be prepared to learn from both failures and successes; rather than being a
blaming organization, it becomes one that celebrates and learns. Organizational learning is
often used synonymously with learning organization. While the distinction may not be
significant, organizational learning is the process an organization uses to become a learning

organization (Gary N. Mclean, 2006).

The most important thing to focus after this discussion is that, we live in a changing world,
we live in the era of organizations, we need to adapt and we need to make others adaptable.
Managers need to think this way to make their organizations competitive and effective and

employees need to think this way to make themselves competitive and attractive on labor



market, achieve their career and personal goals. Learning is one of the ways to achieve these

goals. We need to learn and organizations need to learn as well.
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Introduction

This paper describes investment project’s robust valuation methodology that is necessary for valuing
assets in incomplete markets. Incomplete markets imply that asset prices and derivative instruments on
these assets are not directly observable on the market. Even more, in incomplete markets it becomes

impossible to fully hedge the assets using replicating portfolio principle discussed in [8] and [11].

As long as we are interested in valuation of assets in incomplete markets, we cannot model asset prices
using simplified methods as discussed in [3] and [4]. Instead, this paper considers a general one-period
model and its specific cases to value investment projects using robust mean-variance hedging. Robust
mean-variance hedging of contingent claims in continuous time models is discussed in [1].

Finally, this paper presents particular investment project undertaken in incomplete market environment
and its robust valuation together with solved robust mean-variance hedging problem. As an illustrative

example, an investment in gold widgets producing factory is evaluated.

Robust Mean-Variance Hedging of Contingent Claims in One-period Model

Let's examine two assets. One asset is tradable and the other is non-tradable. At the same time, let's be
given a derivative instrument /= G (7') on non-tradable asset. Let S’ be the price of tradable asset at
time £, and N’ be the price of non-tradable asset. Let's consider two points in time, ie. t=0and t = 1. At ¢
= 0, we assume (5%, 7"} are known, while (8", n') take some values from set S, where S ¢ R%. We denote
by P(S) probabiity measure given on S We consider it's particular subset P °, which takes (§', n")
values of joint distribution at t = 1. Derivative instrument /= G(n") is given by increasing function G(y).

We consider robust mean-variance hedging problem given as follows:

2
i g (601") - xo=n(s' =5%))"

Namely, its specific case when n= m = 2, where

S is {(Stni)k=1.mi=1..,m} and P ° = PO which in tmn is analogous to
{(P): M, X' P = 1}, where Py is the probability of P(S* = 51,7 = }). For n=m = 2, §'is given

as {(Sy. ). (Sp, 1e), (St ma), (Spomp)}, and PO = {]P = (Puw, Pur Pru, Pro): Bisn Py=1F; = [}}.
j=HT



Problem (1) is convex by arguments (x;, ), and linear, thus concave by P argument. As a result, using

Von Neumann's theorem we conclude that for problem (1) there is a saddle point. Thus,

2 z
r Y T = R VYoo o 1_ 0
Jmin, maxE" (G(r") = xo—m(s' ~5°)) = max min_E*(G(n') - xo—m(s'~5°))"

Below are given 2 propositions with solutions to problem (1) when at least one asset’s distribution is
known.
Proposition 1 When P (g} distribution is given, robust mean-variance hedging problem solution is

=0, x5=EG(n))=AGqg+ Gy

, and robust mean-variance is equal to Ry ipmar = vur"(ﬂ {nl):} = (AG)*q(1 — q).
Proposition 2 When P (p) distribution is given, robust mean-variance hedging problem solution is

: 1 1 1
T =ﬂ_. x:izzﬁﬁ"l"ﬂf'ziﬁﬂ""iﬁ-}',

. " 1
» and robust mean-variance is equal to Ryinmax =3 (AG)2,

Robust Valuation of Investments in Incomplete Markets
To illustrate an application of robust mean-variance hedging problem, let us examine the valuation of

investment project that involves use of derivative instruments in incomplete markets.

Let's consider an investment in a company that makes jewelry using gold. As long as gold jewelry prices
are not available on the organized exchange markets, their prices are not readily observable. So, the non-
tradable asset’s price, 7, will denote the price of jewelry that the company makes, and the tradable
asset’s price, S will represent the price of gold. Let’s assume that one unit of gold is required to produce
one unit of jewelry. Let’s also introduce a derivative instrument, G, namely, put option on a non-tradable
asset, N', which would insure the selling price of jewelry, 17, at the put option’s strike price, denoted by X
Thus, the payoff from put option is G(n*) = (K —5*)* and, by setting r= 0, present value of investment
becomes:
n" — 8" — put price + En* —ES* + (K — En')*.

Because put option is on a non-tradable asset, its price is not observed on the market. Using explicit
solutions for hedging parameter, x; and hedging error, Ry,inmas coefficients investment project’s present

value becomes:
n? — 8% — &3 — Rininmax + En* —ES* + (K — En*)*

. where x5 + Rpinmas 18 the put option’s robust mean-variance price. Using results from previous section,

investment project’s present value is given below under both propositions.

Under Proposition 1 When P (g) probability distribution of non-tradable asset is known:

n" — 5% — AGqg — Gy — J(AG)2q(1 — q) + En® — ES* + (K — En®)*.



Under Proposition 2 When P (p/) probability distribution of tradable asset is known:

1 1 !
0’ = S° =56y =567~ |7(A6)2 +En' — ES* + (K — En)*.

Furthermore, if we allow for buying a call option on tradable asset, S', while holding put option on non-
tradable asset, n', we can strictly define the worst case scenario of executing both options as the
minimum value of our investment project. Setting the strike price of call option equal to today's price of
gold, 8’ the minimum value of the investment can be defined as:

7' —S"+ K — 5% — x} — Rypinmax — E (55— 859

, where n° — §” is revenue received by selling gold jewelry at time t = 0, K is strike price of put option
which is the selling price of jewelry when put option is exercised, $* is minimum price paid for gold
when the call option is exercised, and (x§ + Rpinmax: E(S* — 5%)%) represent put and call option prices,

respectively.

Conclusion

The paper exactly described robust mean-variance hedging methodology for general one-period model
for the specific case. The results give values for derivative instruments having non-tradable assets as their
underlying asset, which essentially is described by a hedging parameter, x; and hedging error, Ryinmax-
As a result, using the methods defined in the paper it is possible to determine investment projects robust
value as well as its minimum value guaranteed by derivative instruments employed on investment

project’s assets.
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An extension of the mixed Novikov-Kazamaki
condition
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Abstract Given a continnous local martingale M. the associated
stochastic exponential £(M) = exp{M — %{M}} is a local martin-
gale, but not necessarily a true martingale. To know whether £(A1)
is a true martingale is important for many applications, e.g., if Gir-
sanov’s theorem is applied to perform a change of measure. We give
a several generalizations of Kazamaki's results and finally construct a
counterexample which does not satisfy the mixed Novikov-Kazamaki
condition, but satisfies our conditions.
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1 Introduction

Let us given a basic probability space (ﬂ._F : P) and continuous filtration
(JFi Josteoc, which means that every local martingale is continuous, and let
Foo be the smallest o —Algebra containing all F, for t < oc. Let M = (M;)i=0
be an adapted process such that M is a local martingale on the stochastic
interval [[0;T]] where T is a stopping time which might be equal to oo.
Denote by £(M) the stochastic exponential of the local martingale M:



1
g;{ﬂf:l = E}C‘l}{ﬂ-fr — E{ﬂf:l;}.

Let ( B;);=0 be a standard Brownian motion. Recall that continuous function
w: By — R, issaid to be a lower function if

P{m : dHw), Vi = tHw) = H;{H:J(i}}=ﬂ.

Now we formulate the main result of this paper:

Theorem  Let a, be a predictable, M-integrable process and let ¢ be a
lower function such that the following conditions hold:

(i) |as —1| = ¢ for some = = 0;

(7] @(x) can be represented as a sum of non decreasing and bounded fune-
tions p(x) = f(z) + g(x);

e
(iit) D= sup Ee:‘:pl{]Jvuﬁtnf;'l-i'Jit +f (E - us) d{M}, —.ﬁ‘cpl[{ﬂf},_r]} < 00
0 0

=r<T

where sup is taken over all stopping times. Then the stochastic exponentials
E( [ adM) and £(M) are uniformly integrable martingales.

This Theorem is a generalization of Kazamaki's result (Kazamaki [5], p.19,
Theorem 1.12).

Notice that Novikov's [7], Kazamaki’s (5] and mized Novikov-Kazamaki’s [5]
criteria correspond to the case when p =0 anda, = 0,0, = ?1£ anda, =a # 1
is a constant, respectively.

In third section we construct a local martingale M on [0;0c] as a coun-
terexample of mixed Novikov-Kazamaki condition with lower functions. For
this local martingale M mixed Novikov-Kazamaki condition fails for any real
number a # 1 and for any lower function, but there exists predictable process
a, such that conditions of Theorem are satisfied (In case when o = 0).

It is well-known, exponential martingales play an essential role in various
questions concerning the absolutely continnity of probability laws of stochas-
tic processes. In 1960, 1. V. Girsanov [3] showed that if (M), is bounded,



then £(M) is a uniformly integrable martingale. In 1972, this assertion was
proved by I. I. Gihman and A. V. Skorohod [2] when e!'*9 M= & L, for some
& > 0 and then by R. S. Liptser and A. N. Shiryayev [6] when ¢(z 9= ¢ [,
for some § > 0. After that, A. A. Novikov [7] showed that £(M) is a uni-
formly integrable martingale if ¢2("= € L, and that the constant } can not
be improved. In 1979 Kazamaki [4] proved that sup, e2™" < oo is sufficient
for uniform integrability of £(M). Then in 1994 Kazamaki [5] generalized
his assertion introducing mixed Novikov-Kazamaki condition using constant
a # 1 and lower functions (Kazamaki (5], p.19. Theorem 1.12). In 2013 J. Ruf
[8] generalized mixed Novikov-Kazamaki criterion introducing general condi-
tion using general function of local martingale and its quadratic variation, In
2017 B. Chikvinidze [1| generalized mixed Novikov-Kazamaki criterion using
predictable process a, instead of the constant a, but without lower functions
and in case when (M) < oo P a.s. The proof was based on technique
of backward stochastic differential equations. In this paper we declined the
condition (M) < oo P a.s. and used lower functions in addition.

2 Counterexample

Let us given a basic probahility space (ﬂ,F . P} with two independent Brow-
nian motions (By);ze and (Wi)za. Let (Fi)izo be filtration generated by
E and W, Now we choose any fy = 0 and an event A € F;, such that
0 < P(A) < 1. Consider processes B, = By — Byny, and W, = W, — Win,,. It
is evident that B, and W, are independent Brownian motions starting from
to and they both will be independent from events A and A°.

Define stopping time 7 = inf {t >t Bi<t—(1+ t.;;,}}.

It is known from Kazamaki ([5], p. 18 Example 1.10) that for the martingale
B’ holds Novikov’s [7] condition:

Eez® = <e<00 (1)

which implies that £(B") is uniformly integrable martingale. But with this
Kazamaki (]3], p. 23. Example 1.12) showed that for any o > 1, £(aB’) is
not an uniformly integrable martingale.

Now define another stopping time o = inf {t >ty : W, >t + (1 —ty)}.



It is known from Kazamaki ([5], p. 18. Example 1.11) that £ (W7} in uni-
formly integrable martingale, because sup, Ee®Wetz-20 W e = o0 holds
true \V]:lﬂll ¥y = 2:

SupEﬁ:}W;_%{Tr“ <e< . (2)
i

But for any v < 1, £ (a-Wﬂ] is not a uniformly integrable martingale (Kaza-
maki [5], p. 23. Example 1.13).

Now consider the martingale M, = 1,B, + 1, W;. We will show that for
any a #1 E€(aM) < 1:

EE..(aM) = Eﬁa.ﬂfm_'-f;.:mm _ EE1A(a§;_§¢§’}m}+1_qr{uﬁ_%(W"}m} _

= E(148x(aB ") 4+ 14:E0(aW")) = P(A)EEL(aB ) + P(A)E€m(aW').

As we have mentioned above if & > 1 then E(aB ) < 1 and if & < 1 then
EE.(aW’) < 1, s0 in both cases we obtain that FE.(aM) < 1. This implies
that for any a # 1 and any lower function ¢ the mixed Novikov-Kazamaki
condition fails:

sup EetMo+(—a)(Mlo—1-aleliM)e) — o
0

Now taking the process a, = 2 1 4xjty:77 we show that

8 9
1
sup E exp {f agd M, -|—f [E — rL,;.}rJ’.l':;H}k} < 0.
0 0

i

Using (1) and (2) we obtain:
0 o 1 1
Eexp { /n ”»sdﬂfs“‘j; (E—"Is)ff{ﬂff}s} = Fexp {2'1Ar'J1fﬂ+§i:ﬂff}g—?'1‘_p:{ﬂ'f},g} =

T 1 =7 1 T . T
= Eexp{2-1:W, + 51,1{1? bo + 51_,1‘,{14: o — 2 1ae(W )y} =

] =T TIro 3 i
= EE‘KP {laal:B :]6' -I— lﬂcﬂ:zlf{“’ﬂ. _ E{I{, }H}} =



= P{-q}Ee%‘_BT}” + P(_4*35€2W$—§¢W“;H <

< P(A)Eet ™= + P(A7) sup Be?Wa—177e <
[

< P(A)e + P(A%)e = e.

Finally because |a, — 1| = 1 it is obvious that the process a, satisfies condi-
tions of Theorem.
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Connections between a system of
Forward-Backward SDEs and Backward
Stochastic PDEs related to the utility
maximization problem

M. Mania and R. Tevzadze

We consider a financial market model, where the dynamics of asset prices
is described by the continuous semimartingale S defined on the complete
probability space (€2, F, P) with continuous filtration F = (F.t € [0,T7]),
where F = Fp oand T < no.

Denote by M the set of probability measures ) equivalent to P such
that S is a local martingale under €. Throughout the paper we assume that
the filtration F is continuons and AM® #£ .

The continuity of F' and the existence of an equivalent martingale measure
imply that S admits the decomposition

i [
S, = M, + / Aed (M), f Md(M), < oo, tel0,T)],
0 0

where M is a continuous local martingale and A - a predictable process.

Let U = Ulx) : B — R be a utility function taking finite values at all
points of i such that U7 is continnously differentiable, increasing, strictly
concave and satisfies the Inada condg ions ') =0, U'(—o) = oc. For
the utility function I we denote by I7 its convex conjugate

Uly) = sup(U(x) —xy), y >0,

The wealth process, determined by a self-financing trading strategy = and



initial capital x, iz defined as a stochastic integral
£
X =:r:+f TadS,, 0<t<T.
1]

We consider the utility maximization problem, i.e. the problem of finding
a trading strategy (m,t € [0,T]) such that the expected utility of terminal
wealth X777 becomes maximal. The value function V(x) associated to the
problem is defined by

.
Viix) = sup E[U (.r -+ f Ty :iSu)} . (1)
mells ]

where I, i3 some class of admissible strategies. We assume that Il is a class
of predictable, S—integrable process m such that an optimal strategy of the
problem (1) in this class exists (e.g., one can take the class H,(x) from [5]).

Let us introduce a dynamic value function of the problem (1) defined as

T
Vit,z) = esss-uprean(U (ﬂ, + [ Tu dSu) ‘ F:)- (2)
o

It is well known that for any @ € R the process (V{t,z),t € [0,T])
is a supermartingale admitting an RCLL modification. Therefore, using
the Galchouk-Kunita—Watanabe decomposition, the value function is rep-
resented as

!
Vit,x)=V(0,z) — A(t,z) + f wls,x)dM, + L(t, x),
0

where for any & € R the process A(t,x) is increasing and L(f.x) is a local
martingale orthogonal to M.

Definition 1. We shall say that (V(t,x).t € [0,T]) is a regular family
of semimartingales if V(. r) is two-times continuously differentiable at = P-
a.s. for any ¢ € [0,T], for any x € R the processes V(t,z) and V'(t,x) are
special semimartingales with bounded variation parts absolutely continnous
with respect to an increasing process (K, t € [0,T7]).

It was shown in [3] that if the value function V(t,x) is a regular family
of semimartingales, then it solves the following Backward Stochastic Partial
Differential Equation (BSPDE)

FP (s, ) + A(s) V(5. 2))°

Vit,z) =V(0,z) + % f Vs 1) d{M}+



[ 4
+ f ols,x)dM, + L(t,z), V(T,z)=U(x) (3)
0
and the optimal wealth satisfies the SDE

Y — e Yo' (s, X)) + Ms)V' (s, Xulx))
Xi(z) ==z £ V(s X.(2))

ds,. (4)

Note that the BSPDE (3), (4) is of the same form for utility functions defined
on half real line and also for random utility functions U(w, x).

Assume now that the utility function is of the form U{z + H), where
Ulx),r € R is a nonrandom utility and H is a Fp-measurable random vari-
able. In the paper [2] a new approach was developed, where a characterization
of optimal strategies in terms of a system of Forward-Backward Stochastic
Differential Equations (FBSDE) in the Brownian framework was given. The
key observation was an existence of a stochastic process Y with Yy = H
such that U'(X, + Y;) is a martingale. The same approach was used in [4],
where similar results were obtained in semimartingale setting with contin-
nous filtration rejecting also some technical conditions imposed in [2]. The
FBSDE for the pair (X.Y) (where X is the optimal wealth and ¥ the process
mentioned above) is of the form

}fr == YD + fﬁ [AQM 1 ‘ZUm{Xa' + E—']I’”{Xs + Y;s}z

R—— 5
HLIH'(XS + 1,;} o U”{Xﬁ. + 1/3)3 + '['J}

1 L Drmlix“ + V;::I t
zq 5 ] Ji'.-{ L I _— Jnhr & Z’ ‘;l_]r _IH'I.Ir ¥ & = H‘
+ A]'d{ } 2 0 L'T"{-](R—F Kt] dl:ln } + ./[; Hd $+ 5 T
X -z f* ANU(X + V) + ZU" (X + V)
B U"(X, +Y,)

where N is a local martingale orthogonal to M.

Definition 2 ([1]). The function u(t,z) is called a decoupling field of
the FBSDE (5), (6) if u(T,z) = H and for any x € R,s,7 € R. such that
0D<s<7<T the FBSDE

ds,, (6)

Y; = u(s,z)+ (7)

f (A2 U(X:+Y,)  1,U"X, + Y, )U' (X, + Y,)?

1
= MV d (M —
"{f.-'#{}(r + }{,} a°r I',-"”{X,. + Yr}?‘ + } ‘: }



l {TH.I'[X -I‘-Y:l
2/ U"(X, +Y,)

U'(X, +Y,) ,
X.=z f{ L"X_+Y} 1 2,)dS,, (8)

has a solution (Y, Z, N, X) satisfying

i
i{\} +/ Z l’i;i.'rf + "llfr J_i'||'|'$: }-’T — 'H.l[T_. f'{f}r

Y, = ult,X,), te€ls 1] (9)

We shall say that u(t.x) i3 a regular decoupling field if it is a regular family
of semimartingales (in the sense of Definition 1).

If we differentiate equation BSPDE (3) at & (assuming that all derivatives
involved exist), we obtain the BSPDE

Vi(t.2) = V/(0,2) + fﬂ’ [(V”{M-‘Ma + ;‘”(f;”a;]l{%lﬁ(;;(}&rm +¢'(s.7)

I:V"{-‘i', -'L'})'l.t + ';F'I(H'. _-;_-'”2
L,'H(S‘ 2:12

—%V"’(s, x) | d(M).+

t
+f ¢'(s,z)dM, + L'(t,z), V'(T,z)=U'(z+ H), (10)
0

where the optimal wealth satisfies the same SDE (4).

The FBSDE (5), (6) is equivalent, in some sense, to BSPDE (10),(4) and
the following statement establishes a relation between these equations.

Theorem 1. L-E't { () be three-times continuously differentiable.

a) Let (V'(t, &), (t.x). L'(t,x), X;) be a solution of BSPDE (10),(4).
Then the quadruple (Y;, Z,. N;, X;), where

Y, = —0'(V'(t, X)) —

¢t Xo) + AV X))
Vit Xy) '

= MU'(V'(t, X)) +

1‘.& — [ U” ],ﬂ'(‘ S, X. }}{f{ -[: Lf{{-j‘_r‘ X,-:I}._

will satisfy the FBSDE (5), (6). Moreover, the function u(t,x) = —U'(V'(t.x))—
a will be the decoupling field of this FBSDE.

b) Let u(t,x) be a regular decoupling field of FBESDE (5), (6) and let
(U'(X: + Yi),s <t < T) be a true martingale for every s € [0,7]. Then



(V'(t ), @' (t, 2), L't 2), X) will be a solution of BSPDE (10).(4) and fol-
lowing relations hold

V(t,z) = U'{z +ult.x)), hence V'(t,X;)=U"(X,+Y),

U'(Xe + Y
U"(X; + 1)

i I
[ v xy = [[vrx 4 voan,
i ]

Pt Xa) = (2 + A W X)) = MU'(X + 1),

where f; L'(ds, X,) is a stochastic line integral with respect to the family
(V'(t,x),x € R) along the process X.
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Abstract

Recursive estimation procedure of a one-dimensional parameter of Levy measure of Come-
pound Polsson process is introduced and its asymptotic properties are investigated.

The object of our investigation is a parameter filtered statistical model
E = (QF,F = (Fi)itz0.(Pa,0 € R)) (1)

associated with one-dimensional F-adapted RCLL process X = (X;)izo in the following way:
for each # € R. Py is assumed to be the unique measure on (2. F) such that under Fy. X =
(Xi)i=0 is a semimartingale with the triplet of predictable characteristics (Bg, 0, 1), where Ba(t) =
M [l <pyp(8, de), ve(dt,dx) = Ndtv(0;dz), where A > 0, /(f,-) is probability measure on
(R, B(R)) with [pa*v(, dr) < co.

It is obvious that under Fy, X = (X;)i=¢ is a Compound Poisson process that can be written

in the following form:
Jhllrf

Xi= Zfi:
i=1

where N = (Ni)i=o is a Standard Poisson process with intensity A > 0, and £ = (£,)n is the
sequence of L.i.d. random variables with the probability distribution (8, -) (see, e.gz.. [1]).
Our aim is to construct recursive estimation procedure for unknown parameter 8 € R,
Suppose that for each pair (#, '} the measures v(#, ) and v(6', ) are equivalent., Fix some # € R
and denote P := P, v := v, v(#;x) = v(-). Then

%P 6eR,

dF ¢
dlFy

pe(B) = E(M(6)),

where M(0) = (Y(0) — 1) = (n—v), Y(0,2) = G5

and the local density process p(f) =

can be represented as the Dolean esponential
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Further. assume that the density Y (0, x) is continnously differentiable in @ for each x € R,
and differentiability under integral signs is possible. Note that under assumptions listed above the
model (1) is regular in the sense given in [2].

It is not hard to observe that

J V(e Vg
L(6) = g n0) = g+ (a =) = #@) s Gu—v0) (20 =3). @
Henece, the maximum likelihood equation is
Li(6) = () « (p — vg)e = 0. (3)

Remark 1. The problem of solvability of Eq. (3) in more general setting is studied in [3].
Eq. (3) can be rewritten in the equivalent form
1"-:

Y(0,&,) -~ ,
Zy{ﬂgﬂ =0 = # —MLE. (3"

Sa, for each t > 0, we need to solve Eq. (3) or (3') which is not easy task (in general).

Instead in [2] we proposed the recursive procedure to obtain the process 8 = (f;);=¢ (recursive
estimate) with the same asymptotic properties as MLE @:- as t — oo, Fy-a.s.

To develop this procedure first of all assume that

I = f &% (2, ) (0, dz) < cc.
i
Then L(#) = (L¢(#),t = 0) £ ﬁ'fj?mlipﬁ} and the Fisher information process is
1(8) = (L(8), L(#)}: = AtI(#8).

Denote +(#) = I;(#). The recursive estimation procedure, SDE (3.4) of [4] in the case under
consideration is of the following form:

0, = 0o+ ﬂf H[ ﬂ;-a(a,,-_)wwa_.x}( %)w{ds dz)

5

+ff".f's'[93—}‘1’(53—_.1'}{ﬁ—Vﬂ]{ds,_{i:r]. (4)

0 R

Remark 2. Although Eq. (4) is equivalent to the following equation

BB, ) ;
th = th + g Tm} 1 (4)

we prefer the form of Eq. (4) to investigate asymptotic properties of #;, as t — =0, FPy-a.s., based
on results concerning asymptotic behaviour of solutions of Robbins-Monro (RM) type SDE.



The Robbins-Monro type SDE
t t
2=z + _[Hy{z,,_}df‘.'s + f Mds, zs-), (5)
0 0

where Ho(0) = 0, Ho(u)u < 0, u # 0, was introduced in [5]. In [5], [6], the asymptotic behaviour of
2 = (2t)iz0, 88 t = oc, Py-as. was investigated.

Assume that for each # € R the funetion Y (#, x) is strongly monotone in @, Denote 2, = #; — 8,
then Eq. (4) becomes

Zt = Zn +ff'r.g{ﬂ+ za_]¢{ﬂ+za_,rnj(l - %ﬁw)wws,mr}
0 R
it

o [ [0+ 2 )86+ )~ vo)ds. d) (5")

n "

and is of the form (5) with K; = Af,
He(u) = f’n(l'? + )b (6 + u,m}(l - %)uw. dz), (6)
. ]
M(u) = [My(u),t = 0] = Ufmﬂ w)B(6 + u, ) (e — vg)ids, dz), t =0|. (7)
0 R
Denote
() = GO (), M (),

iK, =420 + u) f DO + u, 2)w(A, dx) = A7 (0 + u)I (8 + ),

R
Hence, (5') is the special case of the RM type SDE (5) with objects H{u) = (Hi(u))i>o and
M(u) = (M(t,u))i=0 specified by Eqs. (6) and (7), respectively.

Therefore one can use the results about asymptotic behaviour of solution z = (2;);=q of general
SDE (5) to establilsh asvmptotic behaviour of solution of SDE (5), as t — .

Namely, one can use Theorem 3.1 of [5] to derive sufficient conditions for the convergence:
z —+ 0, a8t — oo, Fy-as., for all @ € R (recall that from now 2z = (z)=0 is the solution of SDE
(5")). Further, sufficient conditions for the convergence: for all 6, 0 < § < :'! If2¢ — 0 (rate of
convergence), as t — 0o, Py-a.s., can be obtained from Theorem 2.1 of [6] and, finally, to establish
the asymptotic distribution of Itlfn‘*(ﬂ]lz,_. as t — oo (under measure Fy), one can use Theorem 3.1
of [6].

As an illustration, in the present work we restrict ourselves by results concerning the conver-
gence: 2 — 0, as t — oo, Pp-a.s., rate of convergence, to avoid complex notation needed to state
conditions for the validity of asymptotic expansion of I}/%z (see Eq. (3.1) from [6], with R, 2% 0,
ast — oo

Note that this convergence is equivalent to the strong consistency of recursive estimate (8 )i=q
given by (4) or (4'), that is 8; — 8, as t — oo, Fy-a.s.

Theorem 1. Lef the following conditions be satisfied: for all @ € R



(i) 7740 +u) < e(@)(1+u?), (@) >0

(ii) for eache, £ >0,

. =1 . YEH + H:.ﬂf'}

I

Then zp = 0, as f = oo, Fy-a.5.

Proof. Condition (A) of Theorem 3.1 from [5] follows from the strong monotonicity of Y(#, x) w.r.t.

t, for all € R.
Condition (B) of Theorem 3.1 of [5] is also satisfied. since

he(u) = 72(0 + w)I(6 + u) = WM 16 +u) = 76 + u) ,x?rz

Therefore
he(u) < Be(1 4+ u?),

with By = "ig} L and Iy Bads =
Condition {Ij of Theorem 3.1 fmm 5] is satisfied. since

=]

ke ]
f inf  |uH;(u)|dR; =finl'
e<lul<}
0 0

uI‘l{ﬂ+w.]f¢-r:{}+u,ar}(l {EHE” ’ ) (0, dx)
R

uye( + u) f B(0 + u, :x;}l(l - %)u{&_ d)
R

]‘ﬂ’f 0

Adt

= Inf
s<u|<l

Below we assume that zy = 0, as ¢ = oo, Fy-a.8.

Denote i)
FET

Hf-{“’:' . ,SII:H}I — - o U ?é U‘.

3, u =

3 = —lim
w—pl) T

Theorem 2. Suppose that for each 4, 0 < 6 < 1, the following conditions are satisfied:
(a4}
f - =24 1': :'Iitc:m;
i

[ M
t(ﬂ}hz -, 2= ) dt < oo Fg-a.s., where hy(u,v) = & “:fK Hj}'
bt

(ii)

c’-._____,

Then I3(#)z7 — 0, as t — oo, Py-a.s.

Proof. Tt is enough to note that in Theorem 2.1 of [6] we must take 4 = f and r = 2.
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